The Computer as von Neumann Planned It
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We describe the computer defined in von Neumann’s unpublished paper
“First Draft of a Report on the EDVAC,” Moore School of Electrical Engineer-
ing, University of Pennsylvania, June 30, 1945. We discuss motivation for the
architecture and design, and contrast the machine with the EDVAC that was

actually constructed.

ohn von Neumann made a key contribution to the un-

derstanding and development of computer architecture
and design in his unpublished report titled “First Draft of a
Report on the EDVAC.”! However, in reading work that
refers to this report and to the EDVAC computer (Eckert
and Mauchly say the acronym stands for Electronic Discrete
V Ariable Computer?) which it described, some perplexing
observations emerge:

e The constructed EDVAC is usually described as
being based on the von Neumann report.!

* The von Neumann report is often described as the
collective work of the Moore School group, unfairly
given the sole authorship of von Neumann. (See, for
example, Aspray and Burks’ edition of the Papers of
John von Neumann on Computers and Computer
Theory, p. xv.%) This would suggest that many of the
ideas in the report were shared by the Moore School
design group and therefore would be expected to
appear in the constructed machine.

¢ The EDVAC has been referred to on numerous oc-
casions, but these references do not agree about basic
facts. For example, a key feature of any computer is
the size of each word in the addressable memory. On
this subject, Goldstine* indicates 40 bits, others (for
example, Burks®) say 32 bits. The only known publi-
cation giving the correct value (44 bits) is Knuth’s
article.® The BRL Report’ (which is well known but
was never published) also has the correct value.

Some of the evident confusion stems from the failure to
distinguish between the “EDVAC” described by von Neu-
mann in the report and the “EDVAC” constructed at the
Moore School. While copies of the von Neumann report
were informally circulated at the time it was written, the
Moore School design documents were kept private and
were in fact classified and marked “CONFIDENTIAL.”
(Eckert and Mauchly’s “Automatic High-Speed Comput-
ing: A Progress Report on the EDVAC™? was changed to
“unclassified” in 1947.) Subsequently, the confusion has
been aggravated by the fact that von Neumann’s report has
been reprinted only in incomplete or inaccurate forms.

The main purpose of this article is to present the archi-
tecture given in the von Neumann report in a form that is
accessible to a wider audience and to translate into modern
terminology the formal machine definition given in the von
Neumann report. We also compare this definition with the
definition of the constructed EDV AC system. In doing this,
we hope to clarify important but previously unrecognized
features of the von Neumann design and to clarify a number
of the confusions that have arisen over the years. The most
substantial description of the Moore School EDVAC is
given by Eckert and Mauchly.? The sections of their report
that specify the Moore School EDVAC in detail were writ-
ten by Harry Huskey, who has also been most helpful in
several discussions about the work at the Moore School.
Williams’ article® in this issue reviews the actual perfor-
mance of the single constructed EDVAC, which was deliv-
ered to BRL.

However, our article in no way replaces the original von
Neumann report. Our purpose is only to make clear the
definition of the EDVAC machines and to clarify the origins
of these definitions. The von Neumann report contains a
wealth of insight and analysis still not available elsewhere.
Few people have had the opportunity to read and decipher
the original typescript. One person who has understood the
von Neumann design, particularly from the programming
standpoint, is Donald Knuth. His paper® describes the main
features and instruction code of the von Neumann design,
and also discusses improvements that von Neumann devel-
oped after he had drafted the report. It was von Neumann’s
intent that these improvements (most prominently a 32-
word register file to replace the stack) should be incorpo-
rated into the report. This was never done. The improve-
ments were based on results from a sort program that von
Neumann wrote to test the effectiveness of his design. A
prominent feature of the report is von Neumann’s recogni-
tion that his computer would not perform relatively effi-
ciently on sorting problems. This remains, substantially, an
unsolved problem to this day.

