EE273 Lecture 6
Introduction to Signaling
January 31, 2001

William J. Dally
Computer Systems Laboratory
Stanford University
billd@csl.stanford.edu
Today’s Assignment

• Problem Set 4
 – 7-2, 7-5, 7-8, and new problem (see web)

• Reading
 – Sections 7.4 and 7.5
 – Complete before class on Monday

• Demonstration
 – Next Friday 2/9

• Midterm
 – evening of 2/12
 – local SITN students must come to Stanford for the exam
 – we will have class on 2/12
A Quick Overview

- Introduction to Signaling
- transmission method
 - current vs. voltage
 - bipolar vs. unipolar
- termination scheme
 - parallel, source, both, underterminated
- references
 - 0 reference, transmitter reference, receiver reference

- source termination
 - use reflection to double signal amplitude
- differential signaling
 - 1.3-1.8x as many pins but many nice properties
Main Idea

- A good signaling system isolates the signal from noise rather than trying to overpower the noise
 - crosstalk - terminate both ends
 - ISI - matched terminations, no resonators, rise-time control
 - Power supply noise - current mode, stable reference, differential signaling
 - Reference noise - bipolar signaling, differential signaling
An Example Signaling System

1. Transmitter:
 - output impedance
 - bipolar vs. unipolar
 - amplitude
 - rise time

2. Termination method

3. Reference

4. Receiver

2. Termination method
Transmission Mode
(Output Impedance)

Voltage Mode

Current Mode
Voltage Mode vs. Current Mode

• In reality a continuum as R_O varies from 0 to ∞.
• Both launch the same signal into the line

\[V_i = I_i Z_0 \]

• Main differences are
 – ease of generation
 • much easier to generate a small current than a small voltage
 • especially with bipolar signaling
 – coupling of supply noise
 – coupling of return noise
Output Resistance and Signal Return Crosstalk

- Solve for signal return crosstalk using superposition
 - voltage source V_a active, all others shorted
 - How much current goes down other lines?
 - Other lines are in parallel with Z_R
 - form a current divider

\[
Z_x = Z_R \left[\frac{R_O + Z_0}{N - 1} \right] = \frac{Z_R (R_O + Z_0)}{(N - 1)Z_R + R_O + Z_0}
\]
Signal Return Crosstalk (continued)

\[
Z_X = Z_R \left(\frac{R_O + Z_0}{N - 1} \right) \\
= \frac{Z_R (R_O + Z_0)}{(N - 1)Z_R + R_O + Z_0}
\]

\[
I_X = I_a \left(\frac{Z_X}{R_O + Z_0} \right) \\
= I_a \left(\frac{Z_R}{(N - 1)Z_R + R_O + Z_0} \right)
\]

\[
k_{RX} = \left(\frac{Z_R}{(N - 1)Z_R + R_O + Z_0} \right)
\]
Signal Return Crosstalk (concluded)

- Since Z_R is usually $<< R_O + Z_0$, we can approximate the formula with a simple ratio.
- High output impedance reduces return crosstalk:
 - Z_R/Z_0 for voltage mode $R=0$
 - $Z_R/2Z_0$ for matched $R=Z$
 - ∞ for current mode $R=\infty$
- Even with current mode signaling, however, it is advantageous to have a source termination: $R_O=Z_0$

\[k_{RX} \leq \left(\frac{Z_R}{R_O + Z_0} \right) \]
Source Terminated Current Mode

What is k_{RX} for this configuration?
Bipolar vs. Unipolar Signaling

- **Unipolar signaling**
 - logic 0 is 0 mA
 - logic 1 is 2x mA

- **Bipolar signaling**
 - logic 0 is -x mA
 - logic 1 is x mA
 - gives balanced transmitter offsets
 - same for 0 and 1
 - allows the use of 0 as a receiver reference

- Same applies to voltage-mode x V rather than x mA

- Can use offset threshold for unipolar signaling - complicated
A Typical Bipolar Current-Mode Driver

- Steers 5mA current between out+ and out-
 - constant draw from both current sources
- Relatively small devices
 - about 8\mu m/0.18\mu m
 - termination is much bigger
- Use directly for differential signaling
- Tie out- to return for single-ended signaling
- Half the supply power of a unipolar driver with the same signal swing
References

- Receiver compares received voltage or current to a *reference* to discriminate between symbols
- Errors in reference add directly to independent noise
- Several ways to generate a reference
 - use 0 (bipolar signaling)
 - derive from receiver power supply
 - send from transmitter
Source Termination
(Without receiver termination)

- What is response at S and R to 10mA current step on source?
 - assume line and termination are both 50Ω
- What about a narrow current pulse?
Source Termination
Advantages and Disadvantages

• Power
 – current driver
 • half the power as terminating at both ends
 – voltage driver
 • half the power as parallel termination
 • no static power

• Cross talk
 – rejects near-end cross talk
 – but creates near-end cross talk at the far end of the line

• Proper waveform is observed only at receiver

• More sensitive to inter-symbol interference
 – one bounce vs. Two
Source Termination
The Bottom Line

- Little difference between terminating just at the source and just at the receiver
- Much better to terminate both ends of the line
A Voltage-Mode Source Terminated Driver

- Looks like a simple driver, but...
 - Must digitally trim FETs to get $R_T = Z_0$ to an acceptable tolerance
 - Need a very low transmitter supply (250mV) to get an appropriate signal level
 - ± 125 mV would be better
 - If transmit supply is generated with a switching regulator, very low power is possible
Underterminated Sources

• Conventional inverter drivers
 – have too high an output resistance (400\,\Omega \text{ typical})
 – operate off of too high a supply voltage (3.3\,V typical)
• If the inverter tries to drive a line to full swing, it must ring-up the line resulting in large delay
• These inverters can be used as underterminated sources (high output impedance) to directly drive a 50\,\Omega line with a low swing

• Line is parallel terminated to mid-rail supply, \(V_T \).
• What are the signal levels on the line?
• Why mid-rail terminate?
Differential Signaling

- A differential signal is sent as a difference in voltage or current between two lines.
- Typically a positive signal is sent on one line and its complement on the other line.
- This uses twice as many pins as single-ended signaling right?
 - wrong! 1.3-1.8x
 - differential signaling has a separate return for each signal
 - typically have 1 return for 2-8 signals
Advantages of Differential Signaling

- Signal serves as its own reference
 - compare positive signal to complement to detect
- Twice the signal swing
 - effective swing is A - B
- Noise immunity
 - many noise source become common mode
- Return current
 - becomes strictly DC
 - can be 0 for bipolar signaling
Differential Signaling and Balanced Transmission Lines
Next Time

• Signaling over lumped media
 – on-chip capacitive lines
 – off-chip LC circuits
• Signal encoding and Signal Amplitude
• Driving RC lines