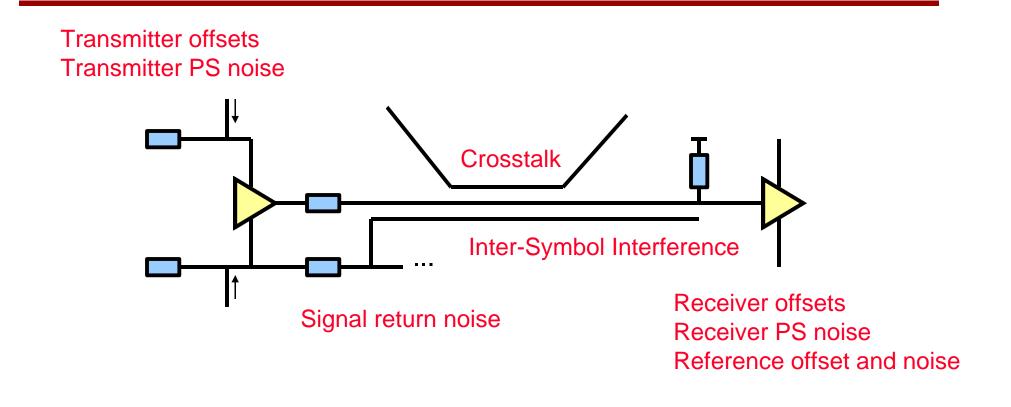
EE273 Lecture 4 Noise in Digital Systems

January 24, 2001

William J. Dally Computer Systems Laboratory Stanford University billd@csl.stanford.edu

EE273, L4, Jan 24, 2001

Today's Assignment

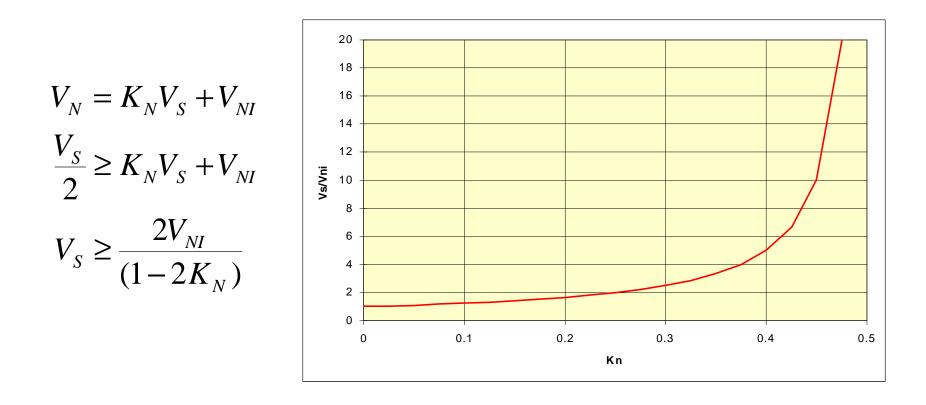

- Problem set 3
 - Dally and Poulton, 6-3, 6-6, 6-9, 6-16, new problem (see web)
 - Due at start of class next Wednesday January 31
- Reading
 - Sections 6.4 through 6.6
 - Complete before class on Monday

A Quick Overview

- Noise
 - Signals may be corrupted from many sources
 - power supply noise
 - cross talk
 - inter-symbol interference
 - *real* noise (thermal and shot)
 - parameter variation
 - Proportional and independent
- Power Supply Noise
 - Inductance and resistance of supply network cause voltage drops
 - Variation in space on one supply voltage
 - Variation in time on voltage between supplies

- Cross Talk
 - One signal interfering with another signal
 - Capacitive crosstalk between RC lines on a chip
 - floating
 - driven
 - Coupling between LC transmission lines
 - near end
 - far end

Noise in Digital Systems



Proportional and Independent Noise Sources

- Some noise is *proportional* to signal swing
 - crosstalk
 - inter-symbol interference
 - signal return noise
 - signaling power supply noise
 - if you increase the signal swing, you increase the noise
- Need to eliminate or cancel this noise
 - You can't overpower it!

