Today’s Assignment

• Term Project
 – final project due on Wednesday 12/2
 – presentations next week on Monday 11/30 and Wednesday 12/2

• Final Exam
 – will be in Terman Auditorium
 – 8:30AM to 10:30AM
 – Thursday December 10
A Quick Overview

- Power is distributed on-chip from power pads to point of use
 - from edges for peripheral-bonded chips
- Load profile is determined by characteristics of logic
 - fan-out and select
- The distribution network is sized to handle the worst-case current while keeping the IR drops within margins
- On-chip bypass capacitors can reduce the amount of metal needed for distribution
 - change peak requirement to average requirement
- Symbiotic bypass capacitors are always present
 - this is why most circuits work!
- Isolate delicate circuits from noisy circuits

The On-Chip Power Distribution Problem

- Supply current is brought on chip at specific locations
 - on the edge for most chips which are peripherally bonded
 - distributed over the area of the chip for area bonded (C4, solder ball) chips
- Loads consume this current at different locations on the chip at different times
- There is often a large parasitic inductance associated with each bond-wire or solder-ball (0.1-10nH)
- Current is distributed from the bond pads to the loads on thin metal wires
 - 0.04Ω typical
- Load currents may be very high
 - average current may be as large as 20A for very hot chips (50W at 2.5V)
 - peak current may be 4-5x this amount (100A!)
- L di/dt of bond wire and IR drop across on-chip wires are often a major source of supply noise
Power Distribution Trends

- The on-chip power distribution problem is getting much harder as technology evolves
- Combination of
 - lower voltages
 - higher current density
 - thinner metal layers
 - larger chips
- We are quickly approaching the point where peripheral bonding will not be adequate for high-performance chips

Logic Current Profile

- Why does on-chip logic produce a 'spikey' current profile?
- Consider the logic that generates the current
- Current is drawn to charge gate and wire capacitance $Q=CV$, $E=CV^2$
- Typical behavior includes
 - circuit idle before clock edge
 - very little current
 - exponential clock amplification just before clock edge
 - exponential ramp up in current
 - flip-flops are clocked
 - current depends on activity factor
 - Fanout in a logic circuit
 - exponential ramp up in current
 - Fan-in or selection in a logic circuit
 - drop in current
Logic Current Profile Examples (cont.)

- a memory or register array
 - fanout in decoder
 - selection of word-line
 - amplification in S/A
 - selection in multiplexer
- A carry-lookahead adder
 - modest fan-out in PGK blocks
 - fan-out in carry tree
 - fan-in in carry tree, but with amplification
 - amplification to drive output
- Control logic
 - much like the decoder
 - fan-out in the first few stages
 - then tree fanning in to flip-flops
 - often a long, serial tail
- Overall current profile is the superposition of all of these profiles

Worst-Case vs. Average Logic Current Profile

- Current drawn is often very data dependent
 - e.g., a data path may switch 64-bits from all 0s to all 1s
 - on average only 1/4 of the bits will have this transition when there is a transition at all
- For noise analysis we must consider worst-case power
 - cannot allow possible, but unlikely events to cause system failure
- For battery life we may consider average power
IR-Drops

- Power distribution network is designed to keep IR drop on V\textsubscript{DD} and GND networks within limits
 - e.g., for 10% supply variation, can drop at most 5% on each supply
- Networks are usually designed specifically for the loads of a given chip.
- However, we can gain insight into the process by considering a uniform load

- For example, suppose current densities are
 - \(J_{\text{peak}} = 0.3 \text{A/mm}^2 \)
 - \(J_{\text{avg}} = 0.05 \text{A/mm}^2 \)
- For a peripheral bonded chip, \(V_{DD} \) and GND are usually distributed by combs with interdigitated fingers
 - a hierarchy of such combs is often used
- How much of a metal layer (or how many layers) do we need to distribute this power

