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he interaction between computer architecture and integrated circuit
- technology is complex and bidirectional. The characteristics of various

: implementation technologies affect decisions architects make by influ-
encmg performance, cost, and other system attributes. Developments in computer
architecture also impact the viability of different technologies. The implementa-
tion requirements of various architectures can emphasize different technology
characteristics, such as density, power, and speed.

To understand the interaction between computer architecture and IC technol-
ogy and the attractiveness of a technology for use in computers, we need a metric
to evaluate different computer designs. In designing a computer today, the most
important considerations are usually performance and cost. Secondary metrics,
which may vary in importance, include fault tolerance, power, and environmental
factors such as size, cooling, and noise.

In this article, we discuss an assessment based primarily on performance and
cost. Many of the secondary factors are indirectly measured by cost, while others
are more difficult to quantify. Furthermore, we focus primarily on CPU perfor-
mance, both because it is easier to measure and because the impact of technology
is most easily seen in the CPU.

To evaluate the suitability of an IC technology, you must consider the technol-
ogy in the context of a complete CPU. Considering only device-level performance
characteristics without accounting for other possible deficiencies only yields
misleading results.

We measure CPU performance by the execution time on some suitable work

load. The execution time of a program can be expressed as the product of three
terms:

* the number of instructions required,
¢ the average number of clock cycles per instruction, and
o the time per clock cycle.

Since the goal is to maximize performance, a computer designer wants to decrease
each of these terms. Unfortunately, these factors are interrelated. The number of
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instructions executed in a program de-
pends primarily on the instruction-set
architecture. The other two factors de-
pend on the organization of the ma-
chine and the choice of implementation
technology, as well as the instruction-
set architecture. We will give examples
of these interdependencies later.

The importance of this performance
equation and the trade-offs among its
factors have driven the development of
new architectures for the past 10 years.
The field of computer architecture has
become quantitatively oriented, with
comparisons driven by performance and
cost. Thus, computer architecture is
becoming more engineering and less
art.

This shift has not led to a dramatic
increase in the number of revolutionary
new ideas. Indeed, many of the domi-
nant ideas in computer architecture in
the 1980s were old ideas. For example,
simplified load/store instruction sets go
back to the early supercomputers at
Control Data Corp. and Cray Research,
while the emphasis on pipelining goes
back to machines like Stretch.

However, computer architecture re-
mains challenging because the chang-
ing implementation technologies con-
stantly alter the trade-offs, leading to
reevaluation of older ideas or the adap-
tation of existing ideas to a new set of
technology assumptions. Dramatic
changes in technology, such as signifi-
cant increases in integration level and
decreasing memory cost, have been cru-
cial to the development of many new
architectures.

Trends in technology
and architecture

Recently, rapid IC technology im-
provements together with computer
architecture innovations have led to a
rate of CPU performance growth un-
matched since the 1950s. Figure 1 shows
the rate of improvement in CPU perfor-
mance as measured by a general-
purpose benchmark suite,such as SPEC.

Microprocessor-based machines have
been improving in performance at a
rate of between 1.5 and 2 times per year
during the past six to seven years. Im-
provement rates for mainframes or mini-
computers are about25 percent per year.
(This plot concentrates on general-
purpose CPU performance. By ignor-
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Figure 1. Trends in microprocessor and mainframe CPU performance growth.

ing [/O performance and not focusing
on any application class, such as scientif-
ic, it might not show the most advanta-
geous aspects of larger machines, specif-
ically mainframes and supercomputers.)

Two major factors have driven this
high growth rate:

(1) The dramatic increase in the num-
ber of transistors available on a chip.

(2) Architectural advances, including
the use of RISC ideas, pipelining, and
caches.

Glossary

Because of the ability of microproces-
sors to rapidly take advantage of im-
provements in VLSI technology, com-
puters based on microprocessor
technology have increased in perfor-
mance and decreased in cost most rap-
idly.

The increasing importance of short
design times has been another result of
this rapid rate of technology improve-
ment and accompanying performance
growth. When machine performance is
growing rapidly from year to year, new

BiCMOS Bipolar complementary metal-oxide semiconductor
CCD Charge-coupled device

CISC Complex instruction-set computing

CMOS Complementary metal-oxide semiconductor
DRAM Dynamic random-access memory

ECL Emitter-coupled logic

FET Field-effect transistor

GaAs FET Gallium arsenide field-effect transistor

MESFET Metal semiconductor field-effect transistor
MOSFET Metal-oxide semiconductor field-effect transistor
MIMD Multiple instruction, muiltiple data

MIPS Million instructions per second

NMOS N-Channel metal-oxide semiconductor

PMOS P-Channel metal-oxide semiconductor

RISC Reduced instruction-set computing

SIMD Single instruction, multiple data

SPEC Systems Performance Evaluation Cooperative
SRAM Static random-access memory

VLIW Very long instruction word

VLSI Very large scale integration
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Figure 2. Trends in minimum feature size and maximum chip edge.

computers with long design times must
offer substantially larger performance
improvements to avoid being bypassed
by machines with smaller performance
improvements but shorter design times.

Additionally, as the design time of a
machine increases, it becomes increas-
ingly difficult to track the implementa-
tion technology and ensure that the
machine will come to market with the
best available technology. These fac-
tors mean that the long four- or five-
year design cycles common in the main-
frame and minicomputer business are
becoming a major handicap in competi-
tion with machines with shorter design
cycles.

Technology trends. By far, the most
important technology trend for com-
puters is the relentless decrease in the
minimum feature size patternable by
optical lithography. Minimum feature
sizes have decreased from 50 microns in
1960 to 0.8 p in 1990 (see Figure 2).
Since the number of components per
chip is an O(n?) function of feature size,
the number of components per chip has
dramatically increased.