Unfortunately, reading the report is made difficult by the
incomplete draft form of the original and the propagation
of accumulating errors in the reprints that have subse-
quently appeared.>*!? These reprints have carried over the
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Von Neumann’s Computer

original errors and introduced new errors. Since one reprint-
ing® was based on a previous reprint,'” rather than on the
original, further compounding of typographical errors has
occurred. The incomplete copy in Randell’s Origins of Dig-
ital Computers® is not very useful as it only includes the first
five introductory chapters. The inaccurate copies reprinted
by Aspray and Burks® and Stern!® make von Neumann’s
original intent quite hard to discover, mainly because of
numerous mistakes in the mathematical notation. A typical
paragraph in Stern’s reprint'® (second paragraph, p. 239)
reads as follows:

Thus each DLA organ has now a number =0, 1....,
255 (or 8-digit binary), and each minor cycle in it has
a number p = 0, 1,..., 31 (or 5-digit binary). A minor
cycle is completely defined within M by specifying
both numbers i, p. Due to these relationships we
propose to call a DLA organ a major cycle.

This should have read

Thus each DLA organ has now a number p =0, 1,...,
255 (or 8-digit binary), and each minor cycle in it has
a number p =0, 1,..., 31 (or 5-digit binary). A minor
cycle is completely defined within M by specifying
both numbers p, p. Due to these relationships we
propose to call a DLA organ a major cycle.

A few pages later'® (p. 242) the notation switches from p to
u, but then later (p. 243) p is switched to p since the typist
stopped typing p and wrote in p by hand.

The fact that the first reprint® contains only the first five
of 15 chapters has led to additional confusion. For example,
the March 1992 issue of Computing Reviews contains a
review of John von Neumann and the Origins of Modern
Computing by William Aspray. The reviewer states, “Per-
haps the lack of publication accounts for discrepancies be-
tween the author’s quotes and the version of the report
appearing on pages 355-364 of a book edited by Brian
Randell... ” The reviewer is obviously unaware of the fact
that Aspray was referring to the full 15-chapter report, not
the five chapters reprinted by Randell.® The reviewer goes
on to draw further conclusions about von Neumann’s role
incomputer development based on the belief that the report
contained only the five introductory chapters. All of the
substance of the EDVAC design and architecture as ex-
pressed by von Neumann is contained in the subsequent
Chapters 6 through 15.

The original manuscript from the Moore School! is easier
to read than the published versions: The manuscript has
fewer errors, and it is easier to identify obvious typograph-
ical mistakes. However, as a first draft, it contains a great
many typographical errors, particularly in the mathematical
and special symbols. The first author of this article has
prepared a corrected version that reconstructs what was
surely von Neumann’s intended writing. This version has not
been published, but it is hoped that this will be possible in
the future (perhaps in a future issue of the Annals). The
manuscript was converted to TeX form so that it could be

easily managed and made ready for publication. This also had
the effect that this version is easier to read because of the
improved typography. (For the time being, readers can obtain
a copy of the report in PostScript form by anonymous FTP to
isl.stanford.edu, file: pub/godfrey/reports/vnedvac.ps.)

Needless tosay, the report is a brilliant piece of work. All
contemporary computer projects made use of material from
the Moore School, typically including a copy of the report.
Alan Turing'" explicitly based his computer design on the
report. However, curiously, the computer built under von
Neumann’s guidance at the Institute for Advanced Study
did not follow the architecture or design principles of the
von Neumann EDVAC. This fact deserves further study. (It
is of course well known that von Neumann’s focus of interest
had by then moved to other subjects, including new work on
computer theory.)

We hope that both the availability of a corrected copy
and this introductory guide will make this key contribution
more accessible.

The two EDVACs

That the EDVAC described by von Neumann (to be
referred to as VN-EDVAC) and the EDVAC constructed at
the Moore School (to be referred toas M-EDVAC) are very
different in architecture and design will become clear below.
It would be interesting to know how these differences arose,
especially since the IAS machine'? was closer to M-EDVAC
than it was to YN-EDVAC. Von Neumann did not, after an
initial period, get along very well with some members of the
Moore School group because of technical and other dis-
agreements. It would appear that he wrote the report as an
effort to state the architecture and design as he imagined it
at that time. The report was apparently written while von
Neumann was at Los Alamos and delivered to the Moore
School in handwritten form. (Goldstine is reported to have
said that he had a copy of the handwritten draft, but no such
copy has been found in his archives at Hampshire College.)
It was typed at the Moore School, but there is no evidence
that von Neumann proofread the result. The report in any
case had little ultimate impact on Eckert and Mauchly and
the rest of the Moore School design team who designed
M-EDVAC as they wanted it. This is the position as de-
scribed to me by Harry Huskey.

