International Technology
 Roadmap for
 Semiconductors 2000 Update

Overall Roadmap Technology Characteristics

Table of Contents

Overall Roadmap Technology Characteristics \& Glossary 1
Background 1
Update Overview and Observation Summary 1
Table la Product Generations and Chip Size Model
Technology Nodes-Near Term Years* 4
Table 1b Product Generations and Chip Size Model
Technol ogy Nodes-Long Term Years* 5
Table 1c DRAM Production
Product Generations and Chip Size Model—Near Term Years* 6
Table 1d DRAM Production
Product Generations and Chip Size Model—Long Term Years* 7
Table le DRAM Introduction
Product Generations and Chip Size Model—Near Term Years* 8
Table lf DRAM Introduction
Product Generations and Chip Size Model—Long Term Years* 9
Table 1g MPU (High-volume Microprocessor) Cost-Performance Product Generations and Chip Size Model-Near Term Years* 10
Table 1h MPU (High-volume Microprocessor) Cost-Performance Product Generations and Chip Size Model-Long Term Years* 11
Other ORTC Tables, TWG Line Items/Owners 14
Table 2a Lithographic-Field and Wafer-Size Trends-Near Term Years* 15
Table 2b Lithographic-Field and Wafer SizeTrends-Long Term Years* 15
Table 3a Performance of Packaged Chips:
Number of Pads and Pins-N ear Term Y ears* 16
Table 3b Performance of Packaged Chips:
Number of Pads and Pins-Long Term Years* 16
Table 4a Performance and Package Chips: Pads and Cost—Near Term Years* 17
Table 4b Performance and Package Chips: Pads andCost—Long Term Years* 18
Table 4c Performance and Package Chips: Frequency, On-Chip Wiring Levels-Near Term Years* 19
Table 4d Performance and Package Chips:
Frequency, On-Chip Wiring Levels - Long Term Years* 20
Table 5a Electrical Defects-Near Term Years* 21
Table5b Electrical Defects-Long Term Years*, 22
Table 6a Power Supply and Power Dissipation-Near Term Years* 23
Table 6b Power Supply and Power Dissipation-Long Term Years* 23
Table 7a Cost-Near Term Years* 24
Table 7b Cost-Long Term Years* 25
ITRS Table Definitions/Guidelines 26
Glossary - ORTC 2000 Update Edition 27
Key Roadmap Technology Characteristics
Terminology (with observations and analysis) 27

Overall Roadmap Technology Characteristics \& Glossary

Background

The Overall Roadmap Technology Characteristics (ORTC) 2000 Update Tables have been revised from the International Technology Roadmap for Semiconductors, 1999 edition (ITRS) ORTC to highlight the current rapid pace of advancement in semiconductor technology. They represent a "snapshot" of the work in progress by the International Roadmap Committee (IRC) and the International Technology Working Groups (ITWGs) as they prepare for the full revision of the ITRS in 2001.

The ORTC tables are used throughout the update and renewal of the ITRS to identify rapidly changing, leading-edge trends and provide synchronization among the ITWGs. In J uly 2000, the IRC reached consensus on proposing "most aggressive" values for a few high-level ORTC line items that were then used to drive the complete ORTC update. These values represent the most optimistic of three scenarios (see details below) that are still under discussion in preparation for the 2001 edition of the ITRS. Thus, they represent a start toward creating new ORTC tables early in the 2001 ITRS revisondevelopment process.

With respect to the ITWG tables, the activities for the 2000 Update are limited to review and correction as possible considering all tables from the 1999 ITRS. Some ITWG tables do not comprehend this "most aggressive" ORTC 2000 Update. Inconsistencies among the ITWG and ORTC tables are part of this work-inprogress as we move towards the full revision of the ITRS in 2001. Therefore we encourage review of the ITWG tables as a response-to-date.

The 2001 activities focus on a complete revision of the ITRS. Once we have consensus on the 2001 ORTC tables, they will serve as a guide for the activities of the International Technology Working Groups in producing their detailed chapters for the 2001 edition.

The complete 1999 ITRS, along with the latest 2000 Update Tables are available for viewing and printing as an electronic document at the International SEMATECH internet web site http://public.itrs.net.

Update Overview and Observation Summary

Please note that the year header on the tables may refer to different points in the development/life cycle of integrated circuits (ICs), depending on the individual line item metric. However, unless otherwise specified for a particular line item, the default year header still refers (as in previous Roadmaps) to the year when product shipment first exceeds 10,000 units per month of ICs from a manufacturing site using "production tooling." Additional clarification was provided this year by the IRC, requiring a second company to start production within 3 months. To satisfy this definition, ASIC production may represent the cumulative volume of many individual product line items processed through the facility.

Furthermore, new IRC guidelines clarified the definition of a Technology Node as the achievement of significant advancement in the process technology. To be explicit, a Technology Node was defined as the achievement of an approximate 0.7 x reduction per node (0.5 x per two nodes). The period of time in which a new Technology Node is reached is called a "technology-node cycle." It is acknowledged that continuous improvement occurs between Technology Nodes, and this is reflected by arithmetic interpolation between nodes in the annual columns of the "Near-Term Years" tables. The "Long Term Y ears" table columns are snapshots at 3 -year increments and do not necessarily coincide with Technology Node Y ears.

In the 1998 ITRS Roadmap Update and the 1999 ITRS Renewal development, a trend was first identified which indicated that the technology node cycle had accelerated by at least one year compared to the 1997 National Technology Roadmap for Semiconductors (NTRS). Additionally, it was discussed that the technology
implementation trend could be moving from a 3-year technol ogy-node cycle to a 2-year rate, and a pull-in of the 130 nm node to 2001 was anticipated. However, by the completion of the work on the 1999 ITRS in November, 1999, the 180nm node was pulled in one year to 1999, a 3-year technology node cycle was applied, and the 130nm DRAM half-pitch node target remained in 2002.

During their 2000 ITRS Update activities, the ITWGs and the IRC have concluded that a two-year DRAM halfpitch node cycle rate will indeed be maintained through 2001, pulling in the original 1999 ITRS 130nm node target from 2002 to 2001. Beyond 2001, three possible scenarios were considered for potential technology node (DRAM half-pitch) trends, as summarized below:

Scenario 1 (Sc. 1.0): Pull-in the 130nm DRAM half-pitch to 2001, but then intersect with the original 100 nm 1999 ITRS target in 2005. Next, interpolate the annual numbers in-between and extrapolate from the $100 \mathrm{~nm} / 2005$ point at a $70 \% /$ node ($0.5 \times / 2$ nodes) reduction rate.

Scenario 1.5 (Sc. 1.5): Pull-in the 130nm DRAM half-pitch to 2001, but move 100nm to 2004 (a corresponding 1-year pull-in from the original 1999 ITRS point in 2005); then, interpolate the annual numbers in-between, and extrapolate from the new $100 \mathrm{~nm} / 2004$ point at a $70 \% /$ node ($0.5 \times / 2$ nodes) reduction rate.

Scenario 2.0 (also known as the "Best-Case Opportunity" or "Most Aggressive" case) (Sc. 2.0): Pull-in the 130 nm DRAM half-pitch to 2001, and also correct the original $100 \mathrm{~nm}, 70 \mathrm{~nm}, 50 \mathrm{~nm}$, and 35 nm "nodes" to the $70 \% /$ node definition ($0.5 \times / 2$ nodes rate): $90 \mathrm{~nm}, 65 \mathrm{~nm}, 33 \mathrm{~nm}$, and 23 nm , respectively.

Please note in Figure 1 and in Table A the 3-year node cycle is being forecast as a future trend for all scenarios. However, only the new "most aggressive" scenario proposal, Scenario 2.0, includes a correction to the IRCdefined trend rate. The new correction results in a 2 -year pull-in of the sub-100-nanometer DRAM half-pitch nodes.

As previously mentioned, for simplification and focus in the 2000 Update publication, only the proposed "most aggressive" Scenario 2.0 was used to develop the complete ORTC Update Tables included in this ORTC 2000 Update document. Scenario 2.0 was also recommended by the IRC for use by the ITWGs as guidance in developing their 2000 U pdate Tables. The ITWGs responded in their ITWG 2000 Update tables.

For reference and ease of comparison by the reader, the original 1999 ITRS ORTC target roadmap data has been included and identified as "1999 ITRS" in the line item labels. The new proposal targets for the 2000 Update "most aggressive" scenario are identified as "Sc. 2.0 " in the line item identifier, and modified targets arehighlighted in bold blue text.

Notein Figure 1 that the "printed in resist" MPU Gate Length trend, originally introduced in the 1998/ 99 ITRS development, remains unchanged from its original trend, but now the leading-edge ASIC and MPU are at the same technol ogy leve. New for the 2000 Update is the addition of a trend to track the actual "Physical Bottom Gate Length" of leading-edge MPU and ASIC devices.

ITRS Roadmap Acceleration Continues... (Including MPU/ASIC"Physical Gate Length" Proposal)

Figure 1 ITRS Roadmap Acceleration Continues... (Including MPU/ ASIC "Physical GateLength" Proposal and Half-Pitch Trend Correction)

Table A Product Generations and Chip Size Model - Technology Node Scenarios

year of Production Technology Node WAS (1999 ITRS)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	2001	$\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered}$	2003	2004	$\begin{array}{\|c\|} \hline 2005 \\ 100 \mathrm{~nm} \end{array}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
$\begin{aligned} & \text { DRAM } 1 / 2 \text { Pitch }(\mathrm{nm}) \\ & \text { WAS (1999 ITRS) } \end{aligned}$	180	165	150	130	120	110	100	70	50	35
DRAM $1 / 2$ Pitch (nm) IS [Sc.1.0] [pull-in 130nm 1 year: 100nm/2005; then . 7x/3yrs reduction rate]	180	150	130	120	115	105	100	70	50	35
DRAM $1 / 2$ Pitch ($n m$) IS [Sc. 1.5] [pull-in 130nm 1 year; $100 \mathrm{~nm} / 2004$; then. $7 x / 3 y r s$ reduction rate]	180	150	130	120	110	100	90	65	45	33
DRAM ${ }^{1 / 2}$ Pitch (nm)IS [Sc. 2.0] [pull-in 130nm 1 year; then $7 x / 3 y r s$ reduction rate]	180	150	130	115	100	90	80	[60]§	[40]§	[30]§

§ Note that proposed node years for Scenario 2.0 are now 2007/65nm: 2010/45nm: 2013/33nm: 2016/23nm