Equally important is the fact that cir-
cuit characteristics such as switching time
and power dissipation also improve with
decreasing feature size. In particular,
the circuit speed is roughly proportion-
al to the feature size." If we multiply the
number of devices by their speed to get
an overall measure of computing capa-
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bility, lithography is responsible for an
O(n®) improvement in computing capa-
bility per chip.

The primary challenge facing the com-
puter designer is to translate this huge
increase in computing capability into a
correspondingly large increase in com-
puting performance. Since the number
of devices is increasing as O(n?) while
device performance is only increasing
as O(n), effective utilization of ever
larger numbers of components is criti-
cal.

In parallel with areduction in feature
size, the maximum chip edge dimension
(or more precisely, the square root of
the maximum chip area) has increased
from 2 millimeters in 1960 to 13 mm in
1990. This also has an O(n?) effect on
the number of components per chip.
Unlike the effect of scaling minimum
feature size on device performance,
however, increasing the chip size leaves
the basic device characteristics un-
changed. Thus, this effect is less impor-
tant than the continuing reduction in
minimum feature size.

In contrast, most other new technol-
ogies provide only constant one-time
factors. For example, a switch from a
silicon CMOS process to a GaAs
MESFET process would increase the
switching speed of the devices by a fixed
amount. Similarly, multichip modules
offer a fixed improvement over the po-
tential of single-chip packages.

A significant problem exists when

evaluating the benefits of fixed one-
time technological improvementsin the
presence of other O(r®) trends. If the
evaluator does not ensure that the time
frame of both technologies is the same,
the effects of changes in integration will
swamp the effects of the technology
change being considered. For example,
if an evaluation compares last year’s
silicon CMOS against this year’s GaAs
MESFETs, the benefits of GaAs over
silicon will be overestimated.

Similarly, if a multichip module im-
proves system performance by 30 per-
cent, but a machine using multichip
modules requires six months longer to
get into production than a machine us-
ing conventional packaging, the O(n*)
effects of integration during the six
months may outweigh the benefits of
the multichip module.

Memory size. The easiest way to use
an O(n?) increasing number of transis-
tors is in RAM. The first version of
Whirlwind with magnetic core storage
in 1953 had 4 kilobytes of storage, while
the Cray-2 of 1989 has up to 4 gigabytes.
Figure 3 shows the increasing storage
capacity per RAM chip.?

Based on preliminary research, it ap-
pears likely that DRAMs will continue
to increase in density to at least three
orders of magnitude larger than the 256-
kilobit DRAMs used in some models of
the Cray-2. Over the years, increasing
memory size has had a number of ef-
fects on computer design, not the least
of which is a corresponding increase in
the number of bits required to address
memory.

Another result of the phenomenal
increase in memory capacity has been
the appearance of variouslevels of cache
memory. This came about for two rea-
sons. First, if the main memory consists
of many RAM chips, the space required
to package them will result in a signifi-
cant amount of time, dictated by signal
transmission time, for accessing them.
This makes the use of a small, fast cache
(or a set of hierarchical caches) attrac-
tive to reduce communication delay.
Secondly, the large numbers of transis-
tors available on the same chip as a
microprocessor now make on-chip as
well as off-chip caches feasible.

The ability to place the entire CPU
(including its first-level instruction and
data caches) on the same chip has a
profound effect on microprocessor per-
formance and system cost. Assuming
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the caches are of reasonable
size,a processor will not need
to communicate off-chip to
execute most instructions.
Similarly, parallel and very
wide buses can be used on-
chip without regard to pinout
limitations. This largely de-
couples the CPU cycle time
and bandwidth of on-chip
processing from off-chip con-
siderations. Hence, the pro-
cessor can run at a very fast
cycle time relative to the fre-
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multichip design. Much of the
work in designing a multi-
chip machine involves parti-
tioning the design based
largely on the number of pins
available per chip. A de-
crease in feature size by a
factor of 2 might have very
little effect on the perfor-
mance of a multichip ma-
chine, unless the partition-
ing is changed, essentially
requiring the redesign of the
whole processor.

Also, since 50 percent of
multichip-machine cycle time
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Design complexity and de-
sign time. Although increas-
ing memory size is the easi-
est way to use an O(n?)
increasing number of tran-
sistors, increasing the mem-
ory in a processor by itself falls short of
the O(n®) increase in computational
capacity from lithography. Since the
device performance is increasing only
as O(n), an approach relying on device
performance for speed and increasing
memory density for reducing cost would
have CPU performance increasing only
as O(n). (Application performance could
still increase much faster by taking ad-
vantage of larger main memories — for
example, main memory databases.)

As the recent performance trends in
Figure 1 suggest, with lithography the
performance increase is much faster than
O(n). This added performance has been
achieved by using the increasing num-
ber of devices as well as their increasing
speed.

There are several ways to increase
machine performance with relatively
little complexity. For example, complete,
independent pipelined functional units
are often easier to design than single
functional units that perform many dif-
ferent operations.

Similarly,increasing the performance
of functional units by going from an
iterative 2-bits-per-cycle multiplier de-
sign to a fully pipelined multiplier array
is not much more difficult, but the fully
parallel pipelined multiplier uses a much
larger transistor count to achieve high-
er performance.

For simple structures such as multi-
plier arrays, peak performance can in-
crease roughly with the number of tran-
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Figure 3. Trends in semiconductor RAM density.

sistors. This approaches the potential
O(n?) increase in computing capability
provided by advances in fabrication.

