Today's Lecture

- Logistics
- What is Digital Systems Engineering
- Transmission Line Basics
Logistics

• See the course policy sheet for details
 Lectures: MW 11:00 to 12:15 in Skillings Aud.
 Textbook: Dally and Poulton, *Digital Systems Engineering*
 Grading: 20% weekly problem sets
 20% class project
 25% midterm exam (2/12 in the evening)
 35% final exam
 Collaboration: encourged on problem sets and project
 groups of up to 3 people
 single solution
 all assistance acknowledged
 SITN: Local and Stanford on-line only (no TVI)
 no delay

More Logistics

Course Staff: Instructor: Bill Dally
 TAs: Patrick Chiang, Greg Larchev
 Support: Pamela Elliott

Late Policy: problem sets due at the *beginning* of class one
 week from the date of assignment
 no credit for late assignments
 SITN/Stanford on-line assignments and exams
 due at the same time
Yet More Logistics

Exams
- Midterm: February 12 7PM-9PM
 - We will still have class that day
 - Local SITN students must come to campus
- Final: March 23 8:30 to 10:30

Assignments
- assigned each Wednesday
 - due at **beginning** of class the following Wednesday

Reading
- assigned for each class. Complete reading **before** the corresponding class

Graders
- submit application if interested
 - full credit on homework and $$$

Today’s Assignment

- **Reading**
 - Chapter 1
 - Sections 3.1 through 3.3
 - Complete before next Wednesday 1/17

- **Problem Set 1**
 - Problems 3-2 and 3-10
 - Due at the start of class on Wednesday 1/17
What is Digital Systems Engineering

- System level electrical design
 - noise management
 - keeping signals clean
 - signaling
 - moving bits from here to there
 - timing
 - how we know when a new bit is here
 - power distribution
 - DC voltage with AC current

Why is Digital Systems Engineering Important?

- System-level electrical issues are becoming more critical
 - Higher clock rates
 - wires are transmission lines
 - clock skew and jitter are a major portion of a clock cycle
 - many cables are more than one clock long
 - Lower voltages
 - more current for a given power level
 - less margin
 - Pin bottlenecks
 - need to make each signal count
- Its not just for supercomputers anymore
- Get it right or it doesn't work
- ‘Cookbook’ approaches aren’t adequate - need analysis
This Course Will Teach You

• To understand system-level electrical issues
 – understand the phenomena
 – develop engineering models for simulation and analysis
 – develop and evaluate solutions
• To design systems that work reliably the first time
 – noise budgets
 – timing budgets
• To push performance where it is needed
 – signaling rates
 – synchronization latency and failure probability
 – power distribution

The Eye Diagram
A View of Noise, Signaling, and Timing

This is a “1”

This is a “0”

Eye - space between 1 and 0

With voltage noise

With timing noise

With Both!
An Example Noise Calculation

- 250mV differential signal
- 15% high-frequency attenuation
- 5% crosstalk from adjacent lines
- 5% ISI from reflections
- 20mV receiver offset+sensitivity
- 10mV RMS Gaussian noise
- What is the Bit Error Rate?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Swing (dp-dn)</td>
<td>500</td>
</tr>
<tr>
<td>Gross Margin</td>
<td>250</td>
</tr>
<tr>
<td>Crosstalk</td>
<td>0.05</td>
</tr>
<tr>
<td>Reflections</td>
<td>0.05</td>
</tr>
<tr>
<td>Attenuation</td>
<td>0.15</td>
</tr>
<tr>
<td>KN</td>
<td>0.25</td>
</tr>
<tr>
<td>Receiver offset+sensitivity</td>
<td>20</td>
</tr>
<tr>
<td>Bounded noise</td>
<td>145</td>
</tr>
<tr>
<td>Net Margin</td>
<td>105</td>
</tr>
<tr>
<td>Gaussian Noise</td>
<td>10</td>
</tr>
<tr>
<td>VSNR</td>
<td>10.5</td>
</tr>
<tr>
<td>BER</td>
<td>1.15E-24</td>
</tr>
</tbody>
</table>

Signaling

- How to move a symbol (usually a bit) from here to there
 - how is the symbol represented?
 - “0” = -2.5mA, “1” = 2.5mA
 - how is the line terminated at each end?
 - Z_0 at both ends
 - how are references generated?
 - Differential signal
 - how does the receiver detect the symbol?
 - detect voltage across terminator
Timing and Synchronization

• How do you determine when a symbol is valid? (when a new symbol arrives?)
• Synchronous timing
 – all FFs driven by one clock
 – may be 10^8 FFs/chip 10^7 in a system
 – wires may be >1 clock long
 – skew is a big problem
• Pipeline timing
• Self-timed design
• Multiple clock domains
 – signals must be synchronized

Power Distribution

• Consider a system with
 – 100 20A chips (2KA)
 – A 400MHz clock ($t_{ck} = 2.5$ns)
 – Current can drop to zero in one clock cycle
 – $\frac{di}{dt} = \frac{2KA}{2.5ns} = \ldots$
• What does a 1nH inductor in series with this supply current do?
• How do we solve this problem?
Wires are Transmission Lines

- Three basic rules of transmission lines
 - Waves propagate down the line (in both directions)
 - Waves reflect unless terminated
 - The voltage is the superposition of these waves

What is the response at point B on this line to a unit step at point A?

What if the waveform on A is changed?
Open Circuit Gives Complete (Positive)
Reflection ($k_r = 1$)

Short Circuit Gives Negative Reflection ($k_r = -1$)
In general, reflection coefficient is determined by the Telegrapher’s Equation

\[k_r = \frac{Z_T - Z_0}{Z_T + Z_0} = \frac{450 - 50}{450 + 50} = 0.8 \]

Reflections Happen from Both ends

\[k_{rA} = 0.8 \quad k_{rB} = 1.00 \]
Lattice diagram keeps track of superposition

Voltage at both ends of line
This is exactly what happens when a CMOS output drives a PCB trace

CMOS inverter, 450? Output Impedance

PCB Trace 50? Stripguide

\[k_A = 0.8 \quad k_B = 1.00 \]

Inverter driving PC trace is “ringing” up a transmission line, not RC charging

\[k_A = 0.8 \quad k_B = 1.00 \]
Next Time

- Introduction to wires
 - electrical properties of wires
 - simple transmission lines
 - terminations and reflections
 - lossy transmission lines