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left.\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered} \right\rvert\,$	2000	2001	$\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{gathered} 2001 \\ 130 \mathrm{~nm} \end{gathered}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{aligned} & 2011 \\ & {[40} \\ & \mathrm{NM}] \\ & \hline \end{aligned}$	$\begin{gathered} 2014 \\ {[30} \\ \text { NM] } \\ \hline \end{gathered}$

Table la Product Generations and Chip SizeMode Technology Nodes-Near Term Years*

Year of Production Technology Node (1999 ITRS)	$\left\|\begin{array}{c} 1999 \\ 180 \mathrm{~nm} \end{array}\right\|$	2000	2001	$\left.\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array} \right\rvert\,$	2003	2004	$\left.\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered} \right\rvert\,$	Driver
Year of Production Technology Node (Sc. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\left.\begin{gathered} 2001 \\ 130 \mathrm{~nm} \end{gathered} \right\rvert\,$	2002	2003	$\begin{aligned} & 2004 \\ & 90 n m \end{aligned}$	2005	Driver
Lithography-Based Characteristics								
DRAM 112 Pitch (nm) (1999)	180	165	150	130	120	110	100	D 1/2
DRAM $1 / 2$ Pitch (nm) (SC. 2.0)	180	150	130	115	100	90	80	D 1/2
MPU/ ASIC $1 / 2$ Pitch (nm) (1999)	230	210	180	160	145	130	115	M AND A $1 / 2$
MPU/ ASIC $1 / 2$ Pitch (nm) (SC. 2.0) [Tied to DRAM]	230	190	160	145	130	115	100	M AND A $1 / 2$
MPU Gate Length (nm) $\dagger \dagger$ (1999)	140	120	100	85-90	80	70	65	M GATE
ASIC Gate Length (nm) (1999)	180	165	150	130	120	110	100	A GATE
MPU/ ASIC Gate Length (In Resist) (nm) $\dagger \dagger$ (SC. 2.0)	140	120	100	90	80	70	65	M AND A GATE
Physical Bottom Gate-Length								
MPU/ASIC Gate Length (mm) tt [[NEW]	120	100	90	80	70	65	60	COST/PERFORMANCE

[^0]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left\|\begin{array}{c} 1999 \\ 180 \mathrm{~nm} \end{array}\right\|$	2000	2001	$\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{aligned} & 2011 \\ & {[40} \\ & N M] \\ & \hline \end{aligned}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table 1b Product Generations and Chip Size Model Technology Nodes-Long Term Years*

$\dagger \dagger$ MPU and ASIC Gatelength (In Resist) node targets refer to most aggressive requirements, as printed in photoresist (which was by definition also "as etched in polysilicon", in the 1999 ITRS).

NEW: Trends have been identified, in which the MPU and ASIC "physical bottom" gate lengths may be reduced from the "asprinted" dimension. These "physical bottom" gate-length targets are also included in the FEP, PIDs, and Design TWG Tables as needs which drive device and process technology requirements.

[^1]| 2000 UPDATE | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year of Production
 Technology Node
 (1999 ITRS) | $\left.\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered} \right\rvert\,$ | 2000 | 2001 | $\left\|\begin{array}{c} 2002 \\ 130 \mathrm{~nm} \end{array}\right\|$ | 2003 | 2004 | $\left.\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered} \right\rvert\,$ | $\begin{gathered} 2008 \\ 70 \text { nm } \end{gathered}$ | $\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$ | $\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$ |
| Year of Production
 Technology node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0) | $\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$ | 2000 | $\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$ | 2002 | 2003 | $\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$ | 2005 | $\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$ | $\begin{gathered} 2011 \\ \text { [40 } \\ \mathrm{NM}] \end{gathered}$ | $\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$ |

Table 1c DRAM Production Product Generations and Chip Size M odel-Near Term Years*

Year of Production Technology	(1999 ITRS)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\begin{array}{\|c\|} \hline 2005 \\ 100 \mathrm{~nm} \\ \hline \end{array}$	Driver
Year of Production Technology Node	(Sc. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	Driver
DRAM $1 / 2$ Pitch [f] (nm)	(1999)	180	165	150	130	120	110	100	D 1/2
DRAM $1 / 2$ Pitch [f] (nm)	SC. 2.0)	180	150	130	115	100	90	80	D 1/2
Cell area factor [A]	(1999)	8.0	7.3	6.6	6.0	5.4	4.9	4.4	Market Cost/ Timing
Cell area factor [A]	(SC. 2.0)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	Market Cost/ Timing
Cell area [Ca $\left.=A f^{2}\right]\left(\mu \mathrm{m}^{2}\right)$	(1999)	0.26	0.20	0.15	0.10	0.08	0.059	0.044	Market Cost/ Timing
Cell area $\left[C a=A f^{2}\right]\left(\mu \mathrm{m}^{2}\right)$	(SC. 2.0)	0.26	0.18	0.13	0.10	0.082	0.065	0.039	Market Cost/ Timing
Cell array area at production (\% of chip size) §	(1999)	53\%	-	55\%	-	53\%	-	54\%	Market Cost/ Timing
Cell array area at production (\% of chip size) §	(SC. 2.0)	53.0\%	54.0\%	54.8\%	55.3\%	55.7\%	56.1\%	56.4\%	Market Cost/ Timing
Generation at production §	(1999)/(SC. 2.0)	256M	-	512M	-	1G	-	2G	Market Cost/ Timing
Functions per chip (Gbits)	[NEW]	0.268	0.380	0.537	0.759	1.07	1.52	2.15	Market Cost/Timing
Chip size at production $\left(\mathrm{mm}^{2}\right)$ §	(1999)	132	-	145	-	159	-	174	Market Cost/ Timing
Chip size at production $\left(\mathrm{mm}^{2}\right)$ §	(SC. 2.0)	131	129	127	141	157	175	147	Market Cost/ Timing
Gbits/ cm^{2} at production §	(1999)	0.20	-	0.37	-	0.68	-	1.23	Market Cost/ Timing
Gbits/ cm^{2} at production §	(SC. 2.0)	0.20	0.29	0.42	0.54	0.68	0.87	1.46	Market Cost/ Timing

[^2]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left.\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered} \right\rvert\,$	2000	2001	$\left.\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered} \right\rvert\,$	2003	2004	$\left.\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered} \right\rvert\,$	$\begin{gathered} 2008 \\ 70 \text { nm } \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} \hline 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{gathered} 2011 \\ \text { [40 } \\ \text { NM] } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2014 \\ & {[30} \\ & \mathrm{NM}] \\ & \hline \end{aligned}$

Table 1d DRAM Production Product Generations and Chip Size Model—Long Term Years*

Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65NM; 2010/45NM; 2013/33NM; 2016/23NM) (SC. 2.0)	$\begin{gathered} 2008 \\ {[60 \mathrm{~nm}]} \end{gathered}$	$\begin{gathered} 2011 \\ {[40 \mathrm{~nm}]} \end{gathered}$	$\begin{gathered} 2014 \\ {[30 \mathrm{~nm}]} \end{gathered}$
DRAM 112 Pitch [f] (nm) (1999)	70	50	35
DRAM $1 / 2$ Pitch [\dagger] (nm) (SC. 2.0)	60	40	30
Cell area factor [A] (1999)	3.5	3.0	2.5
Cell area factor [A] (SC. 2.0)	6.0	4.0	4.0
Cell area $\left[C a=A f^{2}\right]\left(\mu \mathrm{m}^{2}\right)$	0.017	0.008	0.003
Cell area $\left[C a=A f^{2}\right]\left(\mu \mathrm{m}^{2}\right) \quad$ (SC. 2.0)	0.019	0.0064	0.0032
Cell array area at production (\% of chip size) § (1999)	52\%	56\%	57\%
Cell array area at production (\% of chip size) § (SC. 2.0)	57.3\%	57.8\%	58.2\%
Generation at production § (1999)	[5.7]	16G	[45.2G]
Generation at production § (SC. 2.0)	[6G]	16G	[48G]
Functions per chip (Gbits) [NEW]	6.1	17.2	48.6
Chip size at production $\left(\mathrm{mm}^{2}\right) \S(1999)$	199	229	262
Chip size at production (mm^{2}) § (SC. 2.0)	205	191	268
Gbits/ cm^{2} at production § (1999)	3.05	7.51	18.5
bits/ cm^{2} at production § (SC. 2.0)	2.97	8.99	18.1

$\mathcal{S} \quad$ DRAM Mode-Cell Factor (design/process improvement) targets are: 1999-2004/8x; 2005-2010/6x; 2011-2016/4x. DRAM product generations are usually increased by $4 \times$ bits/ chip every four years with interim $2 \times$ bits/ chip generations, except: 1) at the Introduction phase, after the 8Gbit interim generation, the introduction rate is $4 x / 5 y$ yars ($2 x / 2-3 y r s$); and 2) at the Production phase, after the interim 32Gbit generation, the introduction rate is $4 x / 5 y$ ears ($2 x / 2-3 y r s$). InTERgeneration chip size growth rate varies to maintain 1 chip per $572 \mathrm{~mm}^{2}$ field at Introduction and 2 chip per $572 \mathrm{~mm}^{2}$ field at Production. The more aggressive "best case opportunity" technology node trends allow the Production-phase products to remain at $2 x$ bits/chip every 2 years and still fit within the target of two DRAM chips per $572 \mathrm{~mm}^{2}$ field size, through the 32Gbit interim generation. TheInTRA-generation chip size shrink mode is $0.5 \times$ every technology node in-between cell factor reductions.