Unfortunately, general-purpose CPU
performance cannot be arbitrarily in-
creased by techniques such as increas-
ing the number of bits retired per cycle
inamultiplier. Eventually, as each func-
tional unit becomes completely paral-
lel, the only way to further increase
performance beyond that provided by
increases in component speed consists
of more complicated forms of machine
parallelism, such as multiple-instruction
issue. However, as increasingly com-
plex parallel machine structures are at-
tempted, the critical issue of design time
can outweigh the benefits attained from
increasing performance through higher
CPU complexity.

Efficient design scaling. Since scaling
the minimum feature size provides an
O(n®) increase in computational capa-
bility per chip, design styles that can
easily take advantage of technology scal-
ing have a significant advantage. In a
microprocessor, the design can often be
moved to a smaller feature size simply
by shrinking the design features and
performing a small number of minor
design modifications (such as redesign-
ing the padframe, since its size is based
on bonding capabilities and not feature
sizes).

In contrast, advances in base technol-
ogy are much harder to exploit in a

speed with the same parti-
tioning may only increase
overall machine performance
by (0.5/2 + 0.5)/1 = 0.75/1 =
33 percent. This magnitude
of per-processor perfor-
mance increase is typical for “mid-life
kickers” in multichip machines. Any
further increases in multichip-machine
performance would likely require acom-
plete redesign and/or more advanced
multichip packaging technology.

In contrast, microprocessor designs
can scale to much larger increases in
performance. For example, initial MIPS
R2000 chips operated at 8 megahertz.
Recently, R3000 chips based on the same
design core that operate at 40 MHz
have become available, giving a 400
percent increase in performance over
the original design. This ability of mi-
croprocessor-based designs to scale ef-
fectively in performance with improv-
ing base technology will become even
more pronounced as cache hierarchies
migrate on chip.

Trends in architecture. The design of
a new computer is strongly affected by
both how the machine is to implement-
ed and how it is to be used. The ongoing
developments in IC technology provide
the strongest influence in the imple-
mentation. Thus, the strong growth in
the level of integration has a significant
impact on the choice of implementation
techniques.

Two of the most important hardware
techniques used toimprove performance
during the past decade have been pipe-
lining and caches. Both techniques rely
on using more devices to achieve higher
performance. Of course, the techniques
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Figure 4. A simple machine pipeline.
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Figure 5. Superpipelined (a) and superscalar (b) machine pipelines.

have been used in mainframes and su-
percomputers for some time. However,
as the integration levels have increased,
it has been possible to use these tech-
niques aggressively in microprocessor-
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based machines. In fact, a number of
microprocessor-based machines have
used pipelining and cache techniques
that are more advanced than those in
use in the biggest machines.

Pipelining. At the beginning of the
1980s, pipelining was used almost ex-
clusively by mainframes and supercom-
puters. By the end of the decade, pipe-
lining was used by every new machine.

Pipelining improves the throughput
of amachine without changing the basic
cycle time, as Figure 4 shows. Thus,
pipelining is an especially useful tech-
nique when the gate count available is
growing faster than gate speed. Of
course, improvements in the gate speed
can be independently incorporated into
changes in the cycle time.

Inthe early 1980s, most machines had
little or no pipelining and the average
instruction took 5 to 10 cycles (that is,
the cycles per instruction was 5 to 10).
By the end of the decade, several RISC
machines achieved CPI values close to
1 for integer code. For the basic pipe-
line shown in Figure 4, a machine with
a CPI of 1 essentially represents an
ideal value.

Pipelining increases performance by
exploiting instruction-level parallelism.
Instruction-level parallelismis available
when instructions in a sequence are in-
dependent and thus can be executed in
parallel by overlapping. In the ideal case,
a pipelined machine can complete an
instruction every cycle. One of the re-
quirements to achieve this is an amount
of instruction-level parallelism that is
sufficient to keep the pipeline full of
independent instructions.

To improve performance beyond the
level achievable with the ideal pipeline
above, we can either make the pipeline
deeper, called superpipelining, or issue
more than one instruction per clock into
the pipeline, called superscalar. Figure
5 shows the two approaches. Because
either approach can exploit more in-
struction-level parallelism, either can
achieve higher performance, assuming
enough parallelism is available in the
application.

A superpipelined machine and a su-
perscalar machine of the same degree
achieve roughly the same performance:
They are essentially duals.* However,
secondary design choices in the imple-
mentation of either technique can have
substantial performance impact, and
each approach has different technology
trade-offs. We discuss the trade-offs for
each technique in the section entitled
“Improving uniprocessor performance.”

In addition, because instruction-level
parallelism is often the limiting factor
to the speedup achieved by these tech-
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niques, there is a trade-off between the
depth of a pipeline and the instruction
issue rate. That is, if the latency of the
functional units is made deeper, the in-
struction issue rate will drop.

This is not surprising; the parallelism
used in the deeper pipeline is the same
parallelism used in issuing multiple in-
structions. However, this trade-off has
an interesting outcome. With a limited
silicon budget, an architect must often
choose between the bandwidth of a func-
tional unit and its latency. Often, de-
signers focus on the bandwidth, trying
to design a unit that can issue a new
operation on every clock. Alternative-
ly, designing a unit with lower latency
may be possible, at the cost of lowering
the issue bandwidth. Emphasizing the
reduction in latency, rather than the
peak bandwidth, might lead to a faster
machine.

Memory systems. As the integration
level has increased, memory has be-
come progressively less expensive. This
has had several important effects on
computer design, including the de-
creased importance of conserving mem-
ory. In fact, designers now look for ways
to trade-off memory for speed and re-
duced design complexity. RISC archi-
tectures, for example, use more memo-
ry than CISC architectures, but reduce
the design complexity and offer higher
speed. This trade-off was not attractive
until the advent of large, relatively cheap
DRAMs.

