EE273 Lecture 2
Wires

September 28, 1998

William J. Dally
Computer Systems Laboratory
Stanford University
billd@csl.stanford.edu

Today's Assignment

• Reading
 – Sections 3.3.4 through 3.5.2
 – Complete before class on Wednesday
A Quick Overview

- Wires have
 - resistance
 - capacitance
 - and inductance
- To reason about wires we create models
 - ideal
 - lumped L, R, or C
 - transmission line
- Transmission lines have
 - an impedance Z_0
 - a propagation constant, A
 - from which we get velocity, v
- An LC transmission line is lossless
 - waves travel down the line without loss
 \[V(x,t) = V(0,t - x/v) \]
- Waves reflect off the ends of a line depending on the termination impedance
 \[V_R = V_I \left(\frac{Z_0 - R_T}{Z_0 + R_T} \right) \]

Wires in Digital Systems

- Physically wires are
 - Stripguides on printed-circuit cards and backplanes
 - Conductors in cables and cable assemblies
 - Connectors
- We tend to treat them as ideal wires
 - no delay (equipotential)
 - no capacitance, inductance, or resistance
- They are not ideal
- To build reliable systems we need to understand their properties and behavior
Resistance of Wires

- Most real wires have resistance
- Depends on:
 - material (resistivity)
 - length
 - cross section
- Causes:
 - delay
 - loss

\[R = \frac{\rho L}{A} \]

<table>
<thead>
<tr>
<th>Material</th>
<th>(\rho) ((\text{n}\Omega \cdot \text{m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>16</td>
</tr>
<tr>
<td>Cu</td>
<td>17</td>
</tr>
<tr>
<td>Au</td>
<td>22</td>
</tr>
<tr>
<td>Al</td>
<td>27</td>
</tr>
</tbody>
</table>

Capacitance of Wires

- Real wires have capacitance
 - line charge
 - parallel plate
 - fringing
- To compute:
 - assume \(Q \)
 - compute \(E \) field
 - integrate to get \(V \)

\[C = \frac{Q}{V} \]

\[E = \frac{Q}{2\pi r} \]

\[C = \frac{2\pi e}{\log \left(\frac{r_o}{r} \right)} \]

\[C = \frac{2\pi e}{\log \left(\frac{2s}{r} \right)} \]

\[C = \frac{we}{d} + \frac{2\pi e}{\log \left(\frac{2s}{r} \right)} \]
Inductance of Wires

- Real wires have inductance
 \[L = \frac{\Lambda}{I} \]
- In a homogenous medium
 \[CL = \varepsilon\mu \]

Some Example Wires

<table>
<thead>
<tr>
<th>Type</th>
<th>W</th>
<th>R</th>
<th>C</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>On chip</td>
<td>0.6µm</td>
<td>150kΩ/m</td>
<td>200pF/m</td>
<td>600nH/m</td>
</tr>
<tr>
<td>PC Board</td>
<td>150µm</td>
<td>5Ω/m</td>
<td>100pF/m</td>
<td>300nH/m</td>
</tr>
<tr>
<td>24AWG pair</td>
<td>511µm</td>
<td>0.08Ω/m</td>
<td>40pF/m</td>
<td>400nH/m</td>
</tr>
</tbody>
</table>

Scale model of a line has different R, but same L and C per unit length
Wire Models

• In a particular situation, we create a model of a wire that captures the properties we need
 – ideal
 – lumped L, R, or C
 – RC transmission line
 – LC transmission line
 – General LRCG transmission line

• Model to use depends on frequency

\[f_0 = \frac{R}{2\pi L} \]

LRCG Wire Model

• Model an infinitesimal length of wire, \(dx \), with lumped components
 – L, R, C, and G

Copyright 1998 by W. J. Dally, all rights reserved
Transmission Line Equations

\[\frac{\partial V}{\partial x} = RI + L \frac{\partial I}{\partial t} \]

\[\frac{\partial I}{\partial x} = GV + C \frac{\partial V}{\partial t} \]

\[\frac{\partial^2 V}{\partial x^2} = RGV + (RC + LG) \frac{\partial V}{\partial t} + LC \frac{\partial^2 V}{\partial t^2} \]

Impedance

- An infinite length of LRCG transmission line has an impedance \(Z_0 \)
- Driving a line terminated into \(Z_0 \) is the same as driving \(Z_0 \)
- In general \(Z_0 \) is complex and frequency dependent
- For LC lines its real and independent of frequency

\[Z_0 = \left(\frac{R + Ls}{G + Cs} \right)^{\frac{1}{2}} \]

\[Z_0 = \left(\frac{L}{C} \right)^{\frac{1}{2}} \]