M-EDVAC was a serial, synchronous, 44-bit word, four-
address (three operand addresses and the next instruction
address), binary machine with 12 operation codes. It had
four registers, but these do not appear to have been address-
able. It used parallel comparison of the two arithmetic units
for error checking. (See Williams’ article in this issue® for
details about the realized reliability and performance of the
machine.) These and other features of the machine are
summarized in Table 1, an excerpt from a Ballistic Research
Laboratoriesreport.” This table was updatedin BRL Report
1010," which superseded the earlier report. However, the
only important change was the inclusion of floating-point
arithmetic, which was a late addition to the machine. Esti-
mates of the number of components were also increased,
probably reflecting the added floating-point circuits. Float-
ing-point performance was not stated.
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Table 1. M-EDVAC (specifications from Martin Weik, BRL Report No. 971).

Manufacturer

Moore School of Electrical Engineering, University of
Pennsylvania

Operating agency
US Army Ordnance Corps Ballistic Research Lab, APG

General system

Applications: Solution of ballistic equations, bombing and
firing tables, fire control, data reductions, related scien-
tific problems.

Timing: Synchronous

Operation: Sequential

A general-purpose computer which may be used for solv-
ing many varieties of mathematical problems.

Numerical system

Internal number system: Binary

Binary digits per word: 44

Binary digits per instruction: 4 bits/command, 10 bits each
address

Instruction per word: 1

Total no. of instructions decoded: 16

Total no. of instructions used: 12

Arithmetic system: Fixed-point

Instruction type: Four-address code

Number range: —(2%) <x < (1-27%)

Arithmetic unit

Add time (including storage access): 864 ps (min 192, max
1,536)

Multiply time (including storage access): 2.880 ps (min
2,208, max 3,552)

Divide time (including storage access): 2,930 us (min
2,256, max 3,600)

Construction: Vacuum tube and diode gates

Number of rapid access word registers: 4

Basic pulse repetition rate: 1.0 megacycle/sec.

Arithmetic mode: Serial

Storage
Media Words us Access
Mercury acoustic

delay line 1,024 48-384
Magnetic drum 4,608 17,000

Includes relay hunting and closure. The information trans-
fer to and from the drum is at one megacycle per
second. The block length is optional from 1 to 384
words per transfer instruction.

Input

Media Speed

Photoelectric tape reader 942  sexadecimal chars./sec.
78 words/sec.

Card reader (IBM) 15 rows/sec.

100 cards/min

Output

Media Speed

Paper tape perf. 6 sexadecimal chars./sec.
30 words/min.

Teletypewriter 6 sexadecimal chars./sec.
30  words/min

Card punch (IBM) 100  cards/min.

800 words/min.

Number of circuit elements

Tubes: 3,563

Tube types: 19

Crystal diodes: 8,000

Magnetic elements: 1,325 (relays, coils, and trans.)
Capacitors: 5,500 approx.

Resistors: 12,000 approx.

Neons: 320 approx.

Checking features

Fixed comparison — Two arithmetic units perform com-
putation simultaneously. Discrepancies halt machine.
Paper tape reader error detection.

Physical factors

Power consumption: computer 50 kW
Space occupied: computer 490 sq. ft.
Total weight: computer 17,300 1bs.

Power consumption: air conditioner 25 kW

Space occupied: air conditioner 6 sq. ft.
Total weight: air conditioner 4,345 1bs.
Capacity: air conditioner 20 tons

Manufacturing record

Number produced: 1
Number in current operation: 1

Cost

Rental rates for additional equipment:
IBM card reader $82.50
IBM card punch $77.00

Approximate cost of basic system: $467,000

(Table 1 is continued on the following page.)
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Table 1. M-EDVAC (continued).