The improvements in IC technology
affected not only DRAMSs, but also
SRAMs, making the cost of caches much
lower. Caches are one of the most im-
portant ideas in computer architecture
because they can substantially improve
performance by the use of memory.

The growing gap between DRAM
cycle times and processor cycle times,
as Figure 6 shows, is a key motivation
for caches.? If we are to run processors
at the speeds they are capable of, we
must have higher speed memories to
provide data.

Caches were first used in the late
1960s and early 1970s, both in large
machines and minicomputers. In the past
few years, virtually every microproces-
sor has included support for a cache.

Although large caches can certainly
improve performance, the cache design
problem is one of technology-driven
compromises. These compromises exist
because each of the three main cache
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design parameters — total cache size,
associativity, and block size — has opti-
mal values that depend on the details of
a design.

To understand these trade-offs, it is
useful to examine the equation for aver-
age memory access time (assuming hit
and miss detection time are the same):

Average memory access time
= hit time + miss rate * miss penalty

where the miss penalty is the time to
handle a cache miss, including an access
to memory. Because cache access time
is nearly always the critical path in a
processor design, the cache hit time of-
ten determines the processor cycle time,
making the hit time critical.

Each of the three primary architec-
tural parameters for a cache affects two
factors in the above equation. Increas-
ing the total cache size, increasing the
associativity, or increasing the block size
(to a limit) will decrease the miss rate.
However,increasing the total cache size
or the associativity often requires that
the access time increase.

As a number of designers have real-
ized, the increase in hit time may cost
more than the improvement in miss
rate.’® Increasing the block size also
increases the miss penalty, and at some
point (when the increase in miss penalty
exceeds the savings from an increased
hit rate) will cause the average memory
access time to increase.

Because there is an optimal design
point for each of these three cache pa-
rameters (as determined by the average

memory access time), there is an un-
avoidable miss rate, which cannot be
zero.® As the gap between processor
cycle time and DRAM access time in-
creases, the impact of the remaining
misses increases. That is, as processors
get faster they will lose more and more
of their performance to the memory
system.

One technique to alleviate this prob-
lem is to introduce another level of cach-
ing between the primary cache and main
memory. This idea of multilevel caches
has recently been used both in high-end
machines, where the allotted hit time
limited the size of the primary cache,
and inmachines where the primary cach-
es are on the processor chip and are
limited in size by the amount of silicon
available. Because the access time is
less critical, these secondary caches can
also be built using slower high-density
RAMs, achieving sizes in the range of
hundreds of kilobytes to megabytes of
total cache.

Multiprocessors. The role of multi-
processors grew dramatically in the past
decade as designers attempted to build
on the dramatic price-performance ad-
vantages offered by microprocessors.
Today, microprocessor-based multipro-
cessors can offer aggregate performance
in the hundreds of millions of instruc-
tions per second.

While a number of research projects
are focused on building scalable multi-
processors (scalable to hundreds or thou-
sands of processors) using microproces-
sor technology, most of the focus in
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industry is on building small (4-20 pro-
cessors), bus-based machines that sup-
port cache coherency.

These machines have found a role in
three different marketplaces:

(1) They are an ideal alternative to
timesharing uniprocessors — each user
can be assigned to a single processor.

(2) They make good transaction pro-
cessing systems, using the parallelism
among transactions.

(3) They are being used as parallel
processors in scientific and engineering
applications.

In all three cases, rapid improvements
in microprocessor performance have
been critical to maximizing the useful-
ness of the machines.

For ease of programming, these ma-
chines have been designed with cache
coherency. This simplifies the develop-
ment of both system software and user
applications. The cache coherency al-
gorithms employed rely on using a bus
for broadcast and implement a snoopy
protocol.”

In addition to using microprocessor
technology, these machines are based
on several critical technology develop-
ments. To accommodate several high-
performance processors on a memory
bus, the architecture must reduce the
bus demands of each processor, which is
accomplished through the use of very
large caches. The use of large caches

24

and a bus interconnect is interdepen-
dent: Large caches allow multiple pro-
cessors to share a bus and memory sys-
tem, and a bus supports the use of a
simple snooping coherency protocol to
keep the caches consistent. In the next
section, we examine the challenges fac-
ing architects as they attempt to scale
these machines to more processors and
higher performance processors.

Opportunities and
challenges

Continuation of the rapid increase in
computer performance seen over the
past decade will require ongoing im-
provements in today’s technologies as
well as the development of new IC tech-
nologies and new ideas in computer ar-
chitecture. Two important forces that
will probably accelerate in the 1990s are
the importance of design time and the
reduction of differences in CPU perfor-
mance between the smallest and the
largest machines.

Technology challenges. Two of the
most significant technology challenges
in the 1990s will be

(1) continuing toincrease integration
at historic rates and

(2) developing new base technologies
with higher performance, in parallel with

the continued increase in integration.

Integration. In the remainder of the
decade, a number of technological and
economic challenges will face our in-
dustry as a result of ever-increasing lev-
els of integration. One obvious techni-
cal challenge is the ability to continue
patterning finer and finer geometry with
optical lithography.

Over the past several years, the immi-
nent demise of optical lithography has
been regularly forecast due to feature
sizes smaller than the wavelength of the
light used — requiring a switch to E-
beam or X-ray lithography. However,
the trend to smaller feature sizes pat-
terned by optical lithography has con-
tinued unabated, primarily through the
use of shorter and shorter wavelengths
for exposure. Recent advances, such as
phase-shift masks, allow feature sizes
almost as small as the exposure wave-
length to be patterned.

Once the features are patterned, they
must be converted into device struc-
tures. This will remain very challenging
as feature sizes continue to decrease,
but operational MOS transistors with
gate lengths less than 0.1 microns have
already been fabricated in research labs
with E-beam equipment.