Note: Long-Term nodes now fall on: 2010/45; 2013/33; 2016/25

* In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left.\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered} \right\rvert\,$	2000	2001	$\left\|\begin{array}{c} 2002 \\ 130 \mathrm{~nm} \end{array}\right\|$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2008 \\ 70 \text { nm } \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{aligned} & 2011 \\ & \text { [40 } \\ & \text { NM] } \\ & \hline \end{aligned}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table 1e DRAM Introduction Product Generations and Chip Size Model-Near Term Years*

Year of Production Technology	(1999 ITRS)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	Driver
Year of Production Technology Node	(Sc. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 n m \end{aligned}$	2005	Driver
DRAM $1 / 2$ Pitch [f] (nm)	(1999)	180	165	150	130	120	110	100	D 1/2
DRAM $1 / 2$ Pitch [f] (nm)	(SC. 2.0)	180	150	130	115	100	90	80	D 1/2
Cell area factor [A]	(1999)	8.0	7.3	6.6	6.0	5.4	4.9	4.4	Market Cost/ Timing
Cell area factor [A]	(SC. 2.0)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	Market Cost/ Timing
Cell area $\left[C a=A f^{2}\right]\left(\mu \mathrm{m}^{2}\right)$	(1999)	0.26	0.20	0.15	0.10	0.08	0.059	0.044	Market Cost/ Timing
Cell area $\left[C a=A f^{2}\right]\left(\mu \mathrm{m}^{2}\right)$	(SC. 2.0)	0.259	0.183	0.130	0.103	0.082	0.065	0.039	Market Cost/ Timing
Cell array area at introduction (\% of chip size) §	(1999)	70\%	-	72\%	-	70\%	-	72\%	Market Cost/ Timing
Cell array area at introduction (\% of chip size) §	(SC. 2.0)	69.5\%	70.5\%	71.3\%	71.8\%	72.2\%	72.6\%	72.9\%	Market Cost/ Timing
Generation at introduction §	(1999)	1G	-	2G	-	4G	-	8G	-
Generation at introduction §	(SC. 2.0)	1G	-	2G	-	4G	-	8G	-
Functions per chip (Gbits)	(1999)	1.07	-	2.15	-	4.29	-	8.59	Market Moore's Law
Functions per chip (Gbits)	(SC. 2.0)	1.07	1.52	2.15	3.04	4.29	6.07	8.59	Market Cost/Timing
Chip size at introduction (mm^{2}) §	§ (1999)	400	-	438	-	480	-	526	Market Cost/ Timing
Chip size at introduction (mm^{2}) §	§ (SC. 2.0)	400	395	390	435	485	542	454	Market Cost/ Timing
Gbits/ cm^{2} at introduction §	(1999)	0.27	-	0.49	-	0.89	-	1.63	Market Cost/ Timing
Gbits/ cm^{2} at introduction §	(SC. 2.0)	0.27	0.38	0.55	0.70	0.88	1.12	1.89	Market Cost/ Timing

[^3]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left.\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered} \right\rvert\,$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\begin{array}{\|c\|} 2005 \\ 100 \mathrm{~nm} \end{array}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{gathered} 2011 \\ {[40} \\ \mathrm{NM}] \end{gathered}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table 1f DRAM Introduction Product Generations and Chip Size Model-Long Term Years*

[^4]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \\ \hline \end{array}$	2000	$\begin{gathered} 2001 \\ 130 \mathrm{~nm} \end{gathered}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{aligned} & 2008 \\ & {[60} \\ & N M] \end{aligned}$	$\begin{gathered} 2011 \\ \text { [40 } \\ \text { NM] } \end{gathered}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \end{gathered}$

Table1g MPU (High-volume Microprocessor) Cost-Performance Product Generations and Chip Size Mode - Near Term Years*

Year of Production Technology (1999 ITRS)	$\begin{array}{c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\begin{array}{\|c\|} \hline 2005 \\ 100 \mathrm{~nm} \end{array}$	Driver
Year of Production Technology Node (Sc. 2.0)	$\left\|\begin{array}{c} 1999 \\ 180 \mathrm{~nm} \end{array}\right\|$	2000	$\begin{gathered} 2001 \\ 130 \mathrm{~nm} \end{gathered}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 n m \end{aligned}$	2005	Driver
Process/ design annual improvement factor ++(1999)	0.90	0.90	0.90	0.91	0.92	0.93	0.93	Market Cost/ Timing
(SC. 2.0)	1.00	1.00	1.00	0.93	0.93	0.93	0.93	
Transistor density SRAM at introduction (Mtransistors/ cm^{2}) (1999)/(SC. 2.0)	35	50	70	95	128	173	234	Market Cost/ Timing
Transistor density logic at introduction (Mtransistors/ cm^{2})	6.6	9.4	13	18	24	33	44	Market Cost/ Timing
Generation at introduction * (1999)/(SC. 2.0)	p99c	-	p01c	-	p03c	-	p05c	-
Functions per chip (million transistors [Mtransistors])	23.8	-	47.6	-	95.2	-	190	Market - M oore's Law
(1999)/ (SC. 2.0)	23.8	33.7	47.6	67.3	95.2	135	190	
Chip size at introduction $\left(\mathrm{mm}^{2}\right) \ddagger$ (1999)	340	-	340	-	372	-	408	Market Cost/ Timing
(SC. 2.0)	340	340	340	356	372	390	408	
Cost performance MPU (Mtransistors/ cm^{2} at introduction) (including on-chip SRAM) \ddagger (1999)	7	-	14	-	26	-	47	M Gateand M and $A 1 / 2$
(SC. 2.0)	7.0	9.9	14.0	18.9	25.6	34.5	46.7	
Generation at production *	p97c	-	p99c	-	p01c	-	P03c	-
Chip size at production (mm^{2}) §§ (1999)	170	-	170	-	214	-	235	Market Cost/ Timing
(SC. 2.0)	170	170	170	178	186	195	204	
Cost performance MPU (Mtransistors/ cm^{2} at production, including on-chip SRAM) \ddagger	7	-	14	-	22	-	41	M Gate and M and $A^{1 / 2}$
(SC. 2.0)	7.0	9.9	14.0	18.9	25.6	34.5	46.7	

++ The MPU Process/ design improvement factor is an estimate of the additional annual functional area reduction required beyond the area reduction contributed by the MPU metal half-pitch reduction. Note that this additional area reduction for transistor density plays a role generally anal ogous to the "cell area factor" for DRAMs. It has been achieved historically through a combination of many factors, for example: use of additional interconnect levels, self-alignment techniques, and more efficient circuit layout.

* In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left\|\begin{array}{c} 1999 \\ 180 \mathrm{~nm} \end{array}\right\|$	2000	2001	$\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{aligned} & 2011 \\ & {[40} \\ & N M] \\ & \hline \end{aligned}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table1h MPU (High-volume Microprocessor) Cost-Performance Product Generations
and Chip SizeMode-Long Term Years*

Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65NM: 2010/45NM; 2013/33NM; 2016/23NM) (Sc. 2.0)	$\frac{2008}{[60 \mathrm{NM}]}$	$\frac{2011}{[40 \mathrm{NMI}}$	$\begin{gathered} \underline{2014} \\ {[30 \mathrm{NM}]} \end{gathered}$
Process/ design improvement factor (1999)	0.93	0.93	0.93
(SC. 2.0)	0.93	0.93	0.93
Transistor density SRAM at introduction (Mtransistors/ cm^{2}) (1999)/(SC. 2.0)	577	1,423	3,510
Transistor density logic at introduction (Mtransistors/ cm^{2}) (1999)/(SC. 2.0)	109	269	664
Generation at introduction* (1999)/(SC. 2.0)	-	p11c	-
Functions per chip (million transistors (Mtransistors) (1999)/(SC. 2.0)	539	1,523	4,308
Chip size at introduction $\left(\mathrm{mm}^{2}\right) \ddagger$ (1999)	468	536	615
(SC. 2.0)	468	536	615
Cost-performance MPU Mtransistors/ cm^{2} at introduction (including on-chip SRAM) \ddagger (1999)	115	284	701
(SC. 2.0)	115	284	701
Generation at production * (1999)/(SC. 2.0)	-	p09c	-
Chip size at production $\left(\mathrm{mm}^{2}\right) \S>0{ }^{\text {(1999)/(SC. 2.0) }}$	269	308	354
(SC. 2.0)	234	268	307
Cost performance MPU Mtransistors/ cm^{2} at production (including on-chip SRAM) \ddagger (1999)	100	247	609
(SC. 2.0)	115	284	701

* $\quad \mathrm{p}$ is processor, numerals reflect year of introduction, c is cost-performance product.
** p is processor, numerals reflect year at ramp, h is high-performance product.
\dagger MPU Cost-performance Mode-Cost-performance MPU includes small level 1 (L1) on-chip SRAM (32Kbyte/ 1999), but consists primarily of logic transistor functionality; both SRAM and Logic functionality doubles every two years.
$\ddagger \quad$ MPU High-performance Mode—High-performance MPU includes large level 2 (L2) on-chip SRAM (2MByte/ 1999) added to ramplevel cost-performance corefunctionality shrunk from 2-year-prior generation (P99h =11.9M transistor (Mtransistors) (shrunk P97 core) +98 M transistors (2048 bytes $\times 8$ bits/ byte $\times 6$ transistors/ bit) L2 SRAM $=110$ Mtransistors/ 1999); both SRAM and Logic functionality doubles every two years.
$\neq \quad$ MPU High-performance Model-High-performance MPU includes large level 2 (L2) on-chip SRAM (1MByte/ 1999) added to rampleve cost-performance corefunctionality shrunk from 2-year-prior generation (P99h =11.9M transistor (Mtransistors) (shrunk P97 core) +49 Mtransistors (1024 bytes $\times 8$ bits/ byte $\times 6$ transistors/ bit) L2 SRAM $=61$ Mtransistors/ 1999); both SRAM and Logic functionality doubles every two years.
$\S \S$ MPU Chip Size Model-Both the cost-performance and high-performance MPUs InTER-generation chip size growth rates can be kept flat through 2001, due to the more aggressive MPU/ASIC half-pitch technology node trend, but beyond 2001, the target growth rate is $1.2 \times$ growth every four years. The InTRA-generation chip size shrink mode is $0.5 \times$ every two years through 2001, then $0.5 \times$ every thre years after 2001.
* In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\begin{array}{\|c\|} \hline 2005 \\ 100 \mathrm{~nm} \end{array}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology node (proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\left.\begin{gathered} 2001 \\ 130 \mathrm{~nm} \end{gathered} \right\rvert\,$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	2011 [40 NM]	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table 1i High-Performance MPU and ASIC Product Generations
and Chip SizeModel-Near Term Years*

Year of Production Technology	(1999 ITRS)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	2001	$\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	Driver
Year of Production Technology Node	(Sc. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\left.\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array} \right\rvert\,$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	Driver

Logic (Low-volume Microprocessor) High-performance \ddagger

Generation at production ** (1999)/(SC. 2.0)	p99h	-	p01h	-	p03h	-	p05h	-
Functions per chip (million transistors) (1999)	110	-	220	-	441	-	882	Market Moore's Law
(SC. 2.0)	61	86	122	173	244	345	488	
Chip size at production (mm^{2}) § (1999)	450	-	450	-	567	-	622	Market Cost/ Timing
(SC. 2.0)	310	310	310	325	340	356	372	
High-performance MPU Mtransistors/ cm^{2} at production (including on-chip SRAM) \ddagger	24	-	49	-	78	-	142	M Gate and M and $A 1 / 2$
(SC. 2.0)	19.7	27.8	39.4	53.2	71.9	97.1	131	