Personnel requirements

Daily operation: Three 8-hour shifts. No. of technicians: 8.

7 days/week

No engineers are assigned to operation of the computer,
but are used for design and development of improve-
ments for the computer. The technicians consult with
engineers when a total breakdown occurs.

Reliability and operating experience

Average error-free running period: 8 hours

Operation ratio: 0.79. Good time: 130.5 hrs.

(Figures for 1955) Attempted to run: 166 hrs./wk.

No. of different kinds of plug-in units: 3

No. of separate cabinets (excluding power and air cond.):
12

Operating ratio figures for 1954:

Operating ratio: 0.79. Good time: 129 hrs.

Attempted to run: 163 hrs./wk.

Additional features and remarks

Oscilloscope and neon indicator for viewing contents of
any storage location at any time.

Exceed capacity options: halt, ignore, transfer control, or
go to selected location.

Unused instruction (command) halt.

Storage of previously executed instruction and which stor-
age location it came from, for viewing during code
checking.

Storage of current instruction and storage location from
which it originated.

Address halt when prescribed address appears in any of
four addresses of instruction to be executed by com-
puter.

Tape-reader error detection.

vN-EDVACwasaserial, synchronous, 32-bit word, zero-
address, binary machine with a hierarchical operation-code
structure of eight basic codes, 10 subcodes, and one modi-
fier. It had three nonaddressable registers, organized as a
stack mechanism. Tagged memory was used to distinguish
instructions from data. This feature is more fully explained
in the later subsection “Instruction definition.”

Table 2 (on page 16) compares the main features of the
two designs.

vN-EDVAC architecture

Throughout the report, von Neumann mentions the need
to develop the structure of the system, giving consideration
to both design and architecture issues. The interaction of
time and space and the need for locality in time and space
are repeatedly discussed. These issues arise particularly in
the determination of the size and performance of the delay
line memory and in choices of primitive operations.

We can subdivide architecture into standard categories:
addressing, instruction definition, protection, interrupt con-
trol, and input-output. Only one aspect of the last three
categories is defined in the report. Instruction memory
(words tagged as containing instructions) was protected
against modification of any fields except the address field. It
is not explained how memory could be initially loaded with
instructions. However, this was presumably a part of the I/O
system.

Addressing structure. All address values are included in
the load, store, and control transfer instruction fields or are
based on the value of the instruction address register (PC).
(See the glossary on page 15 for a key to acronyms and other

terms.) Address modification is carried out by computing
the desired address and then storing the address into the
address field of the appropriate instruction in memory. All
addresses are given as a variable pair [, p], but this is purely
for design reasons. All addresses are 13-bit word addresses.

Number representation and arithmetic operation. All
numeric data (termed standard numbers) are 31-bit signed
binary integers. The rightmost (first) bit in the 32-bit word
is the tag bit, with zero meaning that the word contains a
standard number. (Memory locations are taken to be in-
creasing to the left.) Data are stored least significant bit first,
sign bit following (to the left of) the most significant bit, and
with the binary point taken to be between the most signifi-
cant and the sign bit. Negative numbers are in twos comple-
ment form. Thus, the range of standard numbersis-1<n <1
with a precision of approximately eight decimal digits. At this
pointand throughout the report, despite a couple of switches
of notation, von Neumann is clearly a “little-endian.”'* All
data are arranged so that the least significant bit is “first.”

Standard twos complement arithmetic is provided for
addition, subtraction, multiplication, division, and square
root. Rounding is provided by computing an additional check
bit and “rounding to the nearest odd digit.” This was done to
avoid carry due to rounding. No provision is made for detect-
ing out-of-range results for addition, subtraction, or division.

