
message contains only one controi bit, called the acknowl-
edge bit. The operational rules for both terminals are:

1. I f the previous reception was error-free, the ac-
knowledge bit of the next transmission is one; if
the reception was in error the bit is zero.

2. I f the acknowledge bit of the previous reception was
zero, or the previous reception was in error, retrans-
mit the old message; otherwise fetch a new message
for t;ransmission.

The question of when to accept an error-free reception is
left open. This question, in fact, has no consistent resolu-
tion. Consider the message exchanges depicted in Figures
3a and 3b. Specifically, should the message received at line
7 be accepted by A? A is presented with exactly the same
information in 3a and 3b ! A is forced to guess which situa-
tion is the one that has occurred. The penalty for a wrong
guess is either dropping a message or accepting a duplicate
of a message.

I f A consistently assumes tha t 3a represents the situa-
tion, A will pick up message duplicates in the (rare) ease
when two errors occur in sequence as in 3b. Such errors,
while rare, do occur, and their rareness will make it
extremely difficult to catch the flaw in the system. This
inadequate scheme will work almost all of the time.

6. C o n c l u s i o n

A field-proven scheme for achieving reliable full-duplex
transmission over noisy half-duplex telephone lines has
been presented. The sensitivity of the algorithm and the
difficulty of the problem have been illustrated by contrast-
ing the algorithm with another, slightly different algo-
rithm. This modified algorithm fails in rare cases and gives
rise to operation which is faulty enough to degrade its
usefulness, and not faulty enough to permit it to be easily
debugged.

An interesting problem is posed by these two algo-
rithms. The adequate scheme used two bits of control in-
formation (verify and alternation bits) per message while
the inadequate scheme used only one bit (the acknowledge
bit). In Section 3, three states were described for the re-
ceived message, and the control bits of the next transmis-
sion encoded into the two control bits the total informa-
tion concerning which of the three states held on reception.
This leads to the conjecture that at least two control bits
are required for any adequate scheme of this sort, and
that only one control bit will never do. The reliable duplex
transmission problem would, of course, have to be bet ter
formahzed before it could be claimed tha t such a conjec-
ture were "proven."

A

v

On the Design of Display
Processors

T. I{. MYER
Bolt Berane]c and Newman Inc, Cambridge, Mass.

A N D

I. E. S~J~H~I~LAND *
Harvard University, Cambridge, Mass.

The flexibility and power needed in the data channel for a
computer display are considered. To work efficiently, such a
channel must have a sufficient number of instructions that it is
best understood as a small processor rather than a powerful
channel. As it was found that successive improvements to the
display processor design lle on a circular path, by making
improvements one can return to the original simple design
plus one new general purpose computer for each trip around.
The degree of physical separation between display and
parent computer is a key factor in display processor design.

KEY WORDS AND PHRASES: display processor design, display system,
computer graphics, graphic terminal, displays, graphics, display genera-
tor, display channel, dFsplay programming, graphical interaction, remote
displays

CR CATEGORIES: 2.44, 6.22, 6.29, 6.35

I. I n t r o d u c t i o n

In mid-1967 we specified a research display system.
This paper describes some of the problems we encountered
and some conclusions we have drawn. The display will be
all adjunct to an SDS-940 time-shared computer system.
The chief purpose for the display and the parent computer
is programming research.

When we first approached the task, we assumed we had
merely to select one of the several available commercial
displays. This proved possible with the analog equipment
tha t constitutes a display generator; we found several dis-
play generators tha t combined good accuracy, resolution,
and speed. However, the control par t of the display,
which we have come to call the display processor, was
another story. We were not completely happy with the
command repertoire of any of the commercial systems we
saw; we were not sure just how to couple the display to our
computer, and above all, we had serious doubts about
what a display processor shou!d be.

This work was sponsored by the Advanced Research Projezts
Agency under ARPA Order No. 627, Amendment No. 2, and con-
ducted under Contract No. AF19(628)-5%5, Air Force Cambridge
Research Laboratories, Otlliee of Aerospace Research, United
States Air Force, Bedford, Massachusetts 01730.
* And Bolt Beranek and Newman Ine, Cambridge, Mass.