- Some noise is independent of signal swing
 - receiver sensitivity
 - receiver offset
 - unrelated power supply noise
 - reference offsets
- Can eliminate or overpower this noise

Proportional and Independent Noise Sources

Bounded and Statistical Noise Sources

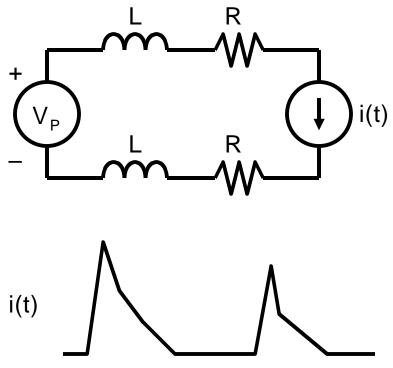
- Bounded noise sources
 - Bound total amplitude of noise via worst-case analysis
 - Noise guaranteed not to exceed this amount
 - Pessimistic but simple analysis
 - Examples
 - Crosstalk to adjacent lines (prop)
 - ISI (prop)
 - Receiver offset (fixed)

- Statistical noise sources
 - Approximate noise by a random process
 - Actual noise may really be random or may be deterministic
 - Noise amplitude characterized by RMS value
 - Can compute probability that noise will be less than margin
 - Examples
 - Johnson (thermal) noise (fixed)
 - Shot (quantization) noise
 - Crosstalk to large number of lines (prop)


Which sources are Proportional? Fixed? Which are Bounded? Statistical?

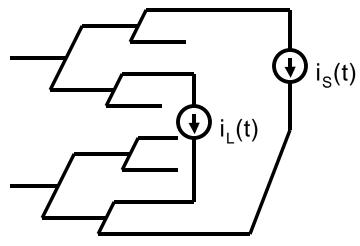
- 250mV differential signal
- 15% high-frequency attenuation
- 5% crosstalk from adjacent lines
- 5% ISI from reflections
- 20mV receiver offset+sensitivity
- 10mV RMS Gaussian noise
- What is the Bit Error Rate?

Signal Swing (dp-dn)		500
Gross Margin		250
Crosstalk	0.05	25
Reflections	0.05	25
Attenuation	0.15	75
KN	0.25	125
Receiver offset+sensitivity		20
Bounded noise		145
Net Margin		105
Gaussian Noise		10
VSNR		10.5
BER		1.15E-24


★

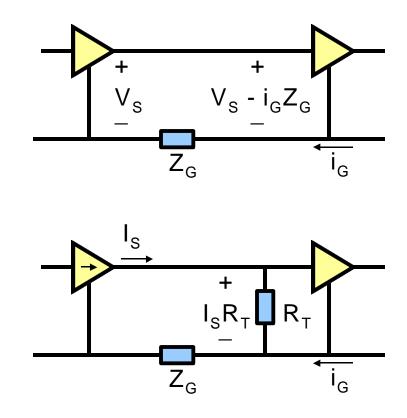
250mV

Power Supply Noise

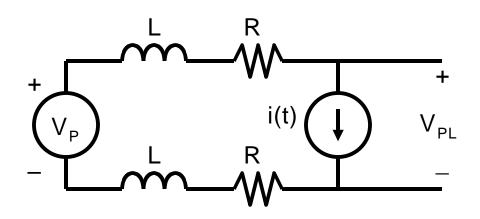

- The power supply network has parasitic elements
 - on-chip: resistive
 - off-chip: inductive
- Current draw across these elements induces a noise voltage
 - Ri + Ldi/dt
- Instantaneous current is what
 matters
 - may be many times the DC current
 - 10W chip draws 4A at 2.5V
 - peak current may be 10-20A.

Types of Supply Noise

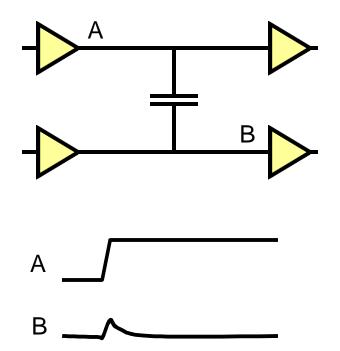
- Two types of loads
 - logic loads
 - signal loads
- Two types of noise
 - single-supply noise
 - differential-supply noise


Supply Network

Ground Network


Single Supply Noise

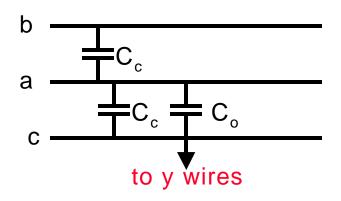
- Voltage drops across parasitics cause variation in the voltage of a single supply (V_{DD} or GND) from one point in the system to another
- If a signal is referenced to the local supply, this variation is additive voltage noise
- The problem can be reduced by using an appropriate reference
 - reference to receiver supply
 - send an explicit reference


Differential Supply Noise

- Drops across supply parasitics cause the local supply voltage, V_{PL}, to vary over time
 - affects the delay of many elements
 - systems may not meet timing specifications
 - causes jitter in timing circuits

