
RETROSPECTIVE: 

The J-Machine 

William J. Dally’, Andrew Chang’, Andrew Chien2, Stuart Fiskeg, Waldemar Horwat4, John Keeng, 

Richard Lethit?, Michael Noakes, Peter Nuth’, Ellen Spertus’, Deborah Wallach’, D. Scott Wills3 

1 Computer Systems ’ Department of Computer 3 Department of Electrical 
Laboratory, Stanford Science, University of Illinois, and Computer Engineering, 

University Urbana-Champaign Georgia Institute of 
Technology 

4 Netscape Communications 5 Equator Technologies 6 Hewlett Packard 
Consulting Laboratories 

7 Department of Computer 8 DEC, Western Research 9 Silicon Graphics Computer 
Science, Mills College Laboratory Systems 

leven years ago, at ISCA 14, we published a 
paper titled, “Architecture of a Message-Driven 
Processor” [l] marking the start of our J-Machine 
project at MIT. The project culminated with the 
construction of a working prototype in 1991 [2] 
and the evaluation of this prototype in 1992 [12, 
151. 

The J-Machine demonstrated the use of a jelly- 
bean part, a commodity part incorporating a pro- 
cessor, memory, and a fast communication 
interface, as a building block for computing sys- 
tems. It was afine-grain parallel computer designed 
to exploit large amounts of parallelism by balanc- 
ing the use of silicon area between processor and 
memory. The J-Machine provided a small set of 
efficient communication and synchronization 
mechanisms that were used to support a broad 
range of programming models. It also provided 
fast user-to-user messaging without software inter- 
vention by having each message dispatch a mes- 
sage handler. 

This retrospective reviews the history of the J- 
Machine project, discusses its contributions with 
the perspective of hindsight, and assesses what 
was learned from the project 

Chronology 

The chronology of the J-Machine project is 
summarized in Table 1. The project started at MIT 
in 1986. A team of students built a simulator for the 
machine, and we published a concept paper at 
ISCA in 1987. Funding to build the machine was 

Table 1 Project Chronology 

Date Description 

Sept 86 Project start 

May 87 Initial architecture studies reported 

Aug 88 Implementation started 

Dee 90 Layout complete 

Jun 91 First silicon 

Jan 92 Second pass silicon 

1 May 93 Evaluation reported I 

secured in the summer of 1988. Intel joined us as 
an industrial partner and implementation started 
that August. We designed the machine using a 
very effective home-grown set of CAD tools [7] for 

Figure 1: MDP Chip Figure 2: 1024-Node 
J-Machine 

54 



logic design, and Intel tools for physical design 
and verification. Layout was completed in Decem- 
ber of 1990. The first chips arrived in June of 1991 
and were running programs within a few hours. 
After revising the chips in early 1992 to correct a 
few bugs, we built three J-Machines: a 1024-node 
machine at MIT and 512-node machines at Caltech 
and Argonne. In parallel with the hardware devel- 
opment, several software systems were built for 
the machine [4,19,14,9]. 

A die photo of the MDP chip with outlines 
identifying the major components is shown in Fig- 
ure 1. The chip measures 1 x 1.5cm in a 1.2um 
CMOS process. It was designed primarily using 
standard cells with hand placement for the data 
paths. The 32-bit integer CPU, at the lower right, 
measures 3.7 x 2.9mm. 

Figure 2 shows a 1024-node J-Machine with 
the skins removed. Sixteen processor boards con- 
taining 64-nodes each occupy the top portion of 
the machine. The board stack communicates 
through elastomeric connectors [lo]. The base of 
the machine contains an array of up to 80 disks. 
The peripheral bay is just below the processor 
stack. Peripheral interface cards developed for the 
machine include disk controllers, a distributed 
frame buffer for graphics, and two host interfaces. 

Contributions 

1. The Jellybean Part 

The MDP chip was a prototype of our vision of 
a jellybean or commodity part: adding a processor 
and network hardware to a commodity memory 
chip. In the original paper we cited the advantages 
of high bandwidth, low-latency access to the on- 
chip memory and pointed out that the low latency 
access to the memory of other nodes in the net- 
work prevented the small amount of memory per 
node from limiting applications. The amount of 
memory reachable in a given number of cycles is 
important, not the amount of memory per node. 

Our original plan was to build our own DRAM 
memory for the MDP prototype. Implementation 
constraints drove us to implement the actual MDP 
with 144Kbits of on-chip SRAM and 8Mbits of off- 
chip DRAM. This configuration simulated what 
we expected could be placed on-chip in the next 
generation (16Mbit) DRAM technology. 