The central arithmetic (CA) unit. The CA contains three
registers: I ,J ,and O . I, is the input register and may be
viewed as the top-of-stack register. J_, is the second word of
the stack, but may also be the source register for transfers

within the CA. O_, receives the output of operations which
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use I, and J_, as inputs. It always acts as an accumulator:
that is, all results are formed by

result + 0, — O,

However, the store operations optionally allow clearing
of O, after the store operation. All store operations store
O,,. Figure 1 shows the interconnection of these registers.
(This figure is a more complete version of Figure 17 in the
report.) The only way in which data enter the CA is by being
loaded into I ,. This always causes the previous contents of
I, to be pushed into J_,. The only path for data out of the
CA is from O_,. Operation of the binary operators. then,
involves a sequence of the form

LOAD  M[] I, —J M-I,

LOAD  M[k] [, ,—J Mk =I,

OoP

STORE  M]r] 0,,— Mr]. optionally clear O,

In operations such as this, /, and O, are implicitly
addressed, as in stack-based or zero-address systems.
However, instructions are also available to cause the
transfers

Ica - ca
Juz - ca
ca - ca

as indicated in Figure 1. Thus, for example. a program
segment to compute

4
S= le ¥,
=1

for literal data x; and y, could be

0 Load zero.

X Clear accumulator

X, Implicit load immediate x,
¥y, Implicit load immediate y,
X Multiply and accumulate
X2

v, Repeat

X for

x.?

y; remaining data

X

Xy

Y4

x

— Mladdr(S))] Store result at address of §

A more fully parameterized procedure for computing
inner products could be constructed using data address
computations and loop control constructs. The lack of any
address indexing mechanism or index registers causes array
referencing to require additional instructions, as is true of
many “modern” RISC (reduced instruction set computer)
designs.

CA

2 Iea

Tea (op) Oca >

Figure 1. Interconnection of registers I and J .

Instruction definition. The definition and operation of
the central control (CC) and central arithmetic (CA) sec-
tions of the YN-EDVAC are described in Chapters 11 and
13 through 15 of the report. A full understanding of these
chapters requires some effort.

The CC section is based on a conventional instruction-
sequencing mechanism for normal instruction processing.
Given that the address in the PC points to the current
instruction in memory, the instruction at that address is
fetched. decoded, and executed: the PC is incremented; and
the operation cycle is repeated. (Note that M-EDVAC
loaded the next PC value from a field in the current instruc-

Glossary

CA Central arithmetic-logic unit

cC Central control unit

PC Program counter (address of
cutrent instruction)

SG Switching and gating unit

A feedback amplifier

E-element Gate

M Memory

R External storage

! Input channel

O Output channe!

L Memory read {L,) and write (L)
lines

s select line

[dii) ] k unit delay

(M ] 1-bit memory

[k ] k-bit {serial) memory

minorcycle  32-bitword

major cycle - 32 words of memory
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Von Neumann’s Computer

Table 2. Von Neumann’s EDVAC (YN-EDVAC) compared with the Moore School Xccuted. Thus, the contents of the

EDVAC (M-EDVAQ).

word addressed by the PC are
loaded into /_, and the PC is incre-

Basic design

vN-EDVAC
Timing Synchronous
Operation Sequential
Numerical system
vN-EDVAC
Internal number system Binary
Binary digits per word 32
Data bits per word 31
Memory tag bits 1
Bits per command 3+5
Binary digits per address 13
Instructions per word 1
No. of instructions decoded 8+16
No. of instructions used 8+10

Arithmetic system
Instruction type
No. of registers
Number range

Fixed-point
Zero-address code

3 (nonaddressable)
(279 <x < (1-27Y)

Storage
vN-EDVAC
Media Words
Mercury acoustic delay line 8,192 1,024
Magnetic drum 4,608

Number of circuit elements

vN-EDVAC

Tubes 2,000-3,000 (est.)
Tube types

Crystal diodes

Magnetic elements

Capacitors
Resistors
Neons

Words

mented in the normal way.
In the report, the operations
within the CA and the load and

