74AC86
Quad 2-Input Exclusive-OR Gate

General Description
The AC86 contains four, 2-input exclusive-OR gates.

Features
- \(I_{CC} \) reduced by 50%
- Outputs source/sink 24 mA

Ordering Code:

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Package Number</th>
<th>Package Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74AC86SC</td>
<td>M14A</td>
<td>14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150” Narrow Body</td>
</tr>
<tr>
<td>74AC86SJ</td>
<td>M14D</td>
<td>14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide</td>
</tr>
<tr>
<td>74AC86MTC</td>
<td>MTC14</td>
<td>14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide</td>
</tr>
<tr>
<td>74AC86PC</td>
<td>N14A</td>
<td>14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300” Wide</td>
</tr>
</tbody>
</table>

*Device also available in Tape and Reel. Specify by appending suffix letter “X” to the ordering code.

Connection Diagram

IEEE/IEC

Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_0 - A_3)</td>
<td>Inputs</td>
</tr>
<tr>
<td>(B_0 - B_3)</td>
<td>Inputs</td>
</tr>
<tr>
<td>(O_0 - O_3)</td>
<td>Outputs</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings (Note 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (V<sub>CC</sub>)</td>
<td>-0.5V to +7.0V</td>
</tr>
<tr>
<td>DC Input Diode Current (I<sub>IO</sub>)</td>
<td>50 mA</td>
</tr>
<tr>
<td>DC Output Diode Current (I<sub>OH</sub>)</td>
<td>50 mA</td>
</tr>
<tr>
<td>DC Output Voltage (V<sub>O</sub>)</td>
<td>+0.5V</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (V<sub>CC</sub>)</td>
<td>2.0V to 6.0V</td>
</tr>
<tr>
<td>Input Voltage (V<sub>i</sub>)</td>
<td>0V to V<sub>CC</sub></td>
</tr>
<tr>
<td>Output Voltage (V<sub>o</sub>)</td>
<td>0V to V<sub>CC</sub></td>
</tr>
<tr>
<td>Operating Temperature (T<sub>A</sub>)</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Minimum Input Edge Rate (ΔV/Δt)</td>
<td>125 mV/ns</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>V<sub>CC</sub> (V)</th>
<th>V<sub>TH</sub></th>
<th>V<sub>IL</sub></th>
<th>V<sub>OH</sub></th>
<th>V<sub>OL</sub></th>
<th>I<sub>IN</sub></th>
<th>I<sub>OLD</sub></th>
<th>I<sub>OH</sub></th>
<th>I<sub>OL</sub></th>
<th>ICC</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>TH</sub></td>
<td>Minimum HIGH Level</td>
<td>3.0</td>
<td>1.5</td>
<td>0.9</td>
<td>2.9</td>
<td>0.002</td>
<td>±0.1</td>
<td>3.0</td>
<td>0.36</td>
<td>0.36</td>
<td>5.5</td>
<td>V<sub>OUT</sub> = 0.1V</td>
</tr>
<tr>
<td></td>
<td>Input Voltage</td>
<td>4.5</td>
<td>2.25</td>
<td>1.35</td>
<td>4.4</td>
<td>0.001</td>
<td>±0.1</td>
<td>4.5</td>
<td>0.36</td>
<td>0.36</td>
<td>5.5</td>
<td>V<sub>OUT</sub> = V<sub>TH</sub> or V<sub>IL</sub></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>2.75</td>
<td>1.65</td>
<td>5.4</td>
<td>0.001</td>
<td>±0.1</td>
<td>5.5</td>
<td>0.36</td>
<td>0.36</td>
<td>5.5</td>
<td>I<sub>OUT</sub> = 50 µA</td>
<td></td>
</tr>
<tr>
<td>V<sub>IL</sub></td>
<td>Maximum LOW Level</td>
<td>3.0</td>
<td>1.5</td>
<td>0.9</td>
<td>2.9</td>
<td>0.002</td>
<td>±0.1</td>
<td>3.0</td>
<td>0.36</td>
<td>0.36</td>
<td>5.5</td>
<td>V<sub>OUT</sub> = 0.1V</td>
</tr>
<tr>
<td></td>
<td>Input Voltage</td>
<td>4.5</td>
<td>2.25</td>
<td>1.35</td>
<td>4.4</td>
<td>0.001</td>
<td>±0.1</td>
<td>4.5</td>
<td>0.36</td>
<td>0.36</td>
<td>5.5</td>
<td>V<sub>OUT</sub> = V<sub>TH</sub> or V<sub>IL</sub></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>2.75</td>
<td>1.65</td>
<td>5.4</td>
<td>0.001</td>
<td>±0.1</td>
<td>5.5</td>
<td>0.36</td>
<td>0.36</td>
<td>5.5</td>
<td>I<sub>OUT</sub> = 50 µA</td>
<td></td>
</tr>
<tr>
<td>V<sub>OH</sub></td>
<td>Minimum HIGH Level</td>
<td>3.0</td>
<td>1.5</td>
<td>0.9</td>
<td>2.9</td>
<td>0.002</td>
<td>±0.1</td>
<td>3.0</td>
<td>0.36</td>
<td>0.36</td>
<td>5.5</td>
<td>V<sub>OUT</sub> = 0.1V</td>
</tr>
<tr>
<td></td>
<td>Output Voltage</td>
<td>4.5</td>
<td>2.25</td>
<td>1.35</td>
<td>4.4</td>
<td>0.001</td>
<td>±0.1</td>
<td>4.5</td>
<td>0.36</td>
<td>0.36</td>
<td>5.5</td>
<td>V<sub>OUT</sub> = V<sub>TH</sub> or V<sub>IL</sub></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>2.75</td>
<td>1.65</td>
<td>5.4</td>
<td>0.001</td>
<td>±0.1</td>
<td>5.5</td>
<td>0.36</td>
<td>0.36</td>
<td>5.5</td>
<td>I<sub>OUT</sub> = 50 µA</td>
<td></td>
</tr>
<tr>
<td>V<sub>OL</sub></td>
<td>Maximum LOW Level</td>
<td>3.0</td>
<td>1.5</td>
<td>0.9</td>
<td>2.9</td>
<td>0.002</td>
<td>±0.1</td>
<td>3.0</td>
<td>0.36</td>
<td>0.36</td>
<td>5.5</td>
<td>V<sub>OUT</sub> = 0.1V</td>
</tr>
<tr>
<td></td>
<td>Output Voltage</td>
<td>4.5</td>
<td>2.25</td>
<td>1.35</td>
<td>4.4</td>
<td>0.001</td>
<td>±0.1</td>
<td>4.5</td>
<td>0.36</td>
<td>0.36</td>
<td>5.5</td>
<td>V<sub>OUT</sub> = V<sub>TH</sub> or V<sub>IL</sub></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>2.75</td>
<td>1.65</td>
<td>5.4</td>
<td>0.001</td>
<td>±0.1</td>
<td>5.5</td>
<td>0.36</td>
<td>0.36</td>
<td>5.5</td>
<td>I<sub>OUT</sub> = 50 µA</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 20 ms, one output loaded at a time.