ASIC

ASIC usable Mtransistors/ cm^{2} (auto layout) (1999)	20	28	40	54	73	99	133	M Gate and M and $A 1 / 2$
(SC. 2.0)	19.7	27.8	39.4	53.2	71.9	97.1	131	
ASIC max chip size at production (mm^{2}) (maximum lithographic field size) (1999)	800	800	800	800	800	800	800	Lithographic Fied Size
(SC. 2.0)	800	800	800	800	572	572	572	
ASIC maximum functions per chip at production (Mtransistors/ chip) (fit in maximum lithographic field size) (1999)	160	224	320	432	584	800	1064	Market Performancel Timing
(SC. 2.0)	157	223	315	426	411	556	751	

[^5]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left.\begin{array}{\|c\|} 1999 \\ 180 \mathrm{~nm} \end{array} \right\rvert\,$	2000	2001	$\left.\begin{array}{c\|} 2002 \\ 130 \mathrm{~nm} \end{array} \right\rvert\,$	2003	2004	$\begin{array}{\|c\|} \hline 2005 \\ 100 \mathrm{~nm} \end{array}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\left.\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered} \right\rvert\,$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{aligned} & 2008 \\ & {[60} \\ & \mathrm{NM}] \end{aligned}$	$\begin{gathered} 2011 \\ {[40} \\ \mathrm{NM}] \end{gathered}$	$\begin{gathered} \hline 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table 1j High-Performance MPU and ASIC Product Generations and Chip Size Model-Long Term Years*

Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (PROPOSED NODE YEARS ARE NOW 2007/65NM; 2010/45NM; 2013/33NM: 2016/23NM) (sc. 2.0)	$\begin{gathered} \underline{2008} \\ {[60 \mathrm{NMI}} \end{gathered}$	$\frac{2011}{[40 \mathrm{NM}]}$	$\begin{gathered} \underline{2014} \\ {[30 \mathrm{NM]}} \end{gathered}$
Logic (Low-volume Microprocessor) High-performance \ddagger			
Generation at production \ddagger (1999)/(SC. 2.0)	-	p11h	-
Functions per chip (million transistors) (1999)	2,494	7,053	19,949
(SC. 2.0)	1,381	3,907	11,052
Chip size at production $\left(\mathrm{mm}^{2}\right)$ § (1999)	713	817	937
(SC. 2.0)	427	489	561
High-performance MPU Mtransistors/ cm^{2} at production (including on-chip SRAM) \ddagger	350	863	2,130
(SC. 2.0)	324	799	1,970
ASIC			
ASIC usable Mtransistors/ cm^{2} (auto layout) (1999)	328	811	2,000
(SC. 2.0)	324	799	1,970
ASIC maximum chip size at production $\left(\mathrm{mm}^{2}\right)$ (maximum lithographic field size)	800	800	800
(SC. 2.0)	572	572	572
ASIC maximum functions per chip at ramp (Mtransistors/ chip) (fit in maximum lithographic field size)	2,624	6,488	16,000
(SC. 2.0)	1,852	4,568	11,269

[^6]* In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a
new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

Other ORTC Tables, TWG Line Items/Owners

Table

- Table 2a,b
-
- Table 3a,b
-
- Table 4a,b
-
- Table 4c,d
-
-
- Table 5a,b
- Table 6a,b
-
- Table 7a,b
-

Line Item

Litho Field Size
Wafer Size
\# of Chip I/O's
\# of Package Pins/Balls
Chip Pad Pitch
Cost-Per-Pin
Chip Frequency
Chip-to-Board Freq.
Max \#Wire Levels
Electrical Defects
P.Supply Volt.

Max. Power

Affordable Cost
Test Cost

TWG Owner
Lithography
Front End Processes, Factory Integration
Test, Design
Test, Assembly \& Packaging
Assembly \& Packaging
Assembly \& Packaging
Design
Assembly \& Packaging
Interconnect
Defect Reduction
Process Integration, Devices, Structures
Design, Process Integration, Devices, Structures
Economic (Alan Allan acting)
Test

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left\|\begin{array}{c} 1999 \\ 180 \mathrm{~nm} \end{array}\right\|$	2000	2001	$\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{aligned} & 2011 \\ & {[40} \\ & N M] \\ & \hline \end{aligned}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table2a Chip-Size-Lithographic-Field and Wafer-SizeTrends—Near Term Years*
(Note: 1999 Lithographic fied dizes represent current capability)

YEAR OF PRODUCTION Technology Node (1999 ITRS)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Sc. 2.0)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005
Lithography Field Size							
Maximum lithographic field size - area (mm^{2}) (1999)	800	800	800	800	800	800	800
Lithography Field Size-area (mm^{2}) \quad (SC. 2.0)	800	800	800	800	800	572	572
Maximum lithographic field size - length (mm) (1999)	32	32	32	32	32	32	32
Maximum lithographic field size - width (mm) (1999)	25	25	25	25	25	25	25
Lithographic field size (width X length [mm^{2}]) (SC. 2.0)	25×32	25×32	25×32	25×32	25×32	22×26	22×26
Maximum Substrate Diameter (mm) - High-volume Production (>20K wafer starts per month)							
Bulk or epitaxial or SOI wafer (1999)	200	200	300	300	300	300	300
(SC. 2.0)	200	200	300	300	300	300	300

Table2b Chip-Size, Lithographic-Field and Wafer SizeTrends—Long Term Years*

Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (PROPOSED NODE YEARS ARE NOW 2007/65NM; 2010/45NM; 2013/33NM; 2016/23NM) (Sc. 2.0)	$\frac{2008}{[60 \mathrm{NM}]}$	$\frac{2011}{[40 \mathrm{NM}]}$	$\frac{2014}{[30 \mathrm{NM}]}$
Lithography Field Size			
Maximum lithographic fiedd size-area (mm^{2}) (1999)	800	800	800
Lithography Field Size-area (mm^{2}) ${ }^{\text {a }}$ (SC. 2.0)	572	572	572
Maximum lithographic field size—length (mm) (1999)	32	32	32
Maximum lithographic fiedd size-width (mm) (1999)	25	25	25
Lithographic field size (width \times length [mm^{2}]) ${ }^{\text {a }}$ (SC. 2)	22×26	22×26	22×26
Maximum Substrate Diameter (mm)-High-volume Production (>20K wafer starts per month)			
Bulk or epitaxial or SOI wafer (1999)	300	300	450
(SC. 2.0)	300	450	450

* In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new $T N$.

All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	2001	$\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{gathered} 2011 \\ \text { [40 } \\ \mathrm{NM}] \end{gathered}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table 3a Performance of Packaged Chips: Number of Pads and Pins—Near Term Years*

Year of Production Technology Node (1999 ITRS)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$
Year of Production TECHNOLOGY NODE (Sc. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \\ \hline \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005
Number of Chip I/Os (Number of Total Chip Pads) - Maximum							
Total pads-MPU (1999)	2,304	2,560	3,042	3,042	3,042	3,042	3,042
Signal I/ O-MPU (1/ 3 of total pads) (1999)	768	1,024	1,024	1,024	1,024	1,024	1,024
Power and ground pads-MPU (2/ 3 of total pads) (1999)	1,536	1,536	2,018	2,018	2,018	2,018	2,018
Total pads-ASIC high-performance (1999)	1,400	1,800	2,200	2,600	3,000	3,400	3,800
Signal I/ O pads-ASIC high-performance (1/2 of total pads) (1999)	700	900	1,100	1,300	1,500	1,700	1,900
Power and ground pads-ASIC high-performance ($1 / 2$ of total pads) (1999)	700	900	1,100	1,300	1,500	1,700	1,900
Chip-to-package pads (Peripheral) (1999)	368	397	429	464	501	541	584
Number of Total Package Pins/Balls-Maximum							
Microprocessor/ controller, cost-performance (1999)	740	821	912	1,012	1,123	1,247	1,384
ASIC (high-performance) (1999)	1,600	1,792	2,007	2,248	2,518	2,820	3,158

Table 3b Performance of Packaged Chips: Number of Pads and Pins—Long Term Years*

Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (PROPOSED NODE YEARS ARE NOW 2007/65NM; 2010/45NM; 2013/33NM; 2016/23NM) (SC. 2.0)	$\begin{gathered} 2008 \\ {[60 \mathrm{~nm}]} \end{gathered}$	$\begin{gathered} 2011 \\ {[40 \mathrm{~nm}]} \end{gathered}$	$\begin{gathered} 2014 \\ {[30 \mathrm{~nm}]} \end{gathered}$
Number of Chip I/Os (Number of Total Chip Pads)-Maximum			
Total pads-MPU (1999)	3,840	4,224	4,416
Signal I/ O pads-MPU (1/ 3 of total pads) (1999)	1,280	1,408	1,472
Power and ground pads-MPU (2/ 3 of total pads) (1999)	2,560	2,816	2,944
Total pads-ASIC high-performance (1999)	4,600	5,400	6,000
Signal I/ O pads-ASIC high-performance ($1 / 2$ of total pads) (1999)	2,300	2,700	3,000
Power and ground pads-ASIC high-performance ($1 / 2$ of total pads) (1999)	2,300	2,700	3,000
Chip-to-package pads (Peripheral) (1999)	736	927	1,167
Number of Total Package Pins/Balls-Maximum			
Microprocessor/ controller, cost-performance (1999)	1,893	2,589	3,541
ASIC (high-performance) (1999)	4,437	6,234	8,758

[^7]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left.\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered} \right\rvert\,$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\left.\begin{array}{\|c\|} 2005 \\ 100 \mathrm{~nm} \end{array} \right\rvert\,$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology node (proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{gathered} 2011 \\ \text { [40 } \\ \text { NM] } \end{gathered}$	$\begin{gathered} \hline 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table 4a Performance and PackageChips: Pads, Cost, and Frequency-Near Term Years*

Year of Production Technology Node	(1999 ITRS)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \\ \hline \end{array}$	2003	2004	$\begin{array}{\|c\|} \hline 2005 \\ 100 \mathrm{~nm} \end{array}$
Year of Production Technology Node	(Sc. 2.0)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005
Chip Pad Pitch (micron)								
Pad pitch-ball bond	(1999)	50	48	47	45	43	42	40
	(2000)	50	50	45	35	30	25	20
Pad pitch-wedge bond	(1999)	45	43	42	40	39	38	35
	(2000)	45	45	40	35	30	25	20
Package cost (cents/ pin) (cost-performance)-minimum	(1999)	200	200	200	200	182	165	150
	(2000)	200	200	175	175	150	150	130
Pad Pitch-area array (handheld, low-cost, harsh)	NEW	180	165	150	130	120	110	100
Cost-Per-Pin								
Package cost (cents/ pin) (cost-performance)-maximum	(1999)	1.90	1.81	1.71	1.63	1.55	1.47	1.40
	(2000)	1.90	1.40	1.33	1.26	1.20	1.14	1.08
Package cost (cents/ pin) (cost-performance)-minimum	(1999)/(2000)	0.90	0.86	0.81	0.77	0.73	0.70	0.66
Package cost (cents/ pin) (Memory)-maximum	(1999)/(2000)	1.90	1.71	1.54	1.39	1.25	1.12	1.01
Package cost (cents/ pin) (Memory)-minimum	(1999)/(2000)	0.40	0.38	0.36	0.34	0.33	0.31	0.29