M-EDVAC store operations are described first.
Synchronous These (termed the unpooled or-
Sequential ders) are not the actual machine

instructions, but are distinct func-

tional components of the instruc-

tions. Tables 3 and 4 summarize the
M-EDVAC notation and meaning for the un-
Binary pooled orders. The actual instruc-
44 tions are termed the pooled orders
32 and are summarized in Table 5. As
0 can be seen, there are eight instruc-
4 tion types (¢'). The CA instructions
10 use the subcode field w, and the
1 CA-store instructions use w and the
16 modifier ¢. The main reason given
12 for using the pooled orders as the

Fixed-point actual machine instructions was the
Four-address code improved bit utilization in the in-
4 (nonaddressable (?))  struction fields. As can be seen by
(2 <x < (1-279) comparing the unpooled orders in
Table 4 with the pooled orders in
Table 5. the only lost functions are
4. €. and 0 taken as separate opera-
tions. Since those operations would
normally follow an o operation, the
pooling seems natural. While the
bit utilization of instruction words
isstill quite low (the minimum num-
ber of unused bits is 10), von Neu-
mann remarks that code space is
likely to be small as compared with
data space, and room should be left
for expansion of the address field.
Such reasoning and foresight would
3.563 have been helpful torecentand cur-
19 rent microprocessor designs. Table 5
8,000 is arranged using the layout that
1,325 (relays, coils, ~might have been used by von Neu-
and trans.) mann, since he generally referred

5,500 approx. tothe fieldsin the instructions using
12,000 approx. alayout of least significant bit at the
320 approx. right. (However, for numerical

M-EDVAC
us Access

48-384
17,000

M-EDVAC

tion word, as is common in many microcode systems.) There
are two exceptions to this standard instruction-processing
loop. The first is a control transfer instruction that loads the
PC with a new address. Von Neumann discussed the possi-
bility of an execute-remote operation as a “transient trans-
fer,” but decided against implementation. Second, if when
an instruction word is fetched, it is found that the instruction
tag bit is clear, an implicit load-immediate instruction is

data, the 31 bits i,...i;, were usually
referred to in left-to-right order,
even though they were stored
“least significant bit first.”) The instruction formats could
equally have been drawn with the bit order reversed so that
they would read more naturally from left to right. However,
this arrangement emphasizes the bit-serial, “little-end” first
structure of the machine.

The two means of carrying out load-immediate opera-
tions deserve a comment. First, if a data word (i, = 0) is
encountered during instruction processing, an implied load
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of the contents of the word is carried out. In addition, the y
instruction (the second instruction in Table 5) loads the
word that immediately follows it. It was not mentioned that

Table 3. Notation for instruction fields.

. . . i Tag bit
vshould also have the side effect of incrementing the PC an 0 data
extra time so that the following word is not subsequently 1 instruction

executed as an instruction. However, y would appear to be
almost entirely redundantsince. if the following word is data
(i,=0), then just executing the following word as an implied Operation subcode for CA (stack) operations
load-immediate would have exactly the same effect as y. It Modifier for store operations

does not appear that von Neumann considered the possibil- 0 clear O

ity of following y with an instruction word (i, = 1) so that o
instructions could be loaded by this means.

Unconditional control transfer is provided by the { in-
struction. Conditional transfers use the s operation (sign
test) to select which address value will be moved to O .. This
address must then be stored into the address field of an
immediately following { instruction if an immediate transfer
is to be made. However, the store could be made into a
subsequent location to achieve some of the effects (and side
effects) of the delayed branch
(RISC) operation. Table 4. Operation code definitions.

