Today's Assignment

- **Reading**
 - Sections 8.1 through 8.4
 - Complete before class on Wednesday

- **Reminder**
 - midterm is in the evening on 10/26
 - no class on 10/26
A Quick Overview

- Signaling over Capacitive Media
 - Want fast transitions and low power
 - Need to avoid supply noise
 - Current-mode signaling
 - References and Differential signaling
 - Pulsed signaling to avoid DC power dissipation

- Signaling over LRC Interconnect
 - Pin inductance and load capacitance form a tank circuit
 - Adding resistance dampens the oscillation of the tank
 - Slowing rise time reduces excitation

- Number of signal levels
 - trade off bandwidth against noise

Signaling Over Capacitive Media

- Where do we find capacitive wires?
 - short on-chip wires with high fan-out or fan-in
 - e.g. buses, register files, RAMs
 - note that long on-chip wires are RC lines - a more difficult problem

- Desiderata
 - fast transitions
 - low power
 - these imply a small signal swing
 - to support a small swing one needs to isolate power supply noise
Conventional Logic Signaling

- Historically signal levels were defined to facilitate logic circuits not transmission
 - for example:
 - 0 = TGND, 1 = TVDD
 - $V_r = (RGND + RVDD) / 2$
 - slow
 - lots of power dissipation
 - no rejection of supply noise
- When transmission is a large fraction of delay, it’s better to switch to a representation tailored for transmission
Current-Mode Signaling

- Send logic values as small currents
 - 1 = 1 mA
 - 0 = 0 mA
- Detect across ‘resistor’ at receiver
- High Tx impedance isolates Tx supply noise
- High-pass RC removes low-frequency Rx supply noise
- Still need to generate a reference

A Current-Mode Signaling Circuit
Another Current-Mode Signaling Circuit
Negative Feedback Current Sense

Transmitter References

- Would like to set receiver reference half-way between a ‘1’ and a ‘0’
- Simplest approach is to send half the ‘1’ current from the transmitter
 - this reference can be shared by many signals
- If drive current is 1mA, signal swing is 0.3V, and capacitance is 10pF, what is the rise time?
 - how does it depend on signal swing?
Differential Signaling

- If wire tracks are available, best noise cancellation is to send the signal and its complement:
 - twist the signals periodically to balance crosstalk
 - better noise rejection
 - balanced load on the two lines
 - twice the signal swing for the same current (or half the rise time)
- But this still dissipates DC power!

Pulsed Signaling

- To eliminate DC power dissipation just:
 - (1) remove the ‘resistors’
 - (2) drive the line with current pulses
- What does (1) do to noise rejection?
- How do we set the DC level of the line?
 - precharge
 - feedback
- Do we need to pulse the line in both directions?
Case Study, SRAM Bit Lines

- SRAMs have high fan-out on the word lines and high fan-in on the bit lines.
- Bit lines use differential, pulsed, precharged current-mode signaling.
- Typically have 50mV to 300mV swing.
 - Careful ground rules to make all crosstalk common mode.
- Detected with clocked amplifier 10mV offset-sensitivity.

SRAM Numbers

- Typical subarray:
 - 256 rows x 1024 columns
 - 0.5pF bit line, 2pF word line
 - On-current is 0.2mA
 - Pulse width is 500ps

\[
\Delta V = \frac{I \Delta t}{C} = \frac{(2 \times 10^{-4})(5 \times 10^{-10})}{5 \times 10^{-13}} = 200\text{mV}
\]

- How long would it take to go full-swing?
SRAM Waveforms

Signaling over LRC Interconnect
Or how not to excite the oscillator

- Short off-chip wires often look like LC tank circuits
 - inductance of package and bond wire
 - capacitance of load device
 - long off-chip wires look like transmission lines
- Add series or parallel resistance to dampen the oscillations
- Increase the rise time to avoid pumping energy into the LC

\[
\omega_0 = (LC)^{-1/2}
\]
\[
Q = \frac{1}{\pi R_o} \sqrt{\frac{L}{C}}
\]
\[
K_r = \frac{1}{\omega_0 t_r}
\]
Waveforms for LRC Signaling

L = 10 nH, C = 10 pF, R from 0 to 16 Ω

Number of Signal Levels

- There is nothing magical about 2-level or binary signaling
- Could use N-levels
 - N symbols
 - N nominal symbol voltages
 - N-1 thresholds
 - Nominal voltage separated from threshold by ΔV/(N-1)
Multi-Level Signals and Noise

• In the worst case, signal can swing through ΔV, from 0 to $N-1$
 – proportional noise is proportional to full swing
• Gross margin is distance from nominal voltage to threshold
• Proportional noise constant, K_N must be kept very small to allow more signaling levels
• Number of bits per symbol is $\log_2(N)$

$$V_{GM} = \frac{\Delta V}{2(N-1)}$$
$$K_N \leq \frac{1}{2(N-1)}$$

Multi-Level Signals and Power

• Power per symbol (worst case) is proportional to ΔV^2
• With fixed noise sources this grows as N^2.
• So power per bit grows as

$$\frac{N^2}{\log_2 N}$$

• So why use multilevel signaling?
 – when channel is band-limited
 • it may be the only way to get more bits over a channel
 – when there is a very large SNR
 • so proportional noise doesn’t swamp the multilevel signal.
Next Time

• Signaling wrapup
• Dealing with long on-chip RC lines
• Dealing with lossy LRC lines
• Simultaneous bidirectional signaling