At the current pace of feature size
reduction, feature sizes of 0.2 microns
will be common by the end of the de-
cade (see Figure 2). Many of the most
challenging problems will arise while
fabricating the interconnect layers, rath-
er than the devices. In many modern
processes, interconnect already accounts
for more masks than device fabrication.
This will increase further as limits such
as the required current density (which
increases with reducing feature sizes)
become more and more significant.

Although many approaches may be
technologically feasible, they must also
be economically feasible to be applied
in a market economy. Gordon Moore
stated in his invited address at Comp-
con Spring in 1989 that one undesired
result of relentless minimum feature-
size scaling is that the cost of building a
new fabrication line capable of building
a fixed number of wafers is increasing
roughly proportional to the inverse fea-
ture size. This is shown in Figure 7.

Ignoring the trend to larger wafer
sizes and larger die sizes, which roughly
cancel each other out, the capital cost
required to build an IC of decreasing
feature size is increasing as O(n). How-
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ever, since the functionality provided
by these chipsisincreasing as O(r?%), the
cost per function will still continue to
decrease radically. Nonetheless, the in-
creasing fab cost will mean that fewer
companies will be able to afford a state-
of-the-art line.

Design complexity is another poten-
tial problem. However, the level at which
ICs are designed has been increasing
steadily, from the days of cutting ruby-
lith to the current widespread adoption
of logic synthesis techniques. This has
greatlyreduced the design time per tran-
sistor.

Although custom design techniques
were emphasized in university VLSI
classes in the 1980s, the percentage of
chips designed today that are full-
custom designs is very small. Even high-
volume designs such as the Intel 1386
microprocessor contain control logicim-
plemented in standard cells. Further
adoption of synthesis techniques should
continue at higher levels until at least
the mid-1990s.

One of the most visible results of
increasing integration is the compres-
sion in the range of performance attain-
able by different implementation tech-
niques. For example, in 1974, the
performance of the Intel 8080 was less
than 0.1 8-bit MIPS, whereas the IBM
306/168 performed at 3 32-bit MIPS.
This is a ratio of more than 100 to 1 in
performance (including word size).

Recent microprocessor-based ma-
chines have similar peak CPU perfor-
mance ratios compared to mainframes.
As a result, the major determinant of
machine performance has become the
memory and I/O subsystem, and not the
CPU used. For example, workstations
are built from microprocessors with rel-
atively little memory and small I/O sys-
tems. Minicomputers, such as the VAX
6000 line, have become microproces-
sor-based machines with more memory
and larger I/O subsystems.

A single CPU design will soon domi-
nate the entire range of performance
from PCs to mainframes. Obviously,
this has major implications for CPU
designers. But more importantly, it now
means that applications from one per-
formance domain or computing style
will be able to run in other domains and
computing styles.

Emerging base technologies. Most

changes in technology are evolutionary
rather thanrevolutionary. Since the early
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1970s, for example, the primary tech-
nology used for designing microproces-
sors has evolved from PMOS to NMOS
to CMOS. During this time, several rev-
olutionary technologies such as CCD
and magnetic bubble memories that were
pursued with great interest have largely
disappeared into special-purpose nich-
es. In this section, we consider trade-
offs when using BICMOS, GaAs FETs,
and advanced packaging for implement-
ing computers in the 1990s. More spec-
ulative technologies, such as Josephson
Junctions and optical computing, are
beyond the scope of this article.

When comparing the performance of
different technologies, you must be fair.
One common mistake is to ignore fan-
in and fan-out limitations. For example,
a single bipolar ECL gate can combine
a NOR gate, multiplexor, latch, and
several inverters in one level of logic. In
another technology with a faster basic
NOR gate, but with fan-in and fan-out
limited to 3, the same function will take
severallevels of logic. This difference in
gate functionality may more than ne-
gate any speed advantage for technolo-
gies with limited gate functionality and
fan-out.

BiCMOS israpidly gaining acceptance
for a number of reasons. First, in many
cases it is a minor process enhancement
to an already existing CMOS process.
Bipolar transistors have several advan-
tages over MOSFETs. Their conduc-
tance is an exponential function of their
base voltage, whereas FET conductance
is proportional to the square of the ap-
plied gate voltage. This property of bi-
polar transistors allows them to sense
small signal swings much faster than
MOS transistors. Thus, one major ini-
tial application of bipolar transistors in
BiCMOS processes hasbeenin the sense
amplifiers of RAM chips.

Another property of bipolar transis-
tors is that they have superior load-
driving capability as compared to
MOSFETs. This capability has been ex-
ploited inmany papers that discuss some
form of CMOS logic gate coupled with
a bipolar output buffer. This applica-
tion is especially effective in gate-array
orstandard-cell designsstyles, where the
integration is limited by wiring density
(rather than gate density) and perfor-
mance is limited by long, heavily loaded
wires.

The performance improvement
claimed by GaAs FETs in the 1980s
over CMOS may be largely eroded when

compared to BiCMOS processes of the
1990s. Moreover, any technology that
competes with arapidly improving main-
line technology having immense vol-
ume and applied expertise faces signif-
icant challenges. Another early
advantage of GaAs substrates was that
they have lower capacitance than non-
insulating silicon substrates. However,
to the extent that circuit performance is
limited by wiring delays, the fact that
modern VLSI processes have three and
four levels of wiring means that capaci-
tance is dominated by capacitance to
other wires, and capacitance to the sub-
strate is only a minor factor. Finally,
many GaAs circuit families have rela-
tively low gate functionality in compar-
ison to ECL or even CMOS circuit fam-
ilies.

