EE273 Lecture 6 Introduction to Signaling January 31, 2001

William J. Dally Computer Systems Laboratory Stanford University billd@csl.stanford.edu

EE273, L6, Jan 31, 2001

Today's Assignment

- Problem Set 4
 - 7-2, 7-5, 7-8, and new problem (see web)
- Reading
 - Sections 7.4 and 7.5
 - Complete before class on Monday
- Demonstration
 - Next Friday 2/9
- Midterm
 - evening of 2/12
 - local SITN students must come to Stanford for the exam
 - we will have class on 2/12

A Quick Overview

- Introduction to Signaling
- transmission method
 - current vs. voltage
 - bipolar vs. unipolar
- termination scheme
 - parallel, source, both, underterminated
- references
 - 0 reference, transmitter reference, receiver reference

- source termination
 - use reflection to double signal amplitude
- differential signaling
 - 1.3-1.8x as many pins but many nice properties

Main Idea

- A good signaling system isolates the signal from noise rather than trying to overpower the noise
 - crosstalk terminate both ends
 - ISI matched terminations, no resonators, rise-time control
 - Power supply noise current mode, stable reference, differential signaling
 - Reference noise bipolar signaling, differential signaling

An Example Signaling System

Transmission Mode (Output Impedance)

Voltage Mode vs. Current Mode

- In reality a continuum as R_0 varies from 0 to ∞ .
- Both launch the same signal into the line

$$V_i = I_i Z_0$$

- Main differences are
 - ease of generation
 - much easier to generate a small current than a small voltage
 - especially with bipolar signaling
 - coupling of supply noise
 - coupling of return noise

Output Resistance and Signal Return Crosstalk

- Solve for signal return crosstalk using superposition
 - voltage source V_a active, all others shorted
 - How much current goes down other lines?
 - Other lines are in parallel with Z_R
 - form a current divider

$$Z_{X} = Z_{R} \left\| \left(\frac{R_{o} + Z_{0}}{N - 1} \right) \right\|$$
$$= \frac{Z_{R} (R_{o} + Z_{0})}{(N - 1)Z_{R} + R_{o} + Z_{0}}$$

Signal Return Crosstalk (continued)

Signal Return Crosstalk (concluded)

- Since Z_R is usually << R₀+Z₀ we can approximate the formula with a simple ratio
- High output impedance
 reduces return crosstalk
 - Z_R/Z_0 for voltage mode R=0
 - $Z_R/2Z_0$ for matched R=Z
 - $-\infty$ for current mode R= ∞
- Even with current mode signaling, however, it is advantageous to have a source termination: R_o=Z₀

Source Terminated Current Mode

What is k_{RX} for this configuration?

Bipolar vs. Unipolar Signaling

- Unipolar signaling
 - logic 0 is 0 mA
 - logic 1 is 2x mA
- Bipolar signaling
 - logic 0 is -x mA
 - logic 1 is x mA
 - gives balanced transmitter offsets
 - same for 0 and 1
 - allows the use of 0 as a receiver reference
- Same applies to voltage-mode x
 V rather than x mA
- Can use offset threshold for unipolar signaling - complicated

A Typical Bipolar Current-Mode Driver

- Steers 5mA current between out+ and out-
 - constant draw from both current sources
- Relatively small devices
 - about 8μm/0.18μm
 - termination is much bigger
- Use directly for differential signaling
- Tie out- to return for single-ended signaling
- Half the supply power of a unipolar driver with the same signal swing

References

- Receiver compares received voltage or current to a *reference* to discriminate between symbols
- Errors in reference add directly to independent noise
- Several ways to generate a reference
 - use 0 (bipolar signaling)
 - derive from receiver power supply
 - send from transmitter

Source Termination (Without receiver termination)

- What is response at S and R to 10mA current step on source?
 - assume line and termination are both 50Ω
- What about a narrow current pulse?

Source Termination Advantages and Disadvantages

- Power
 - current driver
 - half the power as terminating at both ends
 - voltage driver
 - half the power as parallel termination
 - no static power
- Cross talk
 - rejects near-end cross talk
 - but creates near-end cross talk at the far end of the line
- Proper waveform is observed only at receiver

- More sensitive to inter-symbol interference
 - one bounce vs. Two

Source Termination The Bottom Line

- Little difference between terminating just at the source and just at the receiver
- Much better to terminate both ends of the line

EE273, L6, Jan 31, 2001

Copyright (C) by William J. Dally, All Rights Reserved

A Voltage-Mode Source Terminated Driver

- Looks like an simple driver, but...
 - Must digitally *trim* FETs to get $R_T = Z_0$ to an acceptable tolerance
 - Need a very low transmitter supply (250mV) to get an appropriate signal level
 - ±125mV would be better
 - if transmit supply is generated with a switching regulator, very low power is possible

Underterminated Sources

- Conventional inverter drivers
 - have too high an output resistance (400 Ω typical)
 - operate off of too high a supply voltage (3.3V typical)
- If the inverter tries to drive a line to full swing, it must *ring-up* the line resulting in large delay
- These inverters can be used as underterminated sources (high output impedance) to directly drive a 50Ω line with a low swing

- Line is parallel terminated to mid-rail supply, V_T.
- What are the signal levels on the line?
- Why mid-rail terminate?

Differential Signaling

- A *differential* signal is sent as a difference in voltage or current between two lines
- Typically a positive signal is sent on one line and its complement on the other line
- This uses twice as many pins as single-ended signaling right?
 - wrong! 1.3-1.8x
 - differential signaling has a separate return for each signal
 - typically have 1 return for 2-8 signals

Advantages of Differential Signaling

- Signal serves as its own reference
 - compare positive signal to complement to detect
- Twice the signal swing
 - effective swing is A-B
- Noise immunity
 - many noise source become common mode
- Return current
 - becomes strictly DC
 - can be 0 for bipolar signaling

Differential Signaling and Balanced Transmission Lines

Copyright (C) by William J. Dally, All Rights Reserved

Next Time

- Signaling over lumped media
 - on-chip capacitive lines
 - off-chip LC circuits
- Signal encoding and Signal Amplitude
- Driving RC lines