IR Drops, The Picture
IR Drops, the Calculation

- Consider a thin slice of the chip, say 1mm high
- Suppose a fraction, k_p, of a metal layer is devoted to each supply
- In a slice of length L, say 16mm, current is drawn from both sides over a 8mm path
 \[I_{\text{max}} = \frac{L J_{\text{peak}}}{2} \]
 This current ramps linearly, so current at point x is
 \[I(x) = 2x I_{\text{max}} / L \]
- The resistance of a 1mm length of the supply net is
 \[R = \frac{R_{\text{si}}}{k_p} = \frac{0.04}{k_p} \Omega \]
- Voltage integrates along the strip, so
 \[V(x) = \frac{x^2 r_W I_{\text{max}}}{k_p L} = \frac{0.04 x^2 J_{\text{peak}}}{2 k_p} \]
 \[V \left(\frac{L}{2} \right) = \frac{r_W L^2 J_{\text{peak}}}{8 k_p} = \frac{0.005 L^2 J_{\text{peak}}}{k_p} \]

IR Calculation, Cont.

- So, to get k_p, for a given voltage drop, V, say 125mV we have
 \[k_p = \frac{r_W L^2 J_{\text{peak}}}{8V} = \frac{(0.04)(15)^2 (0.3)}{8(.125)} = 2.7 \]
 This is almost 3 metal layers for each of power and GND!
- Clearly this is not acceptable.
Metal Migration

- Over long distances, current density must be kept low to avoid large IR drops
- Over short distances, current density must still be kept low to avoid metal migration
- Over time, wires that carry high current densities will fail as the metal is eroded away – think of your wire as a fuse
- Migration threshold varies depending on process, temperature, and lifetime
- A typical number is
 - \(J_{\text{MM}} = 1 \text{mA/}\mu\text{m}^2 \)
- This is often a factor on short power buses that connect from the main bus to a point of high current use
- It can also be a factor on the output of high-current drivers
- Migration applies to vias as well as wires

On-Chip Bypass Capacitors

- The good news is that the power distribution network doesn’t really need to carry all of the peak current
- Much of the difference between peak and average current may be supplied by local, on-chip bypass capacitors
- Bypass capacitors are also critical in mitigating the effects of the supply bond-wire inductance
- Suppose we want to distribute power on just two metal layers (\(k_p = 1 \)) but keep the drop on each supply to 0.125V
 - Need to reduce peak current from 0.3A/mm\(^2\) to 0.1A/mm\(^2\)
On-Chip Bypass Capacitors

Current Profile

Capacitor must supply this charge

\[Q = \left(\frac{2}{3}\right)^2 (0.3 \text{A/mm}^2)(1 \times 10^{-6})(0.5) = 67 \text{pC/mm}^2 \]

\[C = \frac{Q}{\Delta V} = \frac{67 \text{pC/mm}^2}{0.25V} = 267 \text{pF/mm}^2 \]

On Chip Bypass Capacitors

- We need a bypass capacitor of about 0.25nF for each 1mm\(^2\) area of the chip
- For comparison, an MOS capacitor covering a 1mm\(^2\) area has a capacitance of about 5nF/mm\(^2\)
- So, our bypass capacitor uses 5% of the silicon area!
- Can be made much smaller with local regulation
Symbiotic Bypass Capacitors

- Where are the bypass capacitors in this picture?
- Gates that are not switching at a given instant in time act as *symbiotic* bypass capacitors
- If only one gate in 60 switches at a given instant, the bypass capacitance is 30 times the switched capacitance

Power Supply Isolation

- Chips often contain
 - noisy circuits
 - pad-drivers
 - clock generators
 - large RAM arrays
 - noise-sensitive circuits
 - PLLs and DLLs
 - receive amplifiers
 - etc...
- We would like to isolate the noise sensitive circuits from the noise generated by the noisy circuits
- To do this we need to make sure the two circuits share as little of the power distribution network as possible
- Typically provide separate power and/or GND pins
 - quiet GND and \(V_{DD} \)
Next Time

- Project Presentations