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Logistics

• No class on Wednesday 2/28 – class will be during 
problem session on Friday 3/2 instead.

• Prof Dally will have no office hours on Wednesday 
2/28.

• Project feedback (second session)
– Friday 9:00AM to 11:00AM – 15min appointments

• Reading
– Sections 10.3

– Complete before class on Friday 3/2
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How are people doing on their projects?



Copyright (C) by William J. Dally, All Rights Reserved
EE273, L12, Feb 26, 2001 4

Today’s Assignment

• Reading
– Section 10.3
– Complete before class on Wednesday 03/08
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A Quick Overview

• Synchronization
– determining an event order

– used for
• moving a signal into a clock 

domain

• asynchronous arbitration

• Synchronization Failure
– as the time between two signals 

decreases it becomes more 
difficult to tell which came first

– synchronizer may hang in a 
metastable state, unable to 
decide

– different parts of the circuit may 
interpret result differently

• Failure Probability
– is proportional to fraction of 

vulnerable time
– exponentially decreases 

with waiting period
– exponentially increases with 

flip-flop time constant

– failure rate is proportional to 
event rate
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What is Synchronization?

• A synchronizer determines the 
order of events on two signals

• Which event came first?
– Does it matter? Some times 

synchronization is 
unnecessary

• Often one signal is a clock
– did the data go high before or 

after the clock went high?

• Why is this problem hard?

A

B

AFirst

BFirst
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Uses of Synchronization

• Sampling asynchronous inputs with a clock
– e.g., particle counter or pushbutton

• Crossing clock domains
– sampling a synchronous signal with a different clock

– this is an easier problem if both clocks are periodic

• Arbitration of asynchronous signals
– e.g., request line for shared resource
– game-show pushbutton
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Synchronization Failure

• Which came first, event on A or event on B?
• The closer the race, the harder it is to call
• When the events are very close, the synchronizer 

may enter a metastable state
• The synchronizer may take an arbitrary amount of 

time to exit this state
• Synchronizer output may be interpreted 

inconsistently in the meantime
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A NAND Arbiter

• Consider a NAND RS flip-
flop

• We can attempt to use this 
as an arbiter.
– If A arrives much earlier 

than B, AFirst’ goes low and 
locks B out

– If B arrives much earlier 
than A, BFirst’ goes low and 
locks A out.

• What happens if A and B go 
high at nearly the same 
time?

A

B

AFirst'

BFirst'
∆V
-

+
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A NAND Arbiter Dynamics
Step 1: Initial Voltage

• When A and B go high at 
nearly the same time, 
difference in voltage is 
proportional to difference in 
time 

A

B

AFirst'

BFirst'
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-
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A NAND Arbiter Dynamics
Step 2: Exponential Regneration

• After A and B are both high, 
initial voltage difference is 
exponentially amplified. 
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A NAND Arbiter Dynamics
Settling Time

• After A and B are both high, 
initial voltage difference is 
exponentially amplified. 
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Static Flip-Flop Dynamics are Similar

• Initial voltage difference 
depends on ∆t

• Voltage difference increases 
exponentially after clock 
rises

clk

clk'

D Q
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A Brute-Force (Waiting) Synchronizer

• To sample an asynchronous 
signal with a clock

• Sample signal with FF1

– may go into a metastable 
state

• Wait for possible metastable 
stages to decay

– time tw

• Sample output of FF1

D Q
A

Clk

D Q

FF1 FF2 ASAW

Clk

A

AW

AS
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Synchronization Failure

• What happens if FF1 is still 
in a metastable state when 
FF2 is clocked?

Clk

A

AW

AS

• What is the probability that 
this will happen?
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Calculating Synchronization Failure 
(The Big Picture)

P(failure) = P(enter metastable state) x P(still in state after tw)
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Probability of Entering a Metastable State

• FF1 may enter the 
metastable state if the input 
signal transitions during the 
aperture time of the flip flop
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• Probability of a given 
transition being in the 
aperture time is the fraction 
of time that is aperture time 
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Probability of Staying in the Metastable State

• Still in metastable state if 
initial voltage difference was 
too small to be exponentially 
amplified during wait time

• Probability of starting with 
this voltage is proportion of 
total voltage range that is 
‘too small’
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Failure Probability and Error Rate
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• Each event can potentially 
fail.

• Failure rate is given by the 
event rate times the failure 
probability
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Example Failure Rate Calculation

• Suppose a 500MHz clock 
samples a 10MHz asynchronous 
signal

• Flip-flops have aperture and 
regeneration time of 100ps

• What is the probability of 
synchronization failure?

• What is the failure frequency?

t_a 1.0E-10
f_cy 5.0E+08

τ_s 1.0E-10

t_w 2.0E-09
P_E 5.0E-02
P_S 2.1E-09
P_F 1.0E-10

f_e 1.0E+07
f_F 1.0E-03



Copyright (C) by William J. Dally, All Rights Reserved
EE273, L12, Feb 26, 2001 21

Common Pitfalls

• Its easy to get a 
synchronizer design wrong

• The two most common 
pitfalls are:

– using a non-restoring (or 
slowly restoring) flip-flop

• τS needs to be small

– not isolating the flip-flop 
feedback loop
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Completion Detection

• It is not possible to bound 
the amount of time needed 
for a synchronizer to settle.

• It is, however, possible to 
detect when the 
synchronizer has settled!

• This is only useful if the 
downstream logic can use 
this asynchronous
completion signal

A
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Next Time

• Synchronizer Design