Recently, multichip packaging tech-
nology has been receiving widespread
interest. In contrast to the ever-
increasing computational capacity pro-
vided by improvements in lithography,
advanced packaging improves system
performance by a fixed, constant
amount.

To take advantage of the increased
performance allowable by advanced
interconnection technology, the proces-
sor organization must be designed in
tandem with the interconnection tech-
nology. This can lead to significant prob-
lems.

Most multichip packaging techniques
improve system performance by only a
modest percentage, for example, 30 per-
cent. This percentage may be expected
to decrease in the future as more and
more functionality isintegrated per chip
and interchip communication becomes
less and less frequent. For example, a
microprocessor with no on-chip caches
would benefit from faster interchip in-
terconnections on every instruction and
data reference. However, a CPU chip
with large on-chip caches would only
benefit for those few instructions that
incur cache misses.

Since integration is rapidly increas-
ing, any slip in machine schedule due to
increased machine complexity from the
use of multichip modules could easily
negate any performance advantage
gained by the module.

Finally, multichip modules are more
expensive than traditional plastic pack-
aging on PC boards. The challenge for
multichip packaging design is to limit
the cost of packaging and prevent the
use of multichip packaging from delay-
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ing machine production. Otherwise the
combination of cost and small marginal
improvement (in performance versus
delivery date) may limit the adoption of
multichip packaging techniques to su-
percomputers and special-purpose ap-
plications.

Architectural challenges. In this sec-
tion, we look at the challenges for build-
ing higher performance machines and
particularly focus on the most promis-
ing directions for maintaining the dra-
maticimprovements of the past decade.
We focus on three distinct challenges
for computer architects: increasing the
speed of uniprocessor machines, build-
ing efficient small-to-moderate-scale
multiprocessors, and dealing with the
growing access time gaps among pro-
cessors, memories, and I/O systems. As
you will see, several of these challenges
involve other fundamental problems that
must be overcome in the next decade.

Improving uniprocessor performance.
Most of the improvements in single pro-
cessor performance are likely to come
from increasing the instruction through-
put, either by lowering clock rates or
clocks per instruction. Tracking tech-
nology closely and taking advantage of
new technology improvements will be
critical to decreasing the clock cycle.

Lowering the CPI has been a major
factor in improving performance in the
past 10 years; we expect this to contin-
ue. However, the problem becomes more
challenging for several reasons stem-
ming from the structure of programs,
the implementation hurdles for the var-
ious multiple-issue techniques, and oth-
er factors that gain importance as the
peak instruction throughput increases.

Perhaps the most serious limitations
to exploiting more instruction-level par-
allelism arises from a lack of uniform
instruction-level parallelism in pro-
grams. Several in-depth studies of the
difficulty in exploiting instruction-level
parallelism have been carried out, fo-
cusing on both general-purpose and sci-
entific programs. This distinction is quite
important.

In many scientific programs, includ-
ing all vectorizable programs, there is a
large amount of data-level parallelism
(that is, the parallelism is proportional
to the size of the data in the applica-
tion). Such programs have essentially
unlimited parallelism, at least in por-
tions of the code. What remains unclear
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Uniformity in the
number of instructions
that can be issued at
any point is critical.

is the best method for exploiting such
parallelism. In addition to the multiple
instruction issue, both vector machines
and SIMD machines provide important
methods for exploiting such parallel-
ism.

Two major studies of more scalar-
oriented programs®’ have shown the
practical level of exploitable parallel-
ism to be around 2 operations per clock.
Uniformity in the number of instruc-
tions that can be issued at any point is
also critical. If the number varies wide-
ly, building a CPU to exploit the peaks
in the available parallelism will be both
ineffective, because of Amdah!’s law
effects, and inefficient, since much of
the machine will be idle most of the
time.

Uniformity in the type of instructions
used by an application is also critical.
All superscalar machines built to date
restrict the combination of instructions
that can be issued in one clock. For
example, atwo-way superscalar machine
might allow a floating-point operation
to be issued together with any other
nonfloating-point instruction. Then, if
the floating-point instructions do not
constitute a uniform 50 percent of the
instructions executed in the application,
the machine will be underutilized and
the speedup will be less than ideal.

Less restricted issue of instruction
combinations (as in most superpipelined
machines) or the use of dynamic hard-
ware scheduling'"can help alleviate these
performance limitations. The impact of
issue restrictions can be crucial —some
studies® show that machines with lower
issue rates can have higher performance
if the issue restrictions are less severe.
These imbalances together with restric-
tions on the total instruction-level par-
allelism available®® have led to typical
improvements from these techniques of
about 1.5 to 2 times, with nonvectoriz-

able code under realistic design assump-
tions.

Both the superscalar and superpipe-
lined techniques introduce implemen-
tation challenges that need to be over-
come. In a superscalar machine, some
of the functional units must be duplicat-
ed, with the number increasing if issue
restrictions are to be minimized. In ad-
dition, as the number of instruction is-
sues per cycle increases, we will need to
increase the number of register ports.

Because memory references consti-
tute a significant fraction of the instruc-
tions, a superscalar machine that wants
to issue more than a few instructions
per cycle will need to have multiple
data-cache ports. All these factors re-
quire much larger numbers of gates and
more interconnect, which can be the
limiting factor in the short term.

In the longer term, the challenge will
be to not impede the clock rate while
adding these extra units or access ports.
Possibly the limiting challenge to in-
creasing the instruction issue rate for a
superscalar machine is the difficulty in
fetching, decoding, and issuing an ever-
larger number of instructions in the same
clock cycle. The CPU must check for
dependencies among a set of instruc-
tions before issuing them in a single
cycle; the number of combinations to
check grows as n? and limits the issue
rate. The VLIW approach solves some
of these problems, as we discuss shortly.