410 C o m m u n i c a t i o n s of the ACM Volume 11 / Number 6 / June, 1968

Finally we decided to design the processor ourselves, be-
cause only in this way, we thought, could we obtain a
truly complete display processor. ~V e approached the task
by starting with a simple scheme and adding commands
and features that we felt would enhance the power of the
machine. Gradually the processor became more complex.
We were not disturbed by this because computer graphics,
after all, are complex. Finally the display processor came
to resemble a full-fledged computer with some special
graphics features. And then a strange thing happened. We
felt compelled to add to the processor a second, subsidiary
processor, which, itself, begau to grow in complexity. I t
was then that we discovered a disturbing truth. Designing
a display processor can become a never-ending cyclical
process. In fact, we found the process so frustrating that
we have come to call it the "wheel of reincarnation." We
spent a long time trapped on that wheel before we finally
broke free. In the remainder of this paper we describe our
experiences. We have written it in the hope that it may
speed others on toward "Nirvana."

2. T h e W h e e l o f R e i n c a r n a t i o n

The simplest displays merely plot points from coordinate
information. The TX-0 display at M I T (circa 1957) or the
PDP-1 with DEC Type 30 (circa 1960) are of this type.
Such a display has no processor; it is tied to the central
registers of the parent computer. To display a point, its
coordinates are first loaded into the central registers of the
computer. For example, with a DEC Type 30 and a PDP-1
the accumulator is loaded with x and the input-output
register with y. A display command is then executed which
results in a point flashed on the screen.

One problem with this scheme is that the processor is
tied up in generating display. If an at tempt is made to
compute concmTently with display, the display may
develop an objectionable flicker. The situation seems even
worse when one considers that refreshing a static display is
a repetitive operation that need not occupy an entire
processor full time.

For just a little more money one can buy a data channel
for the display. The data channel has a display address
register and a word counter. The channel takes successive
data words from a display file in core until the word count
goes zero, at which point the central processor restarts the
channel at the beginning of the display file. Now the
processor is freed for other work and the display can
operate as fast as its analog circuits permit.

Point-by-point display is, of course, expensive of time
and memory, even with a data channel. Any modern dis-
play should be able to draw lines and plot characters
automatically. For such a display delta x and y information
and characters will appear in the display file, as well as
position values. In addition, there must be codes to set
intensity and to tell whether beam movement is to gener-
ate a line or a point. These codes are regarded as new kinds
of data for the display.

Now someone points out that a special code to stop the
channel--a channel hal t--could be used to end the display
file. The word counter could be eliminated, thus saving
money. At this time one realizes something one had begun
to suspect ea r l i e i~ tha t a display is inherently unlike
other input /output devices. A magnetic tape unit, for
example, nmst be able to transmit arbitrary combinations
of bits onto tape. The display, on the other hand, may
interpret some combinations of bits in its data as special
commands, since its only function is to post a picture on
the screen.

For just a little more money one can add some other
commands to the display data channel. One is a jump
command. This allows the channel to display a file repeti-
t ively-- to refresh the display without intervention from
the central processor. I t also provides more flexibility in
handling display data, since the channel can now handle
noncontiguous display files.

In many engineering applications the pictures which
will be displayed have repeated subpictures such as circuit
symbols or small parts. So, for just a little more money,
one adds a subroutine feature to the display's data channel.
Repetitive circuit symbols can now be drawn by successive
calls to appropriate channel subroutines.

The subroutine feature requires two new commands and
means adding a new register to the display channel. A
subroutine jump command saves the return address in a
special register. In early implementations of the subroutine
feature a store-exit command, usually the first command in
the subroutine, deposits the saved address as a jump com-
mand at the end of the subroutine. This scheme not only
allows for subpictures, but also permit nested subpictures
to an indefinite depth.

Now this marks a kind of cardinal point in the wheel of
reincarnation. The DEC 340-347 reached this point in
design and was still thought to be a display channel. At
this level of increasing complexity, however, one should
realize and admit that the display data channel is not a
mere data channel at all; it is a processor. From here on out
one's thinking about the display changes radically.

First of all, one admits that the display's x and y
registers :form an accumulator and that the display address
register is a program counter. What one has is a special
purpose computer with a limited and somewhat unusual
command repertorire:

Load Immediate and Flash (point)
Add Immediate and Flash (line)
Halt
Jump
Subroutine Jump
Store Subroutine Exit

Taking a broader view, one also realizes that one has a
multiprocessor system, with the central processor (the
parent computer) and the display processor sharing the
same memory. From this viewpoint the Store Subroutine
Exit command is a problem since it can change the shared

Volume 11 / Number 6 / June, 1968 Communicat ions of the ACM 411

memory and lead to painful debugging. Another problem is
that the subroutine mechmfism, useful as it is, does not
make it particularly easy to trace one's path back through
a multilevel subroutine structure after a light-pen hit.

