Today's Assignment

• Term Project
 – checkpoint 2 due on Wednesday 11/25
• Reading
 – Sections 5.1, 5.2, and 5.5
Some Comments about the Project

Project 2/3
A Quick Overview

- Asynchronous State Machines
- Asynchronous Pipelines
Asynchronous State Machines

- General case of sequential digital circuits
- Input transitions may cause change of
 - output values
 - internal state
- In the general case, several inputs may change simultaneously
 - not fundamental mode
 - multiple changes may represent concurrency or choice
- We can represent ASMs by
 - their input/output waveforms
 - a state table
 - also called a flow table
 - a state diagram

Example, a Toggle Circuit

- A toggle circuit
 - has one input, a, and two outputs, b and c.
 - a, b, and c are all RZ event-only signals (no value)
 - each odd event on a causes an event on b
 - each even event on a causes an event on c
State Table Representation

<table>
<thead>
<tr>
<th>State</th>
<th>Out</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>00</td>
<td>a b</td>
</tr>
<tr>
<td>b</td>
<td>10</td>
<td>c b</td>
</tr>
<tr>
<td>c</td>
<td>00</td>
<td>c d</td>
</tr>
<tr>
<td>d</td>
<td>01</td>
<td>a d</td>
</tr>
</tbody>
</table>

Trajectory Maps

- A Karnaugh map showing the *dynamic* behavior of the circuit
 - arrows indicate a *trajectory* through the state space
 - input transitions are *horizontal*
 - output and state variable changes are *vertical*
- Insert state variables as needed to keep distinct states separate
 - e.g., after $a\uparrow, b\uparrow$ in toggle circuit
Trajectory Map for the Toggle Circuit

- Each arrow denotes a state transition
- Stable states are denoted with letters
- This is not the only possible sequence. Can you suggest another one?

From Trajectory Map to K-Map

- For the K-map for output or state variable z
 - if an arrow leads to a state with $z=1$, mark the state where the arrow starts to 1
 - if an arrow leads to a state with $z=0$, mark the state where the arrow starts to 0
- Cover any hazards along the trajectory when selecting implicants to cover the logic function
- No need to cover off-trajectory hazards
Logic Design for the Toggle Circuit
From Trajectory Map to K-Map

Another Example, A FIFO Control Element

- Arrows labeled with inputs
 - rin, aout
- States labeled with outputs
 - ain, rout
Concurrency and Choice

- In states b and e both inputs can change.
- Does it matter which changes first?
- If they both change at the same time, what does the circuit do?
- This is an example of concurrency:
 - move in one step from b to e
 - also called a non-critical race

An Arbiter

- In state a, both ain and bin can change.
- Here it matters which one changes first.
- Here the simultaneity represents choice, not concurrency.
- In states b and c the simultaneous input changes represent concurrency.
- Where there is choice, we need synchronization (an arbiter).
A Simple Asynchronous Pipeline

• Align blocks separate async logic modules
 – wait for all inputs valid, then signal previous align block
 – when signal received from forward align block, set inputs invalid (if RZ) and allow next set of inputs to enter

Asynchronous Pipelines

• Very different from synchronous pipelines
• Delay of pipe is sum of delays of stages
 – not rounded up to delay of longest stage
• The number of problems in the pipe is flexible (≤ the number of stages
 – Different branches of a pipe need not have the same number of stages
 – The first problem may exit before the second problem enters regardless of the number of stages
A Simple Align Block

- What does the state diagram of this circuit look like?
- What is wrong with this simple approach?
- How can we fix it?

Asynchronous Iterative Circuits

- Can we feed the output of an asynchronous pipeline back to its input?
- How does such a circuit behave?
Next Time

- Power Distribution