Superpipelining is essentially the ex-
tension of pipelining and thus is limited
by the same factors that limit attempts
to increase the depth of a pipeline with-
out limit. The primary problem in this
regard is the impact of skew, both in
data and control.

The skew, which is determined by the
technology and the skill of the design-
ers in balancing data and clock paths,
usually cannot be scaled down arbitrarily
small and, instead, grows as a fraction of
the clock as the clock rate is increased.
Because of skew, there is a limit to how
short the pipeline stages can be before
the allowance for skew consumes an
unacceptable fraction of the clock
period.

A VLIW is a multiple-issue machine
in which the compiler takes the respon-
sibility for finding the operations that
can be issued together and creating a
single instruction containing those op-
erations. Because the compiler does this
statically, the hardware does not need
to check dependences or issue restric-

COMPUTER



tions. The compiler schedules the oper-
ations into instructions to avoid these
problems.

VLIWs face a similar set of challeng-
es. The question of how much instruc-
tion-level parallelism can be exploited
statically by a compiler remains open.
While VLIWs have demonstrated an
ability to do this on vector codes, we
need to investigate the question of their
usefulness for more general-purpose
applications, especially those with mem-
ory-access patterns that are not predict-
able at compile time.

Many of the implementation challeng-
es of a superscalar that tries to issue a
large number of instructjons in a single
cycle apply here. Most particularly, pro-
viding many register ports and memory
ports becomes a challenge. For this rea-
son,several VLIWs have chosen to avoid
the use of data caches and instead build
multiported memories that offer higher
bandwidth with much longer access la-
tencies. How well this works for a wide
range of applications remains to be seen.

Inthe future, we can expect designers
to combine the ideas of superscalar and
superpipelining to get the best of each
approach. The major challenge for all
these approaches is to find ways to un-
cover and exploit larger amounts of in-
struction-level parallelism.

Oneideathathas demonstrated some
potential is the ability to do speculative
computation. In speculative computa-
tion, an operation is optimistically exe-
cuted before we know whether we will
really need its results. This effectively
ignores control dependencies, and hence
makes highly accurate branch predic-
tion critical.

Wall'! showed that the amount of
parallelism that can be extracted rises
substantially, with perfect branch pre-
diction and alias resolution (determin-
ing whether two memory addresses re-
fer to the same location). Whether
speculative techniques will pay off in
practice depends on their implementa-
tion cost and future progress on branch
prediction and alias resolution.

Challenges in memory system design.
Memory systems present machine de-
signers a range of challenges. To design
high-performance uniprocessors and
multiprocessors, we need sophisticated
memory hierarchies that keep the aver-
age access time low and provide high
bandwidth. Specifically, the challenges
lie in three areas:
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Some factors indicate
that the growth of
memory on systems
might accelerate.

(1) Memory hierarchies for high-
performance processors

(2) Large memories and address
spaces

(3) Multiprocessors

Both the latency and the bandwidth
of a memory hierarchy become more
crucial as performance isincreased. The
relative importance of low average
memory access time increases as per-
formance increases, both because of an
increase in the clock rate of the CPU
and a decrease in the CPI.

Increasing the CPU clock rate makes
the cache miss penalty rise because of
theslowrate ofimprovementin DRAM
access times relative to CPU cycle times.
In addition, as CPI decreases with the
use of multiple-instruction-issue tech-
niques, the proportional effect of anon-
zero memory access penalty continues
to increase.

Likewise, both of these changes in-
crease the bandwidth requirements on
the memory hierarchy. As the clock
rate increases in a pipelined machine,
the rate at which memory accesses must
occur increases linearly. In addition, to
maximize the performance benefit of
multiple instructionissue and to achieve
any benefit beyond a small number of
issues per clock, we must be able to
increase the number of memory ac-
cesses issued per clock. Thus, designers
must build memory hierarchies capable
of lower effective access times and high-
er bandwidth.

Cache designers must also try to alle-
viate the impact of cache misses, whose
cost continues to increase as machines
get faster. One important technique for
decreasing the cost of a miss is a non-
blocking cache (also called a lockup-
free cache).”” A nonblocking cache al-
lows other memory accesses to occur
while a miss is being handled.

Some machines today have limited
support for nonblocking caches. How-
ever, the importance of this idea is like-
ly to increase. There are many unre-
solved issues in the design of systems
using nonblocking caches. For exam-
ple: How many accesses need to be out-
standing to achieve the benefits? How
much dynamic scheduling of memory-
referencing instructions do we need?

Over the past 30 years, the demand
for memory address space in computer
systems has grown at a rate of between
1/2 bit and 1 bit per year; the growth has
been closer to 1 bit per year for the past
15 years. A variety of factors have led to
this growth, including the use of high-
level languages, added functionality in
applications and operating systems, and
the trade-off of memory space for CPU
cycles by both applications and operat-
ing systems.

These trends in growth of memory
usage will apparently continue. Indeed,
some factors indicate that the growth of
memory on systems might even acceler-
ate.

One such factor is the growing gap
between CPU speeds and access time to
disk. For example, in the past 10 years,
average disk access time has improved
by less than a factor of 2, while CPU
clock rates have increased by more than
one order of magnitude and CPU per-
formance has increased by more than
two orders of magnitude.

One way to lower the effect of this
gap is to aggressively use main memory
as afile or disk cache for the I/O system.
Because the I/O system has a much
larger capacity, the amount of memory
we need for caches will be large.

As the access time gap grows, the
memory must grow to lower the miss
rate. This trend could easily lead to
massive memories on systems within
five years. Similar pressures exist on
memory use for other high-bandwidth
I/O systems, such as video and fiber-
optic networks.