Note 4: I_{IN} and I_{CC} at 3.0V are guaranteed to be less than or equal to the respective limit at 5.5V V_{CC}.
AC Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>V_{CC} (V)</th>
<th>$T_{A} = +25°C$</th>
<th>$T_{A} = -40°C$ to $-85°C$</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V_{CC}</td>
<td>$C_{L} = 50$ pF</td>
<td>$C_{L} = 40$ pF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>τ_{PHL}</td>
<td>Propagation Delay</td>
<td>3.3</td>
<td>2.0</td>
<td>6.0</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>Inputs to Outputs</td>
<td>5.0</td>
<td>1.5</td>
<td>4.5</td>
<td>8.5</td>
</tr>
<tr>
<td>τ_{NPH}</td>
<td>Propagation Delay</td>
<td>3.3</td>
<td>2.0</td>
<td>6.5</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>Inputs to Outputs</td>
<td>5.0</td>
<td>1.5</td>
<td>4.5</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Note 5: Voltage Range $3.3V$ is $3.3V \pm 0.3V$
Voltage Range $5.0V$ is $5.0V \pm 0.5V$

Capacitance

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Typ</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>Input Capacitance</td>
<td>4.5</td>
<td>pF</td>
<td>$V_{CC} = \text{OPEN}$</td>
</tr>
<tr>
<td>C_{PD}</td>
<td>Power Dissipation Capacitance</td>
<td>35</td>
<td>pF</td>
<td>$V_{CC} = 5.0V$</td>
</tr>
</tbody>
</table>
Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150” Narrow Body
Package Number M14A
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M14D

NOTES:
A. CONFORMS TO EIAJ ED1-2220 REGISTRATION,
 ESTABLISHED IN DECEMBER, 1980.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
 FLASH, AND TIE BAR EXTRUSIONS.
M14DrEvB1

DIMENSIONS ARE IN MILLIMETERS

LAND PATTERN RECOMMENDATION

SEE DETAIL A

DETAIL A
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC14
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com