After demonstration of the prototype J- 
Machine in 1991, one of us (Dally) visited all of the 
major DRAM manufacturers to propose joint 
development of a commercial jellybean part by 

augmenting a 16Mbit DRAM with a 32-bit RISC 
processor, network interface, and router. There was 
no industrial interest in the project at the time. 

Recently the idea of building jellybean parts 
combining a processor and memory, but without 
the network interface, has been revived [5, 131. 
These projects are aimed at building stand-alone 
single-node systems, however, and do not address 
our original goal of developing building blocks for 
fine-grained parallel computer systems. 

2. Fine-Grain Parallel Computing 

Fine-grain machines, that balance processor 
and memory by silicon area rather than 
MIPS/Mbyte, achieve significantly better through- 
put per unit area, and per dollar, than do conven- 
tional coarse-grain machines [3]. This efficiency is 
achieved by having a larger fraction of working sili- 
con and by reusing expensive memory more often. 
Efficient communication and synchronization 
mechanisms are needed to realize the potential of 
fine-grain machines, or these gains are swamped 
by overhead. 

The bulk of the real cost (silicon area) in con- 
ventional computer systems is in memory. One can 
build a very competent 32-bit RISC processor (not 
including cache) in the area required by lOOKbytes 
of DRAM. Adding pipelined floating-point arith- 
metic raises this number to 500Kbytes. A machine 
with a simple pipelined floating-point processor 
and 256Mbytes of memory has only 0.2% of its sili- 
con devoted to processing. This fraction of working 
silicon is decreasing with time as the memory in 
machines balanced by MIPS/Mbytes increases. 

Conventional systems raise the fraction of 
working silicon by devoting large amounts of sili- 
con to a single processor in an attempt to exploit 
instruction-level parallelism. This gives rapidly 
diminishing returns in performance per unit area. 
Doubling the area of a simple pipelined processor, 
for example, typically yields a performance 
improvement of less than 30%. The gains from a 
second doubling are significantly smaller. Increas- 
ing the number of processors, which gives nearly 
linear returns for some demanding programs, is far 
more efficient. 

Consider an MDP built with today’s technol- 
ogy incorporating a simple pipelined floating- 
point processor with a 64-Mbit DRAM. The frac- 
tion of working silicon on each of these modern jel- 
lybean chips would be 6%. A fine-grain machine 
built from 32 of these chips would have the same 
memory capacity and would cost about the same 
(same silicon area) as a 256Mbyte workstation with 

55 



a more aggressive superscalar processor. The fine- 
gram machine has much higher memory band- 
width, lower local memory latency, and much 
greater peak performance. Even if our simple pro- 
cessor runs serial applications at half the speed of 
the more aggressive workstation processor, it out- 
performs the conventional processor by a factor of 
16 on parallel applications and needs an average 
parallelism of only two to break even. 

The efficiency of fine-grain computers depends 
on the availability of parallelism in applications. 
Our application studies on the J-Machine showed 
that there is plentiful parallelism in many applica- 
tions. At small problem sizes, however, exploiting 
this parallelism requires short threads and fre- 
quent inter-thread interaction. The MDP’s fast 
mechanisms enabled us to extract large amounts of 
parallelism even from applications run on small 
problem sizes. One string manipulation applica- 
tion, for example, gave a speedup of over 200 run- 
ning a 1024-character string on 512 processors [12]. 

3. Mechanisms vs. Models 

The J-Machine was designed with a set of fast 
primitive mechanisms for communication and 
synchronization intended to support a broad range 
of programming models. A message could be sent 
from user level with a single instruction, a message 
handler was dispatched by hardware on message 
arrival, synchronization was supported with pres- 
ence bits on all memory locations and registers, 
and global (segmented) addressing was supported 
across the machine. These mechanisms were used 
to implement object-oriented [4], data flow [14], 
and message-passing [9] programming systems on 
the prototype hardware. 

In 1987 when the MDP was proposed, people 
built machines specialized for one model of com- 
putation: data flow machines, shared memory 
machines, message-passing machines, and so on. It 
was generally accepted that a hardwired imple- 
mentation of the programming model was 
required to achieve good performance. The J- 
Machine demonstrated that this was not the case. 

The idea of building mechanisms in hardware 
and implementing programming models in soft- 
ware has received considerable attention [11][6]. 
However, two trends threaten this approach to 
parallel machine design. On the hardware side, the 
deep and complex on-chip memory hierarchy of 
modern microprocessors makes it difficult to build 
mechanisms without building a custom processor. 
The DEC Alpha 21164 processor used on the Cray 
T3E, for example, takes at least 20 cycles to wiggle 

a pin of the chip in response to a store instruction. 
It would not be difficult to add a path that 
bypasses the memory hierarchy and gives a much 
faster response. 

