EE273 Lecture 3
Wires Concluded
Multidrop Buses, Balanced Lines, and Measurement Techniques

January 22, 2001

William J. Dally
Computer Systems Laboratory
Stanford University
billd@csl.stanford.edu
Announcement

• Transmission line and crosstalk demo will be held during problem session on 2/9/01.
Today’s Assignment

• Reading
 – Sections 6.1 through 6.3
 – Complete before class on Wednesday 1/24/00
A Quick Overview

• Multi-Drop Buses
 – stubs and discontinuities
 – frequency limitations
• Balanced lines
 – common and differential mode excitation
 – odd and even mode impedance
 – rise on signal is accompanied by fall on return
• Modeling wires
 – build a model to capture relevant electrical properties
 – ignore inessential elements
 – depends on rise time

• Time-Domain Reflectometer
 – oscilloscope plus pulse generator
 – how to interpret the results
Multi-drop Buses

Stubs

Impedance Discontinuity

Added load reduces effective Z and v
Multi-Drop Buses

- Consider a typical bus
 - $50\,\Omega$ PC board traces
 - $C = 100\text{pF/m}, L=300\text{nH/m}$
 - Stubs are 10cm long (0.7ns)
 - 20pF load at end
 - Spacing between modules is 3cm

- Constraints:
 - rise time must be *long* compared to stub length (>3ns) and spacing (>1ns)
 - 30pF each 3cm brings C to 1100pF/m
 - $Z = 16.5\,\Omega$, $v=5.5 \times 10^7 \text{ m/s}$
 - driver sees $8.25\,\Omega$

- Bus speed is limited by geometry of the bus
 - stub length
 - stub spacing

- Leaving a module ‘unplugged’ causes a discontinuity

- Point-to-point signaling
 - is electrically much cleaner
 - allows concurrent transfers

- ‘Just say no’ to buses

- If you must use a bus, ‘fold’ the stubs
Balanced Transmission Lines

- All transmission lines have inductance in the return path
 - leads to a shift in return voltage across line
- In a balanced line, return inductance equals signal inductance
- Suppose we put a 1V step into a balanced line
 - 0.5V drop across signal inductor
 - 0.5V drop across return inductor
- Remember, we can only name one point GND
Even and Odd Mode Impedance

- M and C_d represent coupling between lines
- L and C_c represent coupling to other conductors

e.g., pair of strip guides between ground planes
Any excitation can be described as the superposition of a *differential* signal and a *common-mode* signal.

- e.g. 1V step: $V_c = 0.5V$, $V_d = 0.5V$
Even and Odd Mode Impedance

\[Z_O = \frac{V_D}{I_1} = \left(\frac{L - M}{C + C_D} \right)^{1/2} \]

\[Z_E = \frac{V_C}{I_1} = \left(\frac{L + M}{C - C_D} \right)^{1/2} \]

\[C = C_C + C_D \]

\[\frac{L}{M} = \frac{C}{C_D} \]

• Common and differential-mode signals see different impedance
Definitions

• Even-mode impedance, Z_E
 – impedance seen on each line by a common-mode signal

• Odd-mode impedance, Z_O
 – impedance seen on each line by differential mode signal

• Differential impedance, $Z_D = 2Z_O$
 – impedance seen across a pair of lines by differential mode signal

• Common-mode impedance, $Z_C = 0.5Z_E$
 – impedance seen between a pair of lines and a common return by a common-mode signal.
Example of Even and Odd mode impedances

![Graph showing even and odd mode impedances vs distance d (mils)]
Terminating Even and Odd Modes

• Suppose $Z_O = 50\,\Omega$ and $Z_E = 100\,\Omega$.

• What happens to a 1V step on the line above?

• How should the line be terminated?

• Mode coupling
Terminating Even and Odd Modes

\[R_1 = Z_E \]
\[R_2 = 2 \left(\frac{Z_E Z_O}{Z_E - Z_O} \right) \]
\[Z_O = R_1 \parallel R_2 \]
Modeling of Wires

- Given a real system
 - chips, packages, boards, connectors, backplanes, cables
- Need to develop a *model* of the signaling medium
 - for hand calculation of key properties
 - for SPICE simulations
- Model must
 - capture all *relevant* wire properties
 - transmission line properties
 - *major* discontinuities
 - terminations
 - ignore those that are not relevant
 - e.g., short discontinuities
- A good model captures the *relevant* behavior while being as simple as possible
Example Model

- package
- chip
- PC board
- connector
- backplane

- $50\,\Omega$
- $3\,nH$
- $45\,\Omega$
- $1\,ns$
- $55\,\Omega$
- $1\,ns$
- $5nH$
- $50\,\Omega$
- $1pF$
- $0.5pF$
- $1pF$

EE273, L3, Jan 22, 2001

Copyright (C) by William J. Dally, All Rights Reserved
Deriving a Model

• How do we make a model of a signal path?
 – hand calculation
 – assemble models from component, connector, and package vendors
 – CAD programs
 – measurements of the actual system
Meet the Time-Domain Reflectometer

- A time-domain reflectometer is a fast step generator and a high-speed oscilloscope.
- To characterize a line
 - inject a fast (usually 20ps) step into the line
 - observe the reflected waveform
 - what does it mean?
What made these waveforms?
Calculating Impedance from Voltage

\[V = \frac{Z}{Z + Z_0} \]

\[(Z + Z_0)V = Z \]

\[Z = Z_0 \left(\frac{V}{1 - V} \right) \]

<table>
<thead>
<tr>
<th>V</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>50.0</td>
</tr>
<tr>
<td>0.47</td>
<td>44.3</td>
</tr>
<tr>
<td>0.53</td>
<td>56.4</td>
</tr>
</tbody>
</table>
Time of Observation is Round Trip

\[Z(x) = Z_0 \left(\frac{V(2x/v)}{1 - V(2x/v)} \right) \]
What About Inductors and Capacitors?

\[L = 2Z_0 \tau_L \]

\[C = \frac{2\tau_C}{Z_0} \]
Rise-Time Degradation

- Upstream elements (Ls & Cs) low-pass the signal resulting in a longer rise-time
- This affects the reflections from down-stream elements
 - slow rising edge
 - spread out response (convolution with slow edge)
 - L & C responses don’t go full swing
- This makes it
 - hard to extract exact L and C values
 - impossible to measure very small discontinuities
 - but if the TDR can’t see them, neither can the signal
Extraction Procedure

- Identify regions of the TDR plot as
 - flat region - transmission line
 - bump up - inductor
 - bump down - capacitor

- Starting at source
 - determine value of Z & t, L, or C for nearest element
 - simulate to validate and determine new t_r
 - iterate as needed to get value right
 - move on to next element

- Don’t need model with more resolution than your fastest rise time
Example TDR Trace

- 5nH
- 5nH
- 60Ω 0.5ns
- 5nH
- 50Ω term
- 45Ω 0.5ns
- 1pF
- 1pF
- 1pF
Same waveform with 200ps edge
Next Time

- **Noise**
 - what disturbs digital signals
 - fixed and proportional noise

- **Power Supply Noise**
 - single supply and differential
 - sources

- **Cross Talk**
 - capacitive crosstalk
 - transmission lines