To solve both these problems, one indulges in a bit more
incremental funding and adds a pushdown stack system to
the display processor. A subroutine jump stores the return
address in the stack and increments the stack pointer. A
subroutine return causes a jump to the location stored at
the top of the stack and decrements the pointer. All return
addresses are stored in one part of memory and one's only
concern is to keep the stack from overflowing. Moreover,
the contents of the stack give the main processor im-
mediate access in one compact part of memory to the dis-
play processor's path through a subroutine hierarchy. As
far as we know, the DEC-338 was the first commercial dis-
play to include a pushdown stack, and as this is written,
the only domestic one ~ with stack hardware3

While all this was going on, one has been adding push-
buttons and keyboards to the display, and has included
appropriate registers and flags in the display processor to
deal with these, to indicate light-pen hits, to scope edge
violations, and the like. All of this information is available
to the main processor, but the display processor, which is a
rather passive device as we have described it so far, has no
way of reacting to but ton pushes, edge violations, etc. So,
for just a little more money, one adds some conditional
branch commands that let the display processor test for
but ton pushes, light-pen hits, and so forth. Conditional
branch instructions give the display processor the power
to do more than merely post complex pictures on the
screen. Now it can interact with the user without recourse
to the main processor. In fact, with some cleverness, one
can write very involved interactive programs for a dis-
play processor with conditional branch instructions.

Even with conditionals, the display processor still has a
few flaws. For one thing, one would like to make a sub-
routine transparent to all conditions that may have
existed in the calling routine. Transparency is possible for
beam position, since subroutines using relative vectors
can always return the beam to its initial location, but it is
not yet possible for display parameters, such as intensity,
character size, and the like, nor for subroutines that use
absolute beam positions. So, for a little more money, one
makes the stack system a little more elaborate by adding
instructions to push the current x and y beam position and
the display parameters into the stack, and pop them back.

Now the issue of transparency brings to mind the idea of
passing parameters to a subroutine. Parameter passing
might be quite useful in display subroutines, and since one
can load and store in the pushdown stack, one already has
the basic machinery for passing parameters. All that is

The British NCR-ELLIOT 4100 is another example.
Graphic II at Bell Telephone Laboratories uses a software ap-

proach.

needed is some way of getting free access to the stack, and
all this takes is a means for changing the contents of the
stack pointer. So, for very little more money, one adds a
command to add to or subtract from the stack pointer.

Thinking about parameters, of course, makes one realize
one has been considering local parameters, and it would be
nice to have global parameters as well. Tha t is, it would be
nice if all parts of a display program could be affected by
changing one key word. The convenient way to do this
would be to have addressable load and store commands.
So, since it won't cost nmch, why not?

The processor has acquired the
repertoire:

Load Immediate and (point)
Flash

Add Immediate and (line)
Flash

Halt
Jump
Push-Jump
Conditional Skip

Push Parameters
Push X, Y Position
Pop

Add Immediate to
Stack Pointer

Load

Store

following command

(subroutine)
(possibly more than

one of these)
(into stack)
(into stack)
(restore top i tem

from stack)

(addressable:
C (address) -~ X, Y)

(addressable:
X, Y --~ C (address))

Many of these commands would be included in a general
purpose processor. In fact, to make the display processor
generM, for just a little more money, one can add:

Execute (addressable)
Complement (for subtraction,

and logic)
Shift
Mask (logical AND, OR,

etc.)
And these probably won't add much to the price.

With all these commands, it occurs to one that the dis-
play processor could do things like track the light-pen,
create "rubber band lines," and handle many other inter-
active functions that heretofore have been relegated to the
main processor. To do these things conveniently, the dis-
play processor should have its own interrupt system, and,
considering what one has spent so far, tha t should not cost
much to add.

Now where are we? We have built up the display channel
until it is itself a general purpose processor ~dth a display.
The display is tied directly to its processor; to generate
picture the display processor's central registers are used.
In short, we have come exactly once around the wheel of
reincarnation.

4 1 2 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 11 / N u m b e r 6 / J u n e , 1968

However, we have made some very significant progress
during the trip. We have given the processor Load Im-
mediate and Add Immedia te commands for displaying
points and lines. These operations now take one, rather
than three, memory cycles. We have added a pushdown
stack system, a mechanism uniquely suited to display sub-
routining and tracing light-pen hits. In short, we have
specially adapted the processor to the task of running a dis-
play.