On the software side, there is a disturbing 
trend toward applications that are written for the 
least-common denominator machine. Message-pass- 
ing application are written in MI’1 or PVM and 
tuned to run on machines with 1OOl~s message 
latency. Shared memory applications are written 
using a static process structure and tuned to oper- 
ate with 10~s synchronization times. It is no won- 
der the people who write these applications 
conclude that they need large problem sizes to 
extract parallelism. Unfortunately, programs that 
are tuned to run on machines with slow mecha- 
nisms can’t take advantage of fast mechanisms 
when they are available. 

4. Fast Message Handling 

In 1991, the J-Machine had the fastest intercon- 
nection network of any parallel machine in terms 
of start-up latency, throughput, and latency per 
hop [12]. Its performance was not surpassed until 
the announcement of the Cray T3D in October of 
1993. The J-Machine’s communication perfor- 
mance was due to a combination of a fast router, 
3D packaging, and a streamlined network inter- 
face. Many ideas from the J-Machine network fab- 
ric have found their way into commercial 
machines including the Cray T3D and T3E and the 
Intel ASCI Red machine. 

The network interface of the MDP, by provid- 
ing a SEND instruction to transmit messages and 
hardware message dispatch on reception, set the 
standard for user-level messaging performance. 
Other experimental machines have taken a similar 
approach [ll, 6, 171. Software protocols have also 
evolved [16] to provide the same model of reactive 
messaging on stock hardware. 

Lessons Learned 

Fine-grain computing is feasible: Our experiments 
showed that it is feasible to extract parallelism 
with a thread size of a few hundred instructions 
from many applications and that with efficient 
mechanisms these applications can be efficiently 
executed on a machine with just 1Mbyte of mem- 
ory per node. 
Mechanisms work: We implemented several paral- 
lel programming models with performance com- 
petitive with hardwired implementations. 

56 



Building programming systems using the J- 
Machine mechanisms also taught us their short- 
comings. For example, the streaming message 
SEND instruction of the J-Machine causes resource 
allocation problems. These shortcomings have 
been remedied in our follow-on projects [18]. 
There is no substitute to building it: By implement- 
ing the MDP we found that our initial estimates of 
cost and performance were in some cases far from 
the mark. The building process also fleshed out 
many challenging design and technology prob- 
lems. Our work on high-speed signaling, for exam- 
ple, started from an observation that MDP 
performance was limited by pin bandwidth. The 
physical 1024-node prototype (too large to simu- 
late) revealed challenging resource allocation and 
load balancing problems [S]. While it is certainly 
easier to quit after the simulation stage of a project, 
we found that the results at that stage lack reality 
and are often wrong. 
Focus on the core issues: For the MDP the core 
issues were communication and synchronization 
mechanisms, fast context switching, and fine-grain 
thread and object handling. We were not studying 
instruction set design, pipelining techniques, cir- 
cuit design, or logic design. We took a very conser- 
vative approach to these areas that sacrificed 
considerable absolute performance but greatly 
increased our probability of success. At various 
points in time we considered building our own 
DRAM, making extensive use of asynchronous 
logic, and pipelining the processor. In retrospect 
we are glad that we avoided this temptation of 
creeping featurism. 
Why did we succeed? Intel’s solid commitment as 
an industrial partner provided us with advanced 
CAD tools, manufacturing, and engineering talent. 
Their interest and the interest of students was held 
by a bold research agenda, rather than incremental 
measurement. The team expended as much time 
on validation as on design, meticulously cross 
checking the models at the instruction, RTL, gate 
and switch level; writing a comprehensive test 
suite; and simulating heavily for slow paths, haz- 
ards, and race conditions. We compromised some 
dimensions early, such as using standard-cell 
rather than full-custom design. Finally, the nature 
of the machine itself was amenable to building 
large systems: effort focused on the single-chip 
building block was multiplied by its ability to scale 
and form a large parallel machine. 

A machine that requires new software is a hard sell: 
Technology transfer depends more on ease of 

insertion than on utility. Concepts from the J- 
Machine network, which are easy to insert, have 
seen the most use. The fast message interface, syn- 
chronization mechanisms, and fine-grain architec- 
ture have been largely ignored because they 
require major modifications to a microprocessor, 
completely new software, or both. The barrier to 
new ideas represented by existing software is for- 
midable. 
Incidental errors: We made a number of errors in 
the architecture of the MDP that were orthogonal 
to the issues of granularity and mechanisms. The 
machine had inadequate floating-point perfor- 
mance, too few registers, and did not operate the 
on-chip memory as a cache. These errors hindered 
our evaluation of the machine and were a barrier 
to getting applications programmers to target the 
prototype machine. Also, our software develop- 
ment would have been simplified if we had 
extended an existing instruction set rather than 
developing a new one. 