Table 6 is copied directly from
the von Neumann report.! It shows

Unpooled instruction code
Pooled instruction code

~ o~

o=

1 retainvaluein O,
Major cycle (delay line) address
p Minor cycle (word within delay line) address

the manner in which von Neumann Unpooled types (1)
summarized the logical definition .
of the machine. Order Name 4 Definition .
o CC operations (stack) See o operations below

vN-EDVAC design p load ' Mip,p] > I,

Von Neumann developed both ¥ load immediate M[PC+1] =,
the architecture and the design of O store. ) 0, = Mlu, p]
the vN-EDVAC based on detailed € store immediate 0, M[PC+1]
analysis of the performance and re- 6 CC move .(StaCk) O, =1,
source requirements of a number of ¢ load PC (jump) Mu. p] —» PC
computational problems. Normal ™ o Not defined
instruction sequencing was in-
tended to permit instruction execu- o, operations
tion at the rate at which data ar-
rived from the output of a delay Modifier Value Operation Definition
line. The length of the delay line
was determined based on the as- = 0 + (I,+J,)+0,~0,
sumption that the average delay for 1 - (,-J)+0,-0,
a memory reference after an arith- 2 x (I,xJ)+0,-0,
metic operation would be short as 3 / (I, 1J)+0,-0,
compared with the arithmetic time. 4 N \ﬁj+ 0,-0,
The ability to retain intermediate .
results in the CA registers reduces 5 ! 1,— 0,
the frequency of store and load op- 6 J Jou— ch ) ) )
erations which would, unless ad- 7 s perform i or j depending onsign of O,
dresses were carefully chosen. take 8 db decimal — binary
an average of half a major (delay 9 bd binary — decimal
line) cycle time.

Memory addressing

Memory design. The intended
memory was to be made up of mer-  pfp . ] Major memory cycle (segment)
cury delay lines. Each delay line plps-Pol Minor memory cycle (word)
contained 32 32-bit words. At a [y p] 13-bit memory address (word-address)

clock rate of 1 MHz the circulation
time of the delay line was about
1,000 ps. The size of the delay lines

Note: For store operations, if i, = 1 at the target address M{u, p], then only the [u, p]field
is replaced by the high-order 13 bits of the operand.

IEEE Annals of the History of Computing, Vol. 15,No.1,1993 ¢ 17



Von Neumann’s Computer

Table 5. Pooled orders.
Type (t) instl:uction formaf 7
(least significant bit at right,
bit width of each field indicated
below each instruction)
)
190=0 l [ 0]
1
t 10
5 [ [0 1]
31
J2) P w c t/ in
o+s [T T T [ T170]
38 5 10 4 1 3 1
w c t 10
ate L T T T2711]
23 a4 1 3 1
w <t 4
a+6 [ ] [ [3T[1]
23 4 1 3 1
w c t’ i()
a L [ [ [4]1]
23 4 1 3 1
L p ' 1y
3 L1 ] [5]1]
8 5 15 3 1
u_p t 1
¢ L[ 1 [6 1]
8 5 15 3 1
not defined t/ iﬂ
n l [7[1]
3 1

Definition Meaniﬁg

M[PC) - Iq load immediate
M[PC + 1] — I¢q load immediate

OP;
Oca — M[ll’ P]

stack operation;
store

OP; stack operation;
Oca — M[PC + 1] store immediate

OP; stack operation;
Oca — Ica loa.d

opP stack operation
Mip, p] = Icq load

M{[u,p] - PC  control transfer
1/0 input-output

Note: Von Neumann did not assign numeric codes to the eight pooled orders. (At the end of the report he indicated that he
would do that next.) We have filled in numeric codes in the ¢* field in this table just to make it more definite. Also, cis the O,
clear flag as defined in Table 3. and w is the CA order modifier as defined in Table 4.

was determined from the fact that 1 ms was approximately
the arithmetic time of the CA unit. Thus, new operands
would become available from the current delay line at about
the time they would be needed by the CA. The spirit of this
analysis was sound, but it neglected important factors. in-
cluding instruction fetch requirements.

The size of the memory was determined after consider-
ation of several possible numerical problems. In the course
of the analysis of memory size and logic complexity. von
Neumann remarked, “The decisive part of the device, de-
termining more than any other part its feasibility. dimen-
sions and cost, is the memory.” Based on this analysis. von

Neumann settled on a total memory size of 8K words or 256
delay lines.