The use of memory as a cache or
buffer,together with the ongoing growth
of functionality in software (for exam-
ple, mapped files), will put pressure on
address space limitations. Most archi-
tectures today offer 32-bit address spac-
es. Examining the growth of address
space over the past 20 years makes it
clear that a variety of environments will
require more address space within the
next few years. A simple extension of
the growth rate curves from the 1970s,
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when the 16-bit address space was ex-
hausted, shows the need for more ad-
dress space in two to three years.

Extending the address space of exist-
ing architectures is one of the most dif-
ficult design problems architects face.
As Gordon Bell once said: “There is
one mistake that can be made in com-
puter design that is difficult to recover
from: not having enough address bits
for memory addressing and memory
management.”!?

Some architects have attempted to
provide a solution to this problem by
adding segmentation to their architec-
ture. However, this only provides a lim-
ited solution, since it still requires that
each segment be confined to 32 bits.

The compiler and programming diffi-
culties of dealing with a segmented ad-
dress space significantly limit the use-
fulness of the extended address space,
although some important applications
can be accommodated. Experience has
shown that machines with a flat, unseg-
mented address space are more flexible
than those with a segmented address
space. This leads to the conclusion that
architectures will shortly need to pro-
vide a larger word size to allow them to
easily address and manipulate objects
in address spaces larger than 32 bits.

The next natural step is 64 bits —
since many machines already handle
data objects of that size for floating-
point data, though few provide com-
plete support for 64-bit integers. Mak-
ing this transition will be a major
challenge for many architectures. We
might need to develop new instruction-
set architectures, just as was done when
we moved from 16-bit addresses to 32-
bit addresses.

The good news is that if demand for
growth in the address space does not
further accelerate, a 64-bit address space
will last a very long time.

Multiprocessors. Four types of chal-
lenges surface in building multiproces-
SOrS:

(1) The increasing difficulty of build-
ing small-scale machines using ever-
faster processors.

(2) The challenges that arise when
designing machines that scale beyond
the small machines that can use a bus
interconnect.

(3) The unsolved problems in effi-
ciently and easily programming multi-
Processors.
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(4) The current lack of quantitative
data and insight on the behavior of par-
allel programs forces the architect to
design a machine while lacking suffi-
cient insight into the critical properties
of programs that will run on the ma-
chine.

This last problem is exacerbated be-
cause the properties that are critical to
performance are often high-level appli-
cation characteristics and might depend
intimately on how an application was
initially written. This lack of data and
understanding will only be solved by
the development of many more parallel
applications, which can then be studied.

As microprocessors get faster, the
design of multiprocessors based on those
microprocessors becomes more chal-
lenging. Consider the task of redesign-
ing afour-processor bus-based machine
as the CPU performance goes from 25
MIPS to 100 MIPS, including a factor of
2inclock rate. The bandwidth demands
may nearly quadruple, although larger
caches may partially alleviate this band-
width growth. If the cache miss penal-
ties are not to grow by a factor of 2, the
access time to memory over the bus
mustalsoimprove by a factor of 2. These
factors conspire to make the design ever
more difficult as the CPUs get faster.

To build next-generation bus-based
multiprocessors, we need high-speed,
very wide buses using low-overhead
protocols and high clock rates (possibly
with reduced voltage swing). Likewise,
the difficulty of implementing snoopy
caches increases, since the cache laten-
cy and bandwidth must be larger to
accommodate the demands of the faster
processor.

To build larger multiprocessors that
provide a single uniform address space
requires that we use new cache coher-
ency algorithms if we are to maintain
the advantages of transparently caching
shared data. These new algorithms can-
not use the snoopy approach, which is
based on broadcasting to every proces-
sor. Directory-based coherency algo-
rithms'**seem to offer the best alterna-
tive, although machines using these
algorithms are still in the prototype stage.

Surely the biggest obstacle to the wide-
spread, general use of multiprocessors
is the programming difficulty. This dif-
ficulty arises from the challenges of
writing programs that run efficiently.
Todate, thishasrequired detailed knowl-
edge of the hardware design. This com-

plicates the programming problem sub-
stantially and, because such details are
incorporatedinto the program to achieve
performance, the portability of parallel
programs is extremely low. If multipro-
cessors are to gain broad acceptance for
parallel processing, we must simplify
the programming task and make it less

machine dependent.
D strong interaction between
computer architecture and IC
technology became clear. Architects
developed new instruction sets and
new organizations specifically driven
by technology developments. The role
of computer systems as technology
users has also shaped the direction of
IC technology development to an un-
precedented degree. This relationship
is likely to become even stronger in the
next 10 years. The biggest challenge
facing designers may be to understand
the breadth of issues from software to
IC technology that will affect com-
puters. B

uring the 1980s, the benefits of
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This has got to go!

CG&A seeks
new logo

IEEE Computer Graphics
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year-old logo and bring
CG&A into the future with a
brave new look.

CG&A seeks the best com-
puter-generated graphic pre-
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send one laser proof and a
disk of your work in a popular
graphics standard. To be con-
sistent with the magazine’s de-
sign, use a sans serif font and
focus on the words “Com-
puter Graphics.”

The winner receives $100
and a subscription to CG&A.
Up to three finalists will also
receive subscriptions and be
published. The deadline for
all entries is October 15, 1991.

The contest challenges com-
puter graphics professionals,
students, and anyone inter-
ested in computer graphics to
show off their skills and the
capabilities of their art, de-
sign, drawing, or publishing
software.

For official entry form and
more details call or write:

CG&A Contest
IEEE Computer Society
10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1264
(714) 821-8380
Fax (714) 821-4010
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