Should we continue around the wheel? We might argue
that much of the display proeessor's power is idle most of
the t ime and that it is wasteful to tie up a general purpose
processor merely to refresh a static display. Therefore (for
just a little more money) we might consider adding a
channel to the display processor. ~ ' e might then consider
adding some special commands to the channel to let it
follow more complex data structures. I f we did so we could
move into a second turn around the wheel.

Throughout this discussion we have been assuming that
the display processor will operate directly f rom the memory
of the parent computer. The reader should note that we
might just as well have started with a display having its
own local memory. In either case the wheel of reincarna-
tion works in much the same way. The display processor
starts simple and grows until it has become a full computer.
Then it gives birth to a second processor which in turn
begins to grow.

Looking at some commercial displays, one can find
examples at various points around the wheel. As we have
said, the D E C Type 30 represents a start ing point, while
the D E C 340-347 represents about a half-turn. The I D I
10000 series, I . I . I . 1050, Tasker 9000 and the CDC-250
also represent positions less than once around. The I D I I O M
represents a full revolution and a quarter, while the D E C
338 represents a revolution and a half. We have found
no examples exactly once around the wheel, but we submit
this as an interesting design problem: a small general
purpose computer with an integrated display system and a
single program counter.

3. G e n e r a l C o n c l u s i o n s

I t was not until we had traveled around the wheel
several times tha t we realized what was happening. Once
we did, we tried to view the whole problem from a broader
perspective. We found that some questions had fairly
clear answers, but others remained in doubt. The remainder
of this paper outlines our conclusions and sets forth the
questions we could not answer.

The problem breaks down into two general questions:
How closely should the display system be tied to the parent
computer? How much computing power should be included
in the display processor?

The first question seems simpler to answer than the
second. I f the display must be located far from the main
computer, then the problems of data transmission dictate
that it have at least a local memory. Likewise, there are

arguments for detaching the display f rom a parent com-
puter tha t is running a t ime-shared system. I f the display
is too closely coupled to the main machine, competition
over memory access and demands from the display for
interactive service may degrade the display's or the sys-
tem's performance. Moreover, if the display processor
can change information in memory, there is the danger
that it may destroy the time-sharing software.

~, hile a remote display with its own memory seems a
good choice for some situations, we feel it has unjustifiable
disadvantages unless communication bandwidths force it.
We feel a bet ter approach is to locate the display close
enough to the main computer so that both can access the
same core directly. This approach allows display files to
be used in the core where they are prepared; there is no
need to ship display data, at a cost of two memory cycles
per word, to a remote memory. In interactive situations,
this approach makes it easy for the main computer to find
out what went on between the display processor, the user,
and the display file. Most importantly, particularly in a
research system, this approach gives the user the ability to
experiment with approaches in which the picture data is
merged with other data in his program system. Conse-
quently one of our conclusions has been tha t the display
processor should be closely coupled with the parent com-
purer, tha t it should take its data from the main com-
puter 's core, and that the user should have complete, bit-
by-bit control over tha t data. We recognize that this poses
problems in a time-shared system, but we feel the advan-
tages to be gained make it worthwhile to solve them.

If, for geographic or other reasons, one has decided on a
tenuous connection between display and main computer,
the question of how much power to give the display proc-
essor can be answered in terms of how one wishes to use
the display. I f one plans to display relatively static
pictures and can tolerate fairly long delays on interactive
services, such as light-pen hits, and but ton pushes, then
there is little point to including general computing power
in the display processor. On the other hand, to save
memory space, one would probably want to include jump
and subroutine commands.

If, by contrast, one wishes to produce more dynamic dis-
plays and handle highly interactive situations, then one
must at least include general computing power remotely
with the display. The question is then whether to integrate
the general purpose capability in the display processor it-
self or to include a separate display channel in the remote
device, i.e. whether to go around the wheel of reincarna-
tion exactly once or more than once. M a n y interactive
situations, such as light-pen handling, require that the
main display loop be halted, at least while the initial
servicing is performed. One could handle these by inter-
rupting the display processor itself. Other functions, such
as responding to push buttons, adding to the display file,
and interpreting commands from the main computer, can
be performed without halting the display. This fact argues

Volume 11 / Number 6 / June, 1968 Communications of the ACM 413

for a display channel combined with a small general
purpose computer.

As we have said, we know of no remote display in which
the computer and display channel are integrated into one
machine, i.e. exactly one turn around the wheel. However,
this approach seems to offer some advantages. Having one
processor would be cheaper and would eliminate problems
arising from the need for communication between two
separate processors. By careful interrupt programming the
execution time of the slower graphic commands could be
utilized for other processing.