E-elements and logic. This is, as far as we are aware, the
first substantial work (since Babbage) that clearly separated
logic design from implementation, and gave a formal scheme
for logic representation. It is a curious fact that the notation
which was fully established and extensively used here was
totally absent from subsequent works, particularly Eckert and
Mauchly’s “Progress Report on the EDVAC™ and Burks,
Goldstine. and von Neumann's “*Preliminary Discussion of the
Logical Design of an Electronic Computing Instrument.”'?
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Table 6. Instruction definition.

(I (IT) (111) (Iv)
Type Meaning Short Symbol | Code Symbol
Minor cycle
I= (iv) =
(fot1i2 -+ 131)
Standard | Storage for the number defined by £ = isjizg---i; = | NE iv=20
Number 251:1 1,2Y73! (mod 2) —1 < € < 1. i3 is the sign: 0
or Order | for +, 1 for —. If CC is connected to this minor cycle,
(7) then it operates as an order, causing the transfer of
¢ into I.,. This does not apply however if this minor
cycle follows immediately upon an order w — A or
wh — A.
Order Order to carry out the operation w in CA and to | W — up ig=1
(a)+(8) | dispose of the result. w is from the list of 11.4. These | or
are the operations of 11.4, with their current numbers | wh — up
w.decimal and w.binary, and their symbols w:
Order w.decimal | w.binary | w |w.decimal | w.binary | w w—f
(a) +(¢) or
0 0000 + 5 0101 i wh—f
1 0001 - 6 0110 ]
2 0010 X 7 0111 s
Order 3 0011 |+ [ 8 1000 |db| | wW—A
(a)+(6) 4 0100 || 9 1001 |bd | | or
wh — A
h means that the result is to be held in O.. — up
means that the result is to be transferred into the
Order minor cycle p in the major cycle y; — f, that it is wh
(@) to be transferred into the minor cycle immediately
following upon the order ¢; — A, that it is to be
transferred into I.,; no —, that no disposal is wanted
(apart from h).
Order Order to transfer the number in the minor cycle pin | A «— up
(8) the major cycle u into I,,.
Order Order to connect CC with the minor cycle p in the | C — pp
©) major cycle p.

The simplest gate was drawn as shown in Figure 2a, while
aninverter was drawn as in Figure 2b. A two-input OR gate
would be represented as in Figure 2¢. The notation shown
in Figure 2d was used for a two-input AND gate. A three-
input AND gate was given as in Figure 2e. Thus, the number
inside the circle indicated the minimum number of active

inputs required to drive the outputactive. A two-input AND
gate would be defined as shown in Figure 2f in terms of
elementary gates. The number of arrows on the output line
indicated the number of unit delays () introduced by the
element. The arrow notation also served to indicate the
output line. Thus the notation in Figure 2g indicated a
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Von Neumann’s Computer

c

— QO

g

Figure 2. Notation used in the von Neumann first draft: (a) simplest gate, (b) inverter, (c) two-input OR gate, (d) two-input
AND gate, (e) three-input AND gate, (f) two-input AND gate defined in terms of elementary gates (arrows on the output
line indicate the number of unit delays introduced by the element), (g) a construct with total delay of 21, where 1 is the basic

gate delay time.

!
g"
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Figure 3. An adder circuit (a) would be represented as a
block symbol (b).

construct with total delay of 21, where 1 is the basic gate
delay time.

The notion of composition was clearly established, so
that, for instance, the adder circuit shown in Figure 3a was
subsequently represented as in Figure 3b. This notation was
termed a block symbol.

Complexity. Due to the choice of purely serial and syn-
chronous operation, it was expected that the logic (CA and
CC) would require a few hundred vacuum tubes and the
memory would require around 2,000, for a total count of
under 2,500.

he computer defined in the “First Draft of a Report on
the EDVAC” was never built, and its architecture and
design seem now to be forgotten. The report was a funda-
mental influence on Turing’s work. However. Turing’s de-

sign, the Pilot ACE, was built only after long delay caused
by indecision on the part of the National Physical Labora-
tory, and long after Turing had left. Thus, even in its time,
the von Neumann report was not as influential as would
have been expected.

This article has given an indication of the nature of the
design and of some of the innovations present in this first
computer definition. |
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