Cross Talk

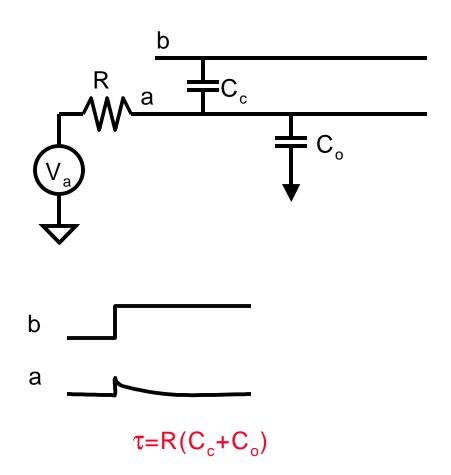
- Noise induced by one signal that interferes with another signal
- Capacitive coupling between on-chip lines
- Capacitive and Inductive coupling between off-chip lines
- Coupling over shared signal returns


Cross Talk Between Capacitive Lines

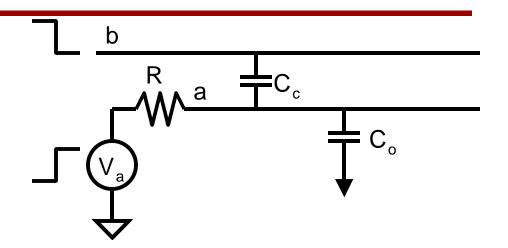
- On-chip wires have significant capacitance to adjacent wires
 - on same layer
 - on adjacent layers
- When adjacent signals change, voltage on a floating line is disurbed
 - capacitive voltage divider
 - signal is not restored

$$k_{2C} = \frac{2C_C}{2C_C + C_O}$$

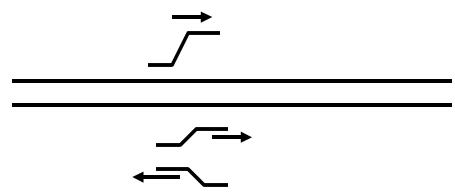
x wires				
y wires				
x wires	b	а	С	
y wires				


a is victim, b and c are agressors

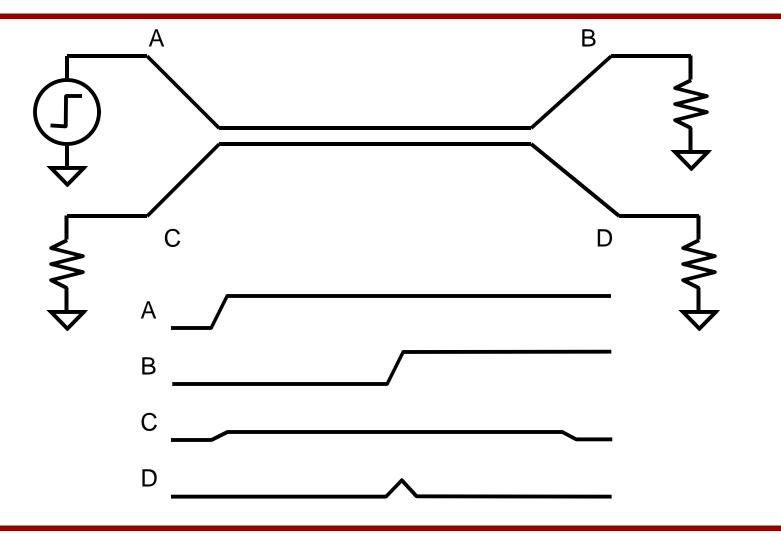
Capacitive Lines with Drive


- If victim line, a, is driven, a will be disturbed but then restored with time constant $\tau = R(C_c + C_o)$
- If rise on agressor, b, is slow compared to τ, magnitude of disturbance is reduced

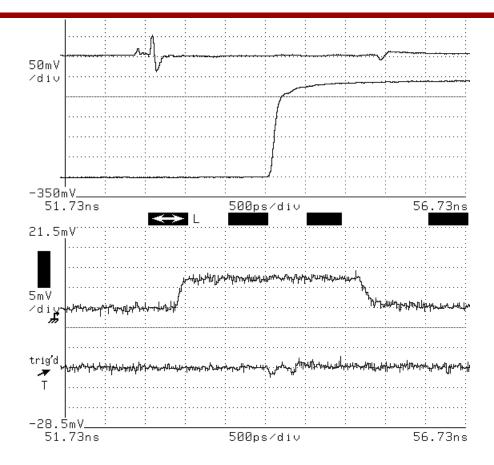
$$\left(\frac{\boldsymbol{t}}{t_r}\right)\left(1-\exp\left(-\frac{t_r}{\boldsymbol{t}}\right)\right)$$