[^8]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	2001	$\left.\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered} \right\rvert\,$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	$\begin{array}{c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \text { NM] } \end{gathered}$	$\begin{gathered} 2011 \\ \text { [40 } \\ \mathrm{NM}] \end{gathered}$	$\begin{gathered} 2014 \\ {[30} \\ N M] \\ \hline \end{gathered}$

Table 4b Performance and PackageChips: Pads, Cost, and Frequeney-Long Term Years*

Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of ProductionTECHNOLOGY Node (Proposed node years are now 2007/65NM; 2010/45NM; $2013 / 33 \mathrm{NM} ; ~ 2016 / 23 \mathrm{NM})$ (SC. 2.0)	$\frac{\underline{2008}}{[60 \mathrm{NM]}}$	$\frac{2011}{[40 \mathrm{NM}]}$	$\begin{aligned} & \underline{2014} \\ & {[30 \mathrm{NM}]} \end{aligned}$
Chip Pad Pitch (micron)			
Pad pitch—ball bond (1999)	40	40	40
(2000)	20	20	20
Pad Pitch—wedge bond (1999)	35	35	35
(2000)	20	20	20
Pad Pitch-area array (cost-performance, high-performance) (1999)	150	150	150
(2000)	115	100	80
Pad Pitch-area array (handheld, low-cost, harsh) NEW	70	50	35
Cost-Per-Pin			
Package cost (cents/ pin) (cost-performance)-maximum (1999)	1.20	1.03	0.88
(2000)	1.03	0.98	0.93
Package cost (cents/ pin) (cost-performance)-minimum (1999)/(2000)	0.57	0.49	0.42
(1999)/(2000)	0.74	0.54	0.39
Package cost (cents/ pin) (memory)-minimum (1999)/(2000)	0.25	0.22	0.19

[^9]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left.\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered} \right\rvert\,$	2000	2001	$\left.\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered} \right\rvert\,$	2003	2004	$\begin{array}{\|c\|} \hline 2005 \\ 100 \mathrm{~nm} \end{array}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ N M] \\ \hline \end{gathered}$	$\begin{aligned} & 2011 \\ & {[40} \\ & N M] \\ & \hline \end{aligned}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table4c Performance and PackageChips: Pads, Cost, and F requency, On-Chip Wiring Levels-Near Term Years*

Year of Production Technology Node	(1999 ITRS)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node	(Sc. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005
Chip Frequency (MHz)								
On-chip local clock, (high-performance)	(1999)	1,250	1,486	1,767	2,100	2,490	2,952	3,500
	(2000)		1620	2,100	2,490	2,952	3,500	4,150
On-chip, across-chip clock (high-performance)	(1999)	1,200	1,321	1,454	1,600	1,724	1,857	2,000
	(2000)		1,386	1,600	1,724	1,857	2,000	2,155
On-chip, across-chip clock, high-performance ASIC	(1999)	500	559	626	700	761	828	900
	(2000)		592	700	761	828	900	980
On-chip, across-chip clock (cost-performance)	(1999)	600	660	727	800	890	989	1,100
	(2000)		693	800	890	989	1,100	1,225
Chip-to-board (off-chip) speed (high-performance, reduced-width, multiplexed bus)	(1999)	1,200	1,321	1,454	1,600	1,724	1,857	2,000
	(2000)		1386	1,600	1,724	1,857	2,000	2,155
Chip-to-board (off-chip) speed (high-performance, for peripheral buses)	(1999)	480	589	722	885	932	982	1,035
	(2000)	480	693	800	862	929	1000	1078
Maximum number wiring levels-maximum	(1999)/(2000)	7	7	7	8	8	8	9
Maximum number wiring levels-minimum	(1999)/(2000)	6	6	7	7	8	8	8

[^10]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left\|\begin{array}{c} 1999 \\ 180 \mathrm{~nm} \end{array}\right\|$	2000	2001	$\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} \hline 2008 \\ {[60} \\ \mathrm{NM}] \end{gathered}$	$\begin{gathered} 2011 \\ {[40} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{gathered} 2014 \\ {[30} \\ \text { NM] } \\ \hline \end{gathered}$

Table4d Performanceand PackageChips: Pads, Cost, and Frequency, On-Chip Wiring Levels - Long Term Years*

Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65nm; 2010/45nm; 2013/33NM: 2016/23NM) (Sc. 2.0)	$\begin{aligned} & \underline{2008} \\ & {[60 \mathrm{NM}]} \end{aligned}$	$\begin{aligned} & \underline{2011} \\ & {[40 \mathrm{NM]}} \end{aligned}$	$\begin{gathered} \underline{2014} \\ {[30 \mathrm{NM}]} \end{gathered}$
Chip Frequency (MHz)			
On-chip local clock, (high-performance)	6,000	10,000	13,500
	7,115	11,050	14,920
On-chip, across-chip clock (high-performance)	2,500	3,000	3,600
	2,655	3,190	3,825
On-chip, across-chip clock (high-performance ASIC)	1,200	1,500	1,800
	1,295	1,595	1,913
On-chip, across-chip clock (cost-performance)	1,400	1,800	2,200
	1,522	1,925	2,350
Chip-to-board (off-chip) speed (high-performance, reduced-width, multiplexed bus)	2,500	3,000	3,600
	2,655	3,190	3,825
Chip-to-board (off-chip) speed (high-performance, for peripheral buses)	1,285	1,540	1,800
	1328	1595	1913
Maximum number wiring levels-minimum (1999)/(2000)	9	10	10
Maximum number wiring levels-minimum (1999)/(2000)	9	9	10

* In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\begin{array}{\|c\|} \hline 2005 \\ 100 \mathrm{~nm} \end{array}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\left.\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered} \right\rvert\,$	2000	$\left.\begin{gathered} 2001 \\ 130 \mathrm{~nm} \end{gathered} \right\rvert\,$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{aligned} & 2011 \\ & {[40} \\ & \mathrm{NM}] \end{aligned}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table5a Electrical Defects-Near Term Years*

Year of Production Technology Node (1999 ITRS)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\begin{array}{\|c\|} \hline 2005 \\ 100 \mathrm{~nm} \end{array}$
Year of Production Technology Node (Sc. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\left.\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array} \right\rvert\,$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005
Defect Reduction							
DRAM at production electrical D_{0} chip size at 85% yield (d/ m^{2}) § (1999)	1,249	1,193	1,140	1,089	1,040	994	950
(2000)	1,259	1,282	1,302	1,170	1,050	942	1126
MPU at production electrical D_{0} chip size at 75% yield $\left(\mathrm{d} / \mathrm{m}^{2}\right) \S \S \quad$ (1999)	1,742	1,742	1,742	1,552	1,383	1,321	1,262
(2000)	1,742	1,742	1,742	1,664	1,590	1,519	1,452
ASIC first year electrical D_{0} at 65% yield ($\mathrm{d} / \mathrm{m}^{2}$) (1999)	562	562	562	562	562	562	562
(2000)	562	562	562	562	787	787	787
Minimum, mask count-maximum (1999)	24	24	24	24	25	25	26
(2000)	24	24	24	25	25	26	26
Minimum, mask count-minimum (1999)	22	23	23	24	24	24	24
(2000)	22	23	24	24	24	24	24

[^11]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	2001	$\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{gathered} 2011 \\ \text { [40 } \\ \mathrm{NM}] \end{gathered}$	$\begin{gathered} \hline 2014 \\ \text { [30 } \\ \text { NM] } \end{gathered}$

Table5b Electrical Defects-Long Term Years*

Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65nm; 2010/45NM: 2013/33NM: 2016/23NM)	$\frac{2008}{[60 \mathrm{NM}]}$	$\frac{2011}{[40 \mathrm{NM}]}$	$\begin{gathered} \underline{2014} \\ {[30 \mathrm{NM}]} \end{gathered}$
Defect Reduction			
DRAM at production electrical D_{0} chip size at 85% yield ($\left.\mathrm{d} / \mathrm{m}^{2}\right) \S \quad$ (1999)	828	723	630
(2000)	807	865	660
MPU at production electrical D_{0} chip size at 75% yield ($\mathrm{d} / \mathrm{m}^{2}$) $\S \S \quad$ (1999)	1,101	960	837
(2000)	1,266	1,104	963
ASIC first year electrical D_{0} at 65% yield ($\mathrm{d} / \mathrm{m}^{2}$)	562	562	562
(2000)	787	787	787
Minimum, mask count-maximum (1999)	28	28	30
(2000)	28	28	30
Minimum, mask count-minimum (1999)	26	28	29
(2000)	26	28	29

D_{0}-defect density
\mathcal{S} DRAM Model-Cell Factor (design/process improvement) targets are: 1999-2004/8x; 2005-2010/6x; 20112016/4x. DRAM product generations are usually increased by $4 \times$ bits/ chip every four years with interim $2 \times$ bits/ chip generations, except: 1) at the Introduction phase, after the 8Gbit interim generation, the introduction rate is $4 x / 5 y e a r s$ (2x/2-3yrs); and 2) at the Production phase, after the interim 32Gbit generation, the introduction rate is $4 x / 5$ years ($2 x / 2-3 y r s$). InTER-generation chip size growth rate varies to maintain 1 chip per $572 \mathrm{~mm}^{2}$ field at Introduction and 2 chip per $572 \mathrm{~mm}^{2}$ field at Production. The more aggressive "best case opportunity" technology node trends allow the Production-phase products to remain at $2 x$ bits/chip every 2 years and still fit within the target of two DRAM chips per $572 \mathrm{~mm}^{2}$ field size, through the 32Gbit interim generation. TheInTRAgeneration chip size shrink moded is $0.5 \times$ every technology node in-between cell factor reductions.
$\S \S$ MPU Chip Size Model—Both the cost-performance and high-performance MPUs InTER-generation chip size growth rates can be kept flat through 2001, due to the more aggressive MPU/ASIC half-pitch technology node trend; but beyond 2001, thetarget growth rate is $1.2 \times$ growth every four years. The InTRA-generation chip size shrink moded is $0.5 \times$ every two years through 2001, then 0.5x every three years after 2001.