Most existing remote displays are based on the second
approach, i.e. more than one turn around the wheel. The
DEC 338 incorporates a powerful channel with jump, sub-
routine, and conditional commands in addition to a com-
plete local computer. The Bell Telephone Laboratories
Graphic II display 3 represents a different variation of the
same approach. Its premise is that in a remote display sys-
tem, consisting of computer plus display channel, the
computer will be idle most of the time and might just as
well perform the functions that would otherwise be wired
into the channel. The Graphic II channel has a command
that interrupts the computer (a PDP-9). The address
field of this command indicates what function to perform.
Subroutining, conditionals, etc., are done for the display
through programs executed by the main computer.

The Graphic II scheme allows great flexibility in build-
ing display data structures since the PDP-9 can be pro-
grammed to follow Mmost any structure. However, this
flexibility is achieved at a sacrifice in speed. It takes
considerably longer to perform jumps, subroutine jumps,
etc., by program than by hardware. This time burden
could be quite serious, since a single picture may contain
many subroutine calls, and all must be repeated each time
the picture is refreshed. However, the designer of Graphic
II points out that the time burden can be largely elimi-
nated by programs that allow the PDP-9 to follow struc-
ture while the display is simultaneously executing graphic
commands embedded in the structure.

If it is possible to locate the display processor near to the
main computer, we feel, as we have pointed out, that they
should share the same memory. In this case, the question
of how much display processor to buy becomes rather
complicated. No longer is a minimum general purpose
capability required. One can choose a design anywhere
from a primitive channel to a dedicated general purpose
processor plus channel. One way of deciding how much
display processor to buy is to look at the jobs the display
processor might reasonably be expected to do. There are
four.

(1) The display processor must generate pictures from
some form of internal representation, which may include
multiple calls on display subroutines.

(2) The display processor might generate pictures or
picture elements by computation rather than from a static

3 Ninke, William. Bell Telephone Laboratories, telephone con-
versation, 11 August 1967.

4 1 4 C o m m u n i c a t i o n s o f t h e ACM

representation in memory. Such pictures as the light-pen
tracking cross, point rasters, random points, and arrays of
objects are more compactly specified by generation proce-
dures than by listing their elements.

(3) The display processor might provide immediate feed-
back to the user or handle simple interactive functions
such as editing, and light-pen tracking.

(4) The display processor might compile displayable
picture representations from higher level data in the user's
program system. This would include handling the routine
computations required for rotation, scaling, curve genera-
tion, and the like, when these are not handled by the dis-
play hardware.

As for Job 1, the display processor must certainly follow
data structures in core. In our view, a desirable goal is to
eliminate the secondary display file that must usually be
generated from some higher level structure. The more
complex the structures the display processor can follow
directly, the more closely, we feel, that goal will be ap-
proached. However, in the interest of speed, the display
processor must follow structures by executing display com-
mands embedded within the data. I t would not be useful,
in our view, to give the display processor general comput-
ing power merely so that it could interpret such structures.

As for Jobs 2 and 3, we feel it does not much matter
where the computing power comes from, provided it can
be had immediately on demand. One can either provide
high level interrupt routines in the main system at risk of
degrading the system's performance, or spend the extra
money to include the necessary computing power, and
possibly an interrupt system in the display processor.

Job 4 does not seem to belong to the display processor
at all. As far as generating pictures from data is con-
cerned, we feel the display processor should be a special-
ized device, capable only of generating pictures from
read-only representations in core. A data structure, useful
for high level manipulation, represents objects abstractly,
and includes, as parameters, the numerical information
necessary to generate any particular view. The display
processor should be able to follow such structures directly
but not generate secondary display files from the informa-
tion contained in them. Generation of secondary display
files is properly the job of the central computer.

The view suggested by Daniel Bobrow that the display
processor need not, indeed should not, contain mere general
purpose computing power, largely determined the design
of our display processor. The design reflects that view
most directly in its lack of an addressable store command
and in the limitations imposed on access to the stack. For
example, information put into the stack can only be
returned to the register from whence it came. General
computing power, whatever its purpose, should come from
the central resources of the system. If these resources
should prove inadequate, then it is the system, not the
display, that needs more computing power. This decision
let us finally escape from the wheel of reincarnation.

RECEIVED AUGUST, 1967; REVISED NOVEMBER, 1967

Volume 11 / Number 6 / June, 1968