Cross Talk and Delay

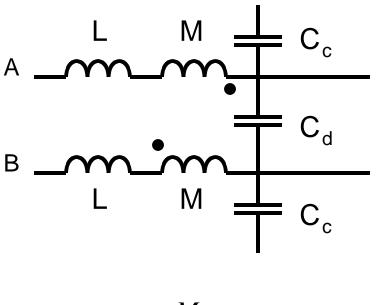
- Capacitive cross talk can affect delay of RC signals
- If agressor(s) switch in opposite direction, effective capacitance of C_c is doubled
- If agressor(s) switch in the same direction, C_c is effectively eliminated
- Can cause 2:1 variation in delay in some cases
- Significant cause of jitter if timing is critical



Transmission Line Cross Talk

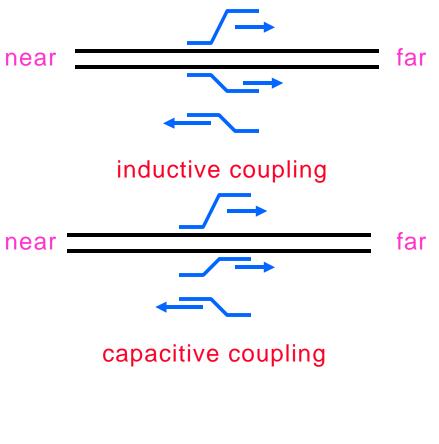

 A signal transition on one transmission line induces forward and reverse traveling waves on adjacent transmission lines

Transmission Line Cross Talk Experiment

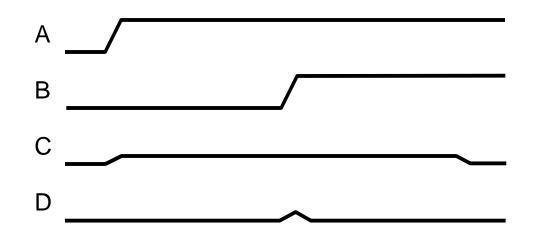


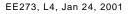
Experimental Cross Talk Measurements

Inductive and Capacitive Coupling


- Consider a positive transient on agressor line, A
- Capacitive coupling induces a *voltage* on victim line B
 - positive waves in both forward and reverse directions
- Inductive coupling induces a current in line B
 - positive wave in the reverse direction
 - negative wave in the forward direction

$$k_{lx} = \frac{M}{L}$$
$$k_{cx} = \frac{C_d}{C}$$


Near-end and Far-end Crosstalk

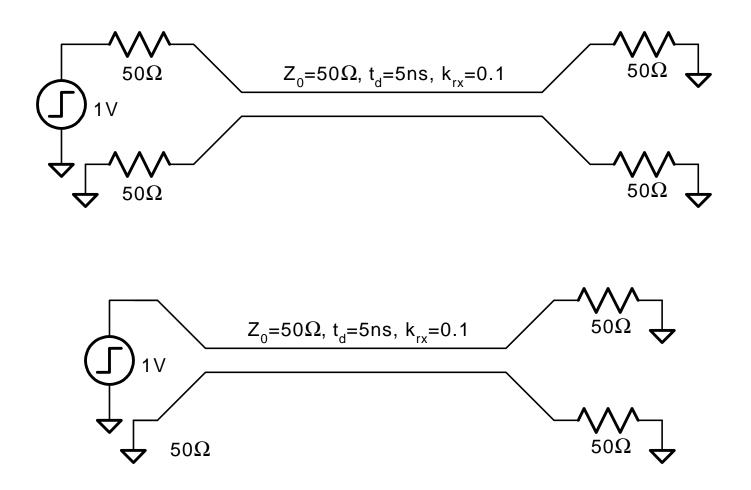

- Inductive and capacitive coupling *add* at the near end of the line
 - both waves are positive
 - pulse begins at beginning of coupled section
 - pulse width equals length of coupled section
- Inductive and capacitive coupling *subtract* at the far end of the line
 - in a homogeneous medium cancellation is exact
 - narrow pulse coincident with wave on agressor

Near End and Far End Crosstalk The Equations

Copyright (C) by William J. Dally, All Rights Reserved

Crosstalk and Termination

- The noise resulting from crosstalk depends on the termination
- E.g., if k_{fx} = 0 and k_{rx} = 0.1 compare termination at both ends to termination at receiver only
 - Both ends: near end crosstalk absorbed by source termination, little or no contribution to noise at destination


• $k_{Nrx} = k_{rx}k_{r}$

 Receiver only: near end crosstalk reflects from source and adds directly to noise at receiver

• $\mathbf{k}_{Nrx} = \mathbf{k}_{rx}$

• What happens with termination only at source?

Crosstalk and Termination

Next Time

- Signal return crosstalk
- Intersymbol interference
- Managing noise