* In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left\|\begin{array}{c} 1999 \\ 180 \mathrm{~nm} \end{array}\right\|$	2000	2001	$\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{aligned} & 2011 \\ & {[40} \\ & N M] \\ & \hline \end{aligned}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table6a Power Supply and Power Dissipation-Near Term Years*

Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	2001	$\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Sc. 2.0)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	$\begin{gathered} 2001 \\ 130 \mathrm{~nm} \end{gathered}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005
Power Supply Voltage (V)							
Minimum logic $\mathrm{V}_{\mathrm{dd}}(\mathrm{V})$-maximum (for maximum performance)	1.8	1.8	1.5	1.5	1.5	1.2	1.2
(2000)	1.8	1.8	1.5	1.5	1.2	1.2	1.1
Minimum logic $\mathrm{V}_{\mathrm{dd}}(\mathrm{V})$-minimum (for lowest power) 1999)	1.5	1.5	1.2	1.2	1.2	0.9	0.9
(2000)	1.5	1.5	1.2	1.2	0.9	0.9	0.8
Maximum Power							
High-performance with heatsink (W)	90	100	115	130	140	150	160
(2000)	90	108	130	140	150	160	170
Battery (W)-(hand-held) (1999)	1.4	1.6	1.7	2.0	2.1	2.3	2.4
(2000)	1.4	1.7	2.0	2.1	2.3	2.4	2.6

Table6b Power Supply and Power Dissipation-Long Term Years*

Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (PROPOSED NODE YEARS ARE NOW 2007/65Nm; 2010/45NM; 2013/33NM: 2016/23NM) (Sc. 2.0)	$\frac{2008}{[60 \mathrm{NM]}}$	$\frac{\underline{2011}}{[40 \mathrm{NM}]}$	$\begin{gathered} \underline{2014} \\ {[30 \mathrm{NM}]} \end{gathered}$
Power Supply Voltage (V)			
Minimum logic $\mathrm{V}_{\mathrm{dd}}(\mathrm{V})$-maximum (for maximum performance)	0.9	0.6	0.60
(2000)	0.9	0.6	0.60
Minimum logic $\mathrm{V}_{\mathrm{dd}}(\mathrm{V})$-minimum (for lowest power)	0.6	0.5	0.30
(2000)	0.6	0.5	0.30
Maximum Power			
High-performance with heatsink (W) (1999)	170	174	183
(2000)	171	177	186
Battery (W)-(hand-held) (1999)	2.0	2.2	2.4
(2000)	2.1	2.3	2.5

[^12]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\begin{array}{\|c} 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	2001	$\left.\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered} \right\rvert\,$	2003	2004	$\left.\begin{array}{\|c\|} 2005 \\ 100 \mathrm{~nm} \end{array} \right\rvert\,$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	$\left.\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array} \right\rvert\,$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} \hline 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{gathered} 2011 \\ {[40} \\ \text { NM] } \end{gathered}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table7a Cost-Near Term Years*

Year of Production Technology Node (1999 ITRS)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	2001	$\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered}$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Sc. 2.0)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	$\begin{gathered} 2001 \\ 130 \mathrm{~nm} \end{gathered}$	2002	2003	2004	2005
Affordable Cost per Function ++							
DRAM cost/ bit at (packaged microcents) at samples/ introduction $(1999) /(S C .2 .0)$	42	-	21	-	11	-	5.3
DRAM cost/ bit at (packaged microcents) at production § (1999)/(SC. 2.0)	15	-	7.6	-	3.8	-	1.9
Cost-performance MPU (mi crocents/ transistor) (including on-chip SRAM) at introduction $\S \S$ $(1999) /(S C .2 .0)$	1,735	-	868	-	434	-	217
Cost-performance MPU (mi crocents/ transistor) (including on-chip SRAM) at production §§ (1999)/(SC. 2.0)	1,050	-	525	-	262	-	131
High-performance MPU (microcents/ transistor) (including on-chip SRAM) at production §§ (1999)/(SC. 2.0)	245	-	123	-	61	-	31
Cost-Per-Pin (seeTable 4) (1999)/(SC. 2.0)	-	-	-	-	-	-	-
Test							
Volumetester cost per high-frequency signal pin (\$K/ pin) (high-performanceASIC)-maximum $(1999) /(S C .2 .0)$	8	7	7	6	6	5	5
Volumetester cost per high-frequency signal pin (\$K/ pin) (high-performanceASIC)-minimum $(1999) /(S C .2 .0)$	4	3	3	3	3	2	2
Volumetester cost/ pin (\$K/ pin) (cost-performance MPU) (1999)/(SC. 2.0)	8	8	7	7	6	6	5

[^13]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left.\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered} \right\rvert\,$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\left.\begin{array}{\|c\|} 2005 \\ 100 \mathrm{~nm} \end{array} \right\rvert\,$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology node (proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{gathered} 2011 \\ \text { [40 } \\ \text { NM] } \end{gathered}$	$\begin{gathered} \hline 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Table7b Cost-Long Term Years*

Year of Production Technology Node	(1999 ITRS)	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production TECHNOLOGY NODE (PROPOSED NODE YEARS ARE NOW 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM)	(Sc. 2.0)	$\begin{aligned} & \underline{2008} \\ & {[60 \mathrm{NMI}} \end{aligned}$	$\frac{2011}{[40 \text { NM }]}$	$\frac{2014}{[30 \text { NM] }}$
Affordable Cost per Function ++				
DRAM cost/ bit (packaged microcents) at samples/ introduction	(1999)/(SC. 2.0)	-	0.66	-
DRAM cost/ bit (packaged microcents) at production §	(1999)/(SC. 2.0)	-	0.24	-
Cost-performance MPU (mi crocents/ transistor) (including on-chip SRAM) at introduction §§	(1999)/(SC. 2.0)	-	27	-
Cost-performance MPU (mi crocents/ transistor) (including on-chip SRAM) at production §§	(1999)/(SC. 2.0)	-	16	-
High-performance MPU (microcents/ transistor) (including on-chip SRAM) at production §§	(1999)/(SC. 2.0)	-	3.8	-
Cost-Per-Pin (seeTable 4)	(1999)/(SC. 2.0)	-	-	-
Test				
Volumetester cost per high-frequency signal pin (\$K/ pin) (high-performance ASIC)-maximum	(1999)/(SC. 2.0)	5	5	5
Volumetester cost per high-frequency signal pin (\$K/ pin) (high-performanceASIC)-minimum	(1999)/(SC. 2.0)	N/A	N/A	N/A
Volumetester cost/ pin (\$K/ pin) (cost-performance MPU)	(1999)/(SC. 2.0)	4	2	2

++ Affordable packaged unit cost per function based upon Average Selling Prices (ASPs) available from various analyst reports less Gross Profit Margins (GPMs); 35\% GPM used for commodity DRAMs and 60\% GPM used for MPUs; $0.5 \times /$ two years inTERgeneration reduction rate model used; . $55 \times /$ year inTRA-generation reduction rate model used; DRAM unit volume lifecycle peak occurs when inTRA-generation cost per function is crossed by next generation, typically 7-8 years after introduction; MPU unit volume lifecycle peak occurs typically after four years, when the next generation processor enters its ramp phase (typically two years after introduction).
\mathcal{S} DRAM Model-Cell Factor (design/process improvement) targets are: 1999-2004/8x; 2005-2010/6x; 2011-2016/4x. DRAM product generations are usually increased by $4 \times$ bits/ chip every four years with interim $2 \times$ bits/ chip generations, except: 1) at the Introduction phase, after the 8Gbit interim generation, the introduction rate is $4 \times / 5 y$ yars ($2 x / 2-3 y r s$); and 2) at the Production phase, after the interim 32Gbit generation, the introduction rate is $4 x / 5 y e a r s$ ($2 x / 2-3 y r s$). InTERgeneration chip size growth rate varies to maintain 1 chip per $572 \mathrm{~mm}^{2}$ field at Introduction and 2 chip per 572 mm field at Production. The more aggressive "best case opportunity" technology node trends allow the Production-phase products to remain at $2 x$ bits/chip every 2 years and still fit within the target of two DRAM chips per $572 \mathrm{~mm}^{2}$ field size, through the 32Gbit interim generation. The InTRA-generation chip size shrink model is $0.5 \times$ every technology node in-between cell factor reductions.
$\S \S \quad$ MPU Chip Size Model-Both the cost-performance and high-performance MPUs InTER-generation chip size growth rates can be kept flat through 2001, due to the more aggressive MPU/ASIC half-pitch technology node trend, but beyond 2001, the target growth rate is $1.2 \times$ growth every four years. The InTRA-generation chip size shrink model is $0.5 \times$ every two years through 2001, then $0.5 \times$ every thre years after 2001.

* In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

ITRS Table Definitions/Guidelines

Proposal Rev1, 7/11/00

- Technology Requirements Perspective
- Near-Term Years : First Yr. Ref.+ 6 yrf'cast (ex. 1999 through 2005), annually
- Long-Term Years : Following 9 years (ex.: 2008, 2011, and 2014), every 3 year:
- Technology Node :
- General indices of technology development.
- Approximately 70% of the preceding node, 50% of 2 preceding nodes.
- Each step represents the creation of significant technology progress
- Example: DRAM half pitches (2000 ITRS) of 180, 130,90, 65, 45 and 33 nm
*Year 2000 : Smallest $1 / 2$ pitch among DRAM, ASIC, MPU, etc
- Year of Production:
- The volume $={ }^{*} 10 \mathrm{~K}$ units (devices)/month. ASICs manufactured by same process technology are granted as same devices
- Beginning of manufacturing by *a company and another company starts production within 3 months
- Technology Requirements Color:
- Red : ManufacturableSolutions are NOT known
- Yellow : Manufacturable Solutions are known
- White : ManufacturableSolutions exist, and they are being optimized
*Year 2000 : Red cannot exist in next 3 years (2000, 2001, 2002**
*Year 2000 : Yellow cannot exist in next 1 year (2000)
** Exception: Solution NOT known, but does not prevent Production manufacturing

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left.\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered} \right\rvert\,$	2000	2001	$\left\|\begin{array}{c} 2002 \\ 130 \mathrm{~nm} \end{array}\right\|$	2003	2004	$\left.\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered} \right\rvert\,$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{gathered} 2011 \\ \text { [40 } \\ \text { NM] } \\ \hline \end{gathered}$	$\begin{gathered} 2014 \\ \text { [30 } \\ \text { NM] } \\ \hline \end{gathered}$