Conclusion 

The vision of a fine-grain parallel computer 
constructed from jellybean processor-memory-net- 
work components is even more compelling today 
than it was in 1987. As the fraction of working sili- 
con in modern machines and the performance 
returns from aggressive superscalar implementa- 
tions continue to decrease, explicitly parallel 
machines look even more attractive. Unfortunately, 
software compatibility remains a formidable bar- 
rier. 

Using a fine-grain parallel computer as the 
memory of a conventional coarse-grain machine 
can lower the barrier of software compatibility. 
Such a smart memory machine can run existing pro- 
grams unchanged, albeit with some increase in 
cost. Programs can then be parallelized incremen- 
tally, modifying critical loops and kernels one at a 
time to run on the fine-gram computer. By offering 
an incremental software path, smart memories 
make possible the transition from coarse-grained 
machines based on instruction-level parallelism to 
fine-grained machines based on explicit parallel- 
ism. 

The J-Machine demonstrates the importance of 
building experimental computer systems. In the 
academic world, where we can afford to fail, we 
can build a machine based on unproven ideas. We 

57 



also have the luxury of building a machine that 
demonstrates a vision of a computer system with- 
out concern for compatibility. It is essential to build 
and evaluate such machines. Simulation results do 
not reduce the perceived risk of new technologies 
sufficiently for industry to adopt them. 

Acknowledgments 

We thank all of the many people who contrib- 
uted to the success of the J-Machine project. Special 
thanks go to Scott Furman on the MIT side and to 
Albert Yu, Greg Fyler and Roy Davison who made 
it all happen on the Intel side. We also thank Mark 
Pullen, John Toole, and Gil Weigand at ARPA for 
their vision and support. 

References 

PI 

PI 

131 

t41 

151 

161 

W. Dally, et al., “Architecture of a Message-Driven 
Processor,” ISCA-14, pp. 189-196,1987. 
W. Dally, et al., “The Message-Driven Processor: A 
Multicomputer Processing Node with Efficient 
Mechanisms,” IEEE Micro, pp. 23-39, April 1992. 
W. Dally, “A Universal Parallel Computer 
Architecture,” New Generation Computing, pp. 227- 
249,1993. 
W. Horwat, A. Chien, and W. Dally., “Experience 
with CST: Programming and Implementation,” 
PLDI, pp. lOl-109,1989. 
l? Kogge, et al., “Combined DRAM and Logic Chip 
for Massively Parallel Systems,” Proc. 16th Co@ On 
Advanced Research in VLSI, Computer Society Press, 
pp. 4-16, 1995. 
J. Kuskin, et al., “The Stanford FLASH 

171 

PI 

PI 

WI 

WI 

WI 

1131 

1141 

[I51 

WI 

1171 

WI 

1191 

Multiprocessor,” ISCA-21, pp. 302-313,1994. 
R. Lethin and W. Dally, “MDP Design Tools and 
Methods,” ICCD, pp. 424-428,1992. 
Lethin, Richard A., Message Driven Dynamics, Ph.D. 
thesis, MIT, March 1997. Also MIT/LCS/TR-721. 
D. Maskit and S. Taylor, “A Message-driven 
Programming System for Fine-grain 
Multicomputers,” Software - Practice and Experience. 
24(10), pp 953-980, October 1994. 
M. Noakes and W. Dally, “System Design of the J- 
Machine,” Advanced Research in VLSI, pp. 179-194, 
1990. 
R. Nikhil, G. Papadopoulos, and Arvind, “*T: A 
Multithreaded Massively Parallel Architecture,” 
ISCA-19, pp. 156-167,1992. 
M. Noakes, D. Wallach, and W. Dally, “The J- 
Machine Multicomputer: An Architectural 
Evaluation,” ISCA-20, pp. 224-235,1993. 
D. Patterson, et al., “A Case for Intelligent RAM,” 
1EEE Micro, pp. 34-44, March/April 1997. 
E. Spertus and W. Dally, “Dataflow on a General- 
Purpose Parallel Computer,” ICPP, pp. 11231-11235, 
1991. 
E. Spertus et al., “Evaluation of Mechanisms for 
Fine-Grained Parallel Programs in the J-Machine 
and the CM-5,” ISCA-20,1993. 
T. von Eicken etal, “Active Messages: A 
Mechanism for Integrated Communication and 
Computation,” ISCA-29, pp. 256-266,1992. 
Y.Kodama, et al., “The EM-X Parallel Computer: 
Architecture and Basic Performance”, ISCA-22, 
pp.14-23,1995. 
W. Lee, et al., “Efficient, Protected Message 
Interface in the MIT M-Machine”, IEEE Computer, 
November 1998. 
D. Wallach, PHD: A Hierarchical Cache Coherence 
Protocol, S.M. Thesis, MIT, 1992. 

58 