At high frequency (LC lines)
Example, 24AWG Pair

- \(f_0 = 33\text{kHz} \)
- Below \(f_0 \), line is RC
- Above \(f_0 \), line is LC

\[
Z_0 = \left(\frac{0.08 + 400 \times 10^{-9} \times 2\pi f}{40 \times 10^{-9} \times 2\pi f} \right)^{1/2}
\]

Propagation Constant

- Using impedance, we can solve for \(V(s,x) \)
- Propagation is governed by a constant, \(A \)
 - real part is attenuation
 - imaginary part is phase shift
 - velocity

\[
\frac{\partial V(s)}{\partial x} = -(R + Ls)I(s)
\]
\[
= -(R + Ls)V(s)/Z_0
\]
\[
= -[(G + Cs)(R + Ls)]^{1/2}V(s)
\]
\[
V(s, x) = V(s, 0) \exp(-Ax)
\]
\[
A = (G + Cs)(R + Ls)^{1/2}
\]

Copyright 1998 by W. J. Dally, all rights reserved
Lossless LC Lines

- If \(R \) and \(G \) are negligible
 - line is lossless (no dissipation)
 - governed by the wave equation
- Waves propagate down the line in both directions without distortion
- Line is described by its impedance and velocity
- What happens when the wave gets to the end of the line?

\[
\frac{\partial^2 V}{\partial x^2} = LC \frac{\partial^2 V}{\partial t^2}
\]

\[
V_f(x,t) = V\left(0, t - \frac{x}{v}\right)
\]

\[
V_r(x,t) = V\left(x_{\max}, t - \frac{x_{\max} - x}{v}\right)
\]

\[
v = (LC)^{\frac{1}{2}}
\]

\[
Z_0 = \left(\frac{L}{C}\right)^{\frac{1}{2}}
\]

Lossless LC Line

Waveform on line is superposition of forward and reverse traveling waves
Driving a Transmission Line

Place waves on the line by driving one end with a source
Assume line is infinite for now

Driving a Line - Equivalent Circuit

Response of line to voltage source depends on previous state of line, \(V_C \)
Termination

- Suppose we drive a unit step, \(U(t) \), on the line
- What happens at the far end?

Termination - Equivalent Circuit
Reflections and The Telegrapher’s Equation

- Incident wave determines \(V_i, I_i \)
- Use equivalent circuit to solve for \(V_T, I_T \)
- Use superposition to calculate \(V_r, I_r \)

\[
\begin{align*}
I_T &= \frac{2V_i}{Z_0 + Z_T} \\
I_r &= I_i - I_T \\
I_r &= \frac{V_i}{Z_0} - \frac{2V_i}{Z_0 + Z_T} \\
I_r &= \frac{V_i}{Z_0} \left(\frac{Z_T - Z_0}{Z_T + Z_0} \right) \\
I_r &= \frac{V_i}{V_i} = \left(\frac{Z_T - Z_0}{Z_T + Z_0} \right)
\end{align*}
\]

Some Common Terminations

- **Open circuit**
- **Matched termination**
- **Short circuit**
Example of Reflections

\[V_i = 1V \left(\frac{-50}{400+50} \right) = 0.111V \]
\[k_{SR} = \frac{1000-50}{1000+50} = 0.905 \]
\[k_{JS} = \frac{400-50}{400+50} = 0.778 \]
Example of Reflections

\[k_{SR} = \frac{1000 - 50}{1000 + 50} = 0.905 \]

\[V_I = 1V \left(\frac{50}{400 + 50} \right) = 0.111V \]

\[k_{rS} = \frac{400 - 50}{400 + 50} = 0.778 \]

<table>
<thead>
<tr>
<th>Vwave</th>
<th>Vline</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vi1</td>
<td>0.111</td>
<td>0</td>
</tr>
<tr>
<td>Vi2</td>
<td>0.101</td>
<td>5</td>
</tr>
<tr>
<td>Vi3</td>
<td>0.078</td>
<td>10</td>
</tr>
<tr>
<td>Vi4</td>
<td>0.071</td>
<td>15</td>
</tr>
<tr>
<td>Vi5</td>
<td>0.055</td>
<td>20</td>
</tr>
<tr>
<td>Vi6</td>
<td>0.050</td>
<td>25</td>
</tr>
<tr>
<td>Vi7</td>
<td>0.039</td>
<td>30</td>
</tr>
<tr>
<td>Vi8</td>
<td>0.035</td>
<td>35</td>
</tr>
<tr>
<td>Vi9</td>
<td>0.027</td>
<td>40</td>
</tr>
</tbody>
</table>

Example of Reflections

![Graph showing reflections](image-url)
Standing Waves

What happens if we drive an open line with a sine wave?
With an arbitrary periodic function (period = round trip)
What if the line is shorted?

Next Time

- Lossy wires
 - attenuation
 - RC transmission lines
- Special transmission lines
 - multi-drop buses
 - balanced lines
 - even and odd-mode propagation