Glossary - ORTC 2000 Update Edition

Key Roadmap Technology Characteristics Terminology

(WITH OBSERVATIONS AND ANALYSIS)

Characteristics of Major Markets Technology Node (nm)-

Each technology node step represents the creation of significant technology progress - approximately 70\% of the preceding node, 50% of 2 preceding nodes. Example: DRAM half pitches (2000 ITRS) of 180, 130, 90, 65, 45 and 33 nm . The ground rules of process governed by the smallest feature printed. The half-pitch of first-level interconnect denselines is most representative of the DRAM technology level required for the smallest economical chip size. For logic, such as microprocessors (MPUs), physical bottom gate length is most representative of the leading-edgetechnology level required for maximum performance. MPU and ASIC logic interconnect half-pitch processing requirement typically refers to the first metal layer and lags behind DRAM half-pitch, which may refer either first layer polysilicon or metal. For cost reasons, high-volume, low-cost ASIC gatelength requirements will typically match DRAM half-pitch targets, but the low-volume leading-edge high-performance ASIC gatelength requirements will track dosely with MPUs.
‘Moore's LAW"-An historical observation by Intel executive, Gordon Moore, that themarket demand (and semiconductor industry response) for functionality per chip (bits, transistors) doubles every 1.5 to 2 years. He also observed that MPU performance [dock frequency (MHz) \times instructions per dock =millions of instructions per second (MIPS)] also doubles every 1.5 to 2 years. Although viewed by some as a "self-fulfilling" prophecy, "M oore's Law" has been a consistent macrotrend, and key indi cator of successful leading-edge semiconductor products and companies, for the past 30 years.
"Cost-Per-Function" Manufacturing Productivity Improvement Driver-In addition to "Moore's Law", there is a historically-based "corollary" to the "law," which suggests that, to be competitive, manufacturing productivity improvements must also enable the cost-per-function (mi crocents per bit or transistor) to decrease by - 29% per year. Historically, when functionality doubled every 1.5 years, then cost-per-chip (packaged unit) could double every six years and still meet the cost-per-function reduction requirement. If functionality doubles only every two years, as suggested by consensus DRAM and MPU models of the 1999 ITRS, then the manufacturing cost per chip (packaged unit) must remain flat.
"Affordable" Packaged Unit Cost/Function-Final cost in microcents of the cost of a tested and packaged chip divided by Functions/Chip. Affordable costs are cal culated from historical trends of affordable average selling prices [gross annual revenues of a spedific product generation divided by the annual unit shipments] less an estimated gross profit margin of approximately 35% for DRAMs and 60% for MPUs. The affordability per function is a guideline of future market 'topsdown" needs, and as such, was generated independently from the chip size and function density. Affordability requirements are expected to be achieved through combinations of-1) smaller chip sizes from technology and design improvements; 2) increasing wafer diameters; 3) decreasing equipment cost-of-ownership (COO); 4) increasing equipment overall equipment effectiveness; 5) reduced package and test costs; 6) improved design tool productivity; and 7) enhanced product architecture and integration.

[^14]| 2000 UPDATE | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year of Production
 Technology Node
 (1999 ITRS) | $\begin{array}{\|c\|} 1999 \\ 180 \mathrm{~nm} \end{array}$ | 2000 | 2001 | $\left.\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered} \right\rvert\,$ | 2003 | 2004 | $\left.\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered} \right\rvert\,$ | $\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$ | $\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$ | $\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$ |
| Year of Production
 Technology Node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0) | $\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$ | 2000 | $\begin{gathered} 2001 \\ 130 \mathrm{~nm} \end{gathered}$ | 2002 | 2003 | $\begin{aligned} & 2004 \\ & 90 n m \end{aligned}$ | 2005 | $\begin{aligned} & 2008 \\ & {[60} \\ & \mathrm{NM}] \\ & \hline \end{aligned}$ | $\begin{gathered} 2011 \\ {[40} \\ \mathrm{NM}] \\ \hline \end{gathered}$ | $\begin{gathered} 2014 \\ \text { [30 } \\ \text { NM] } \\ \hline \end{gathered}$ |

DRAM Generation at (product generation lifecyclelevel)-The anticipated bits/chip of the DRAM product generation introduced in a given year, manufacturing technology capability, and life-cydematurity (Demonstration, Introduction, Sample, Production, Ramp, Peak).
MPU Generation at (product generation lifecyclelevel)-The generic processor generation identifier for the anticipated Microprocessor Unit (MPU) product generation functionality (logic plus SRAM transistors per chip) introduced in a given year, manufacturing technology capability, and life-cydematurity (Introduction, Ramp, Peak, Embedded).
Cost-Performance MPU-MPU product optimized for lowest cost by minimizing on-chip SRAM tolevel-one (L1) cache only (32K bytes/1999). Logic functionality and L1 cachetypically double every 2 -year generation. This typically has a 6 -year (introduction plus ramp plus peak) computer-market-application lifecyde before being replaced by the next generation costperformanceMPU, then continues on in embedded applications.
High-performance MPU-MPU product optimized for maximum system performance by using a shrunk costperformance ramp-leve MPU core combined with a large (1Mbyte/1999) leve-two(L2) SRAM. Logic functionality and L2 cachetypically double every two-year generation. Typically has only a 4-year (ramp and peak) life cyde in the relatively low-volume, higher-priced, high-performance computer market. There is no dassic "embedded" application for the high-SRAM-content MPU, but that may change as future market demand develops for multipleMPU-per box internet server and communication processor applications emerge. Those applications will provide increased demand for more cost-effective inTRA generation shrinks of the high-performance MPU, thus extending thelifecydes of futuregenerations.
Product inter-generation-Product generation-to-generation targets for periodically increasing on-chip functionality and allowable chip size. The targets are set to maintain "Moore's Law," while preserving economical manufacturability. The 1999 ITRS consensus target for the rate of increase of DRAM and MPU inTER-generation functionality is $2 \times$ /chip every two years. TheallowableinTER-generational chip size growth for DRAMs was $1.2 \times$ every four years in the 1999 ITRS, but is now limited by the maximum available lithography field size and also the cell shrink limitations imposed by the achievable cell area factor targets. For MPUs, the allowablechip size growth is flat through 2001, then grows at $1.2 \times$ every four years. To add only 20% in area every four years, whilequadrupling functionality, requires an inTER-generation design productivity which further reduces chip size by an additional minus 7-8 \%per year. This design-related productivity reduction is in addition to the basic lithography-provided area reduction of 11% per year.
Product intra-generation-Within a given product generation. The consensus-based targets reduce chip size (by shrinks and "cut-downs") utilizing the latest available manufacturing and design technology at every point through the roadmap. The ITRS consensus targets for both DRAM and MPU reduce chip size within a generation by minus 50% per technol ogy node. For DRAM, this reduction of minus 50% occurs every three years, or minus 37% every two years. For MPU, the 50% reduction occurs every two years through 2001, then slows to minus 37% per two years (same as DRAM).
Year of Demonstration-Year in which the leading chip manufacturer supplies an operational sample of a product as a demonstration of design and/or technology nodeprocessing feasibility and prowess. A typical venue for the demonstration is a major semiconductor industry conference, such as the International Solid StateCircuits Conference (ISSCC) held by the Institute of Electrical and Electronic Engineers (IEEE). Demonstration samples are typically manufactured with early development or demonstration- level manufacturing tools and processes. Historically, DRAM products have been demonstrated at $4 \times$ bits-per-chip every three years at the leading-edge process technology node, typically 2-3 years in advance of actual market introduction. DRAM demonstration chip sizes have doubled every six years, requiring an increasing number of shrinks and delay beforemarket introduction is economically feasible. Frequently, chip sizes are larger than the field sizes available from lithography equipment, and must be "stitched" together via multipleexposure

[^15]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	2001	$\begin{array}{\|c\|} \hline 2002 \\ 130 \mathrm{~nm} \end{array}$	2003	2004	$\begin{array}{\|c\|} \hline 2005 \\ 100 \mathrm{~nm} \end{array}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{array}{r} 2011 \\ 50 \mathrm{~nm} \end{array}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology Node (proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 n m \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{gathered} 2011 \\ {[40} \\ \mathrm{NM}] \end{gathered}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \end{gathered}$

techniques that are feasible only for very small quantities of laboratory samples.
Example: 1997/SSCC/1GbDRAM.
Year of Introduction (DRAM)-Year in which the leading chip manufacturer supplies small quantities of engineering samples ($<1 \mathrm{~K}$). These are provided to key customers for early evaluation, and are manufactured with qualified production tooling and processes. To balance market timeliness and economical manufacturing, DRAM products will be introduced at $2 \times$ functionality per chip every two years. In addition, manufacturers will delay introduction until a chip-size shrink or "atdown" level is achieved which limits the inTER-generation chip-size growth to $1.2 \times$ every 4 years, or approximately $1.1 \times$ every 2 -year generation in the 1999 ITRS, but is now limited by the maximum available lithography field size and also the cell shrink limitations imposed by the achievable cell area factor targets Example: 1999/1Gb DRAM.
Year Of Production (DRAM)-Year in which leading chip manufacturers begin shipping volumequantities (1OK/month) of product manufactured with qualified production tooling and processes and is followed within three months by a second manufacturer. This product typically contains onefourth (1/4) the bits per chip of theintroduction-level generation design, from which it is "cut-down." Example: 1999/256MbDRAM.
Year of Introduction (MPU)-Year in which the leading chip manufacturer supplies small quantities of engineering samples ($<1 \mathrm{~K}$). These are provided tokey customers for early evaluation, and are manufactured with qualified production tooling and processes. The introduction cost-performance MPU may be combined in a multi-chip module, along with L2 cache, in low-volume computer applications which demand high performance.
Year Of Production(MPU) - Year in which leading chip manufacturers begin shipping volumequantities (10K/month) of product manufactured with qualified production tooling and processes and is followed within three months by a second manufacturer. As demand increases, thetooling and processes are being quidkly "copied" into multiple modules of manufacturing capacity. Lower-volume, high-performance MPUs are al so ramping concurrently as its co-existing costperformanceMPU core, but the L2 cache is now induded on-chip but with twice thememory as its high-performancegeneration predecessor.
Functions/Chip-The number of bits (DRAMs) or logic transistors (MPUs, application-spedific integrated circuits [ASICs]) that can be cost-effectively manufactured on a single monolithic chip at the available technology level. Logicfunctionality (transistors per chip) indude both SRAM and logic transistors. DRAM functionality (bits per chip) is based only on the bits (after repair) on a single monolithic chip.
Chip Size ($\mathbf{m m}^{2}$)-Thetypical area of themondithic memory and logic chip that can be affordably manufactured in a given year based upon the best available leading-edge design and manufacturing process. (Estimates are projected based upon historical data trends and the ITRS analyst consensus models).
Functions/cm ${ }^{2}$-The density of functions in a given squarecentimeter =Functions/Chip on a single monolithic chip divided by the Chip Size. This is an average of the density of all of thefuncionality on the chip, induding pad area and wafer scribe area. In the case of DRAM, it indudes the average of the high-density cell array and the less-dense peripheral drive circuitry. In the case of the MPU products, it indudes the average of the high-density SRAM and the less-dense random logic. In the case of ASIC, it will indudehigh-density embedded memory arrays, averaged with less dense array logic gates and functional cores. Most typical ASIC designs will be slightly less dense than the high-performanceMPUs, which are mostly SRAM.
DRAM Cell Array Area Percentage-Themaximum practical percentage of the total DRAM chip area that the cell array can occupy at the various stages of the generation life cyde At the introduction chip sizetargets, this percentage must be typically less than 70% to allow space for the peripheral ciraitry, pads, and wafer scribe area. Since the pads and scribe

