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Today’s Assignment

• Term Project
– final project due on Wednesday 12/2
– presentations next week on Monday 11/30 and Wednesday

12/2

• Final Exam
– will be in Terman Auditorium
– 8:30AM to 10:30AM
– Thursday December 10
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A Quick Overview

• Power is distributed on-chip
from power pads to point of use
– from edges for peripheral-

bonded chips

• Load profile is determined by
characteristics of logic
– fan-out and select

• The distribution network is
sized to handle the worst-case
current while keeping the IR
drops within margins

• On-chip bypass capacitors
can reduce the amount of
metal needed for distribution
– change peak requirement to

average requirement

• Symbiotic bypass capacitors
are always present
– this is why most circuits

work!

• Isolate delicate circuits from
noisy circuits
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The On-Chip Power Distribution Problem

• Supply current is brought on
chip at specific locations
– on the edge for most chips

which are peripherally
bonded

– distributed over the area of
the chip for area bonded (C4,
solder ball) chips

• Loads consume this current at
different locations on the chip
at different times

• There is often a large parasitic
inductance associated with
each bond-wire or solder-ball
(0.1-10nH)

• Current is distributed from
the bond pads to the loads
on thin metal wires
– 0.04Ω /• typical

• Load currents may be very
high
– average current may be as

large as 20A for very hot
chips (50W at 2.5V)

– peak current may be 4-5x
this amount (100A!)

• L di/dt of bond wire and IR
drop across on-chip wires
are often a major source of
supply noise



EE 273 Lecture 18, On-Chip Power Distribution 11/25/98

Copyright 1998 by W. J. Dally, all rights reserved. 3

Copyright (C) by William J. Dally, All Rights ReservedEE273, L18, Nov 25, 1998 5

Power Distribution Trends

• The on-chip power
distribution problem is
getting much harder as
technology evolves

• Combination of
– lower voltages
– higher current density
– thinner metal layers
– larger chips

• We are quickly approaching
the point where peripheral
bonding will not be adequate
for high-performance chips
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Logic Current Profile

• Why does on-chip logic
produce a ‘spikey’ current
profile?

• Consider the logic that
generates the current

• Current is drawn to charge
gate and wire capacitance
Q=CV, E=CV2

• Typical behavior includes
– circuit idle before clock edge

• very little current

– exponential clock
amplification just before
clock edge

• exponential ramp up in
current

– flip-flops are clocked
• current depends on activity

factor
– Fanout in a logic circuit

• exponential ramp up in
current

– Fan-in or selection in a logic
circuit

• drop in current
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Logic Current Profile Examples (cont.)

• a memory or register array
– fanout in decoder
– selection of word-line
– amplification in S/A
– selection in multiplexer

• A carry-lookahead adder
– modest fan-out in PGK

blocks
– fan-out in carry tree
– fan-in in carry tree, but with

amplification
– amplification to drive output

• Control logic
– much like the decoder
– fan-out in the first few

stages
– then tree fanning in to flip-

flops
– often a long, serial tail

• Overall current profile is the
superposition of all of these
profiles
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Worst-Case vs. Average Logic Current Profile

• Current drawn is often very
data dependent
– e.g., a data path may switch

64-bits from all 0s to all 1s
– on average only 1/4 of the

bits will have this transition
when there is a transition at
all

• For noise analysis we must
consider worst-case power
– cannot allow possible, but

unlikely events to cause
system failure

• For battery life we may
consider average power
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IR-Drops

• Power distribution network is
designed to keep IR drop on
VDD and GND networks
within limits
– e.g., for 10% supply

variation, can drop at most
5% on each supply

• Networks are usually
designed specifically for the
loads of a given chip.

• However, we can gain
insight into the process by
considering a uniform load

• For example, suppose
current densities are
– Jpeak = 0.3A/mm2

– Javg = 0.05A/mm2

• For a peripheral bonded
chip, VDD and GND are
usually distributed by combs
with interdigitated fingers
– a hierarchy of such combs

is often used
• How much of a metal layer

(or how many layers) do we
need to distribute this power
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IR Drops, The Picture
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IR Drops, the Calculation

• Consider a thin slice of the
chip, say 1mm high

• Suppose a fraction, kP, of a
metal layer is devoted to
each supply

• In a slice of length L, say
16mm, current is drawn from
both sides over a 8mm path

This current ramps linearly,
so current at point x is

• The resistance of a 1mm
length of the supply net is

• Voltage integrates along the
strip, so
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IR Calculation, Cont.

• So, to get kP, for a given
voltage drop, V, say 125mV
we have

• This is almost 3 metal layers
for each of power and GND!

• Clearly this is not
acceptable.
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Metal Migration

• Over long distances, current
density must be kept low to
avoid large IR drops

• Over short distances, current
density must still be kept low
to avoid metal migration

• Over time, wires that carry
high current densities will fail
as the metal is eroded away
– think of your wire as a fuse

• Migration threshold varies
depending on process,
temperature, and lifetime

• A typical number is
– JMM = 1mA/µm2

• This is often a factor on short
power buses that connect
from the main bus to a point
of high current use

• It can also be a factor on the
output of high-current drivers

• Migration applies to vias as
well as wires
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On-Chip Bypass Capacitors

• The good news is that the
power distribution network
doesn’t really need to carry
all of the peak current

• Much of the difference
between peak and average
current may be supplied by
local, on-chip bypass
capacitors

• Bypass capacitors are also
critical in mitigating the
effects of the supply bond-
wire inductance

• Suppose we want to
distribute power on just two
metal layers (kP=1) but keep
the drop on each supply to
0.125V
– Need to reduce peak

current from 0.3A/mm2 to
0.1A/mm2
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On-Chip Bypass Capacitors
Current Profile
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On Chip Bypass Capacitors

• We need a bypass capacitor
of about 0.25nF for each
1mm2 area of the chip

• For comparison, an MOS
capacitor covering a 1mm2

area has a capacitance of
about 5nF/mm2

• So, our bypass capacitor
uses 5% of the silicon area!

• Can be made much smaller
with local regulation
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Symbiotic Bypass Capacitors

• Where are the bypass capacitors in this picture?
• Gates that are not switching at a given instant in time act as

symbiotic bypass capacitors
• If only one gate in 60 switches at a given instant, the bypass

capacitance is 30 times the switched capacitance
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Power Supply Isolation

• Chips often contain
– noisy circuits

• pad-drivers
• clock generators
• large RAM arrays

– noise-sensitive circuits
• PLLs and DLLs
• receive amplifiers
• etc…

• We would like to isolate the
noise sensitive circuits from
the noise generated by the
noisy circuits

• To do this we need to make
sure the two circuits share
as little of the power
distribution network as
possible

• Typically provide separate
power and/or GND pins
– quiet GND and VDD
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Next Time

• Project Presentations