[^16]| 2000 UPDATE | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year of Production
 Technology Node
 (1999 ITRS) | $\begin{array}{\|c\|} 1999 \\ 180 \mathrm{~nm} \end{array}$ | 2000 | 2001 | $\left.\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered} \right\rvert\,$ | 2003 | 2004 | $\left.\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered} \right\rvert\,$ | $\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$ | $\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$ | $\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$ |
| Year of Production
 Technology Node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0) | $\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$ | 2000 | $\begin{gathered} 2001 \\ 130 \mathrm{~nm} \end{gathered}$ | 2002 | 2003 | $\begin{aligned} & 2004 \\ & 90 n m \end{aligned}$ | 2005 | $\begin{aligned} & 2008 \\ & {[60} \\ & \mathrm{NM}] \\ & \hline \end{aligned}$ | $\begin{gathered} 2011 \\ \text { [40 } \\ \mathrm{NM}] \end{gathered}$ | $\begin{gathered} 2014 \\ {[30} \\ N M] \\ \hline \end{gathered}$ |

area do not scale with lithography, the maximum cell array percentage is reduced in other inTRA-generation shrink levels (typically less than 55\% at the production level, and less than 50\% at theramp level).
DRAM Cell Area (μ^{2}) -The measure of the maximum allowableDRAM memory bit cell area spedified by the requirement to meet the target chip size and cell array area percentage requirements. May also be expressed as the cell area factor - number of equivalent units of area of a square of the DRAM half-pitch. Minimizing the area for the cell is in conflict with the desire to maximize the capadtance storage capability of the continuously shrinking cell. This creates a conflict between thetechnical feasibility of the cell area required to meet the economic constraints of themaximum allowable chip size.
DRAM Cell Area Factor-Themeasure of the maximum allowableDRAM memory bit cell area, expressed as the number of equivalent units of area of a square of the DRAM half-pitch.
Example: 1999: square of the half-pitch $=(180 \mathrm{~nm})^{2}=.032 \mu \mathrm{~m}^{2}$; maximum cell area for 1GbDRAM to be $<70 \%$ of total chip area $=0.26 \mu \mathrm{~m}^{2}$; therefore, the maximum cell area factor $=0.26 / 0.32=8$. The cell factor is also often expressed by equivalent aspect ratios of the half-pitch units ($2 \times 4=8,2 \times 3=6,2 \times 2=4,1.6 \times 1.6=2.5$, etc.).
Usable Transistors $/ \mathrm{cm}^{2}$ (High-performance ASIC, Auto Layout)—Number of transistors per cm^{2} designed by automated layout tools for highly differentiated applications produced in low volumes. High-performance, leading-edge, embedded-array ASICs indude both on-chip array logic cells, as well as dense functional cells (MPU, I/O, SRAM, etc). Density calculations indude the connected (useable) transistors of the array logic cells, in addition to all of the transistors in the dense functional cells. The largest high-performance ASIC designs will fill the available production lithography field.

Chip and Package-Physical and Electrical Attributes

Number of Chip I/Os - Total (Array) Pads-The maximum number of dhip signal I/O pads plus power and ground pads permanently connected to package plane for functional or test purposes, or to provide power/ground contads (induding signal conditioning). Theseindude any direct chip-to-chip interconnections or direct chip attach connections to the board (Padkage plane is defined as any interconned plane, leadframe, or other wiring technology inside a package, i.e., any wiring that is not on the chip or on the board.). MPUs typically have ratio of signal I/O pads to power/ground pads of $1: 2$, whereas the high-performance ASIC ratio is typically 1:1.
Number of Chip I/Os - Total (Peripheral) Pads-Themaximum number of chip signal I/O plus power and ground pads for products with contacts only around the edge of a chip.
Pad Pitch-Thedistance, center-to-center, between pads, whether on the peripheral edge of a chip, or in an array of pads aross the chip.
Number of Package Pins/Balls-Thenumber of pins or solder balls presented by the packagefor connedion to the board (may be fewer than the number of dhip-to-package pads because of internal power and ground planes on the package planeor multiplechips per package).
Package cost (cost-performance)—Cost of package envelope and external I/O connections (pins/balls) in cents/pin.

Chip Frequency (MHz)
On-chip, local clock, high-performance-On-chip dock frequency of high-performance, lower volume miaroprocessors in localized portions of the chip.

[^17]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left.\begin{array}{c\|} 1999 \\ 180 \mathrm{~nm} \end{array} \right\rvert\,$	2000	2001	$\left.\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered} \right\rvert\,$	2003	2004	$\begin{array}{\|c\|} \hline 2005 \\ 100 \mathrm{~nm} \\ \hline \end{array}$	$\begin{gathered} 2008 \\ 70 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \end{array}$	2000	$\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array}$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{gathered} 2011 \\ {[40} \\ \mathrm{NM}] \end{gathered}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

On-chip, across-chip clock-On-chip dock frequency of miaroprocessors and ASICs for interconnect signals that run arross the full width of the chip (Typically, this is lower than the localized dock performance dueto capaditance loading of the long cross-chip interconnect.).
Chip-to-board (off-chip) speed (high-performance, reduced-width, multiplexed bus)-Maximum signal I/O frequency to specialized board reduced-width, multiplexed buses.
Chip-to-board (off-chip) speed (high-performance, peripheral buses)-Maximum signal I/O frequency to board peripheral buses of high and low volumelogic devices.

Other Attributes
Lithographic Field Size ($\mathbf{m m}^{\mathbf{2}}$)—Maximum single step or step-and-scan exposure area of a lithographic tool at the given technology node. The specification represents the mimimum specification that a semiconductor manufacturer might specify for a given technology node. The maximum field size may be specified higher than the ORTC target values, and the final exposure area may be achieved by various combinations of exposure width and scan length.
Maximum Number Of Wiring Levels-On-chip interconnect levels induding local interconnect, local and global routing, power and ground connections, and dock distribution.

Fabrication Attributes And Methods

Electrical \mathbf{D}_{0} Defect Density ($\mathbf{d} / \mathbf{m}^{-2}$)—Number of electrically significant defects per square meter at thegiven technology node, production lifecydeyear, and target probeyield.
Minimum Mask Count-Number of masking levels for mature production process flow with maximum wiring level (Logic).

Maximum Substrate Diameter (mm)

Bulk or Epitaxial or Silicon-on-I nsulator Wafer-Silicon wafer diameter used in volumequantities by mainstream IC suppliers. TheITRS timing targets, contributed by theF actory Integration Technology Working Group, are based on the first 20K wafer-starts-per-month manufacturing fadility, versus the first-pilot-line timing target of the 1997 NTRS.

[^18]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

2000 UPDATE										
Year of Production Technology Node (1999 ITRS)	$\left.\begin{gathered} 1999 \\ 180 \mathrm{~nm} \end{gathered} \right\rvert\,$	2000	2001	$\left.\begin{gathered} 2002 \\ 130 \mathrm{~nm} \end{gathered} \right\rvert\,$	2003	2004	$\begin{gathered} 2005 \\ 100 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2008 \\ 70 \text { nm } \end{gathered}$	$\begin{gathered} 2011 \\ 50 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 2014 \\ 35 \mathrm{~nm} \end{gathered}$
Year of Production Technology node (Proposed node years are now 2007/65NM: 2010/45NM: 2013/33NM: 2016/23NM) (SC. 2.0)	$\begin{array}{\|c\|} \hline 1999 \\ 180 \mathrm{~nm} \\ \hline \end{array}$	2000	$\left.\begin{array}{\|c\|} \hline 2001 \\ 130 \mathrm{~nm} \end{array} \right\rvert\,$	2002	2003	$\begin{aligned} & 2004 \\ & 90 \mathrm{~nm} \end{aligned}$	2005	$\begin{gathered} \hline 2008 \\ {[60} \\ \mathrm{NM}] \\ \hline \end{gathered}$	$\begin{gathered} 2011 \\ \text { [40 } \\ \text { NM] } \\ \hline \end{gathered}$	$\begin{gathered} 2014 \\ {[30} \\ \mathrm{NM}] \\ \hline \end{gathered}$

Electrical Design And Test Metrics

Power Supply Voltage (V)
Minimum Logic $\mathbf{V}_{\text {dd }}-$ Nominal operating voltage of chips from power source for operation at design requirements.

Maximum Power
High-performance with heat sink (W)—Maximum total power dissipated in high-performance chips with an external heat sink.
Battery (W)—Maximum total power/chip dissipated in battery operated chips.

Design And Test

Volume Tester Cost/Pin (\$K/pin)—Cost of functional (chip sort) test in high volumeapplications divided by number of package pins.

[^19]All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

[^0]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^1]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

 All the items and/or numericals modified from the 1999 ITRS are highlighted in bold blue text.

[^2]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^3]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^4]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^5]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^6]: Since only the 2011 odd-year product generation data column is available in the Long Term table format, interpolated numbers were calculated and included in the 2008 and 2014 node col umns. The extended market-need-based product trends for the product generation two-year-cycle years (1999, 2001, 2003, 2005, 2007, 2009, 2011, 2013) are forecast to follow patterns established in Near Term Table 1a.

[^7]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^8]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^9]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^10]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^11]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^12]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^13]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^14]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^15]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^16]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^17]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

[^18]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new $T N$.

[^19]: * In response to the observed acceleration of the Technology Nodes (TN) represented by DRAM half-pitch, the IRC proposes a new TN called Scenario 2 (SC. 2.0) for the year 2001 Renewal. The subsequent contents of this Table have been tied to update so as to reflect the new TN.

