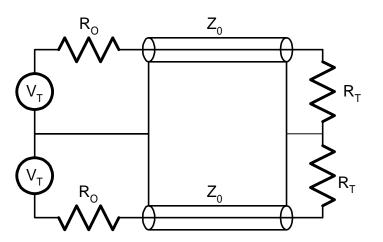


William J. Dally Computer Systems Laboratory Stanford University billd@csl.stanford.edu

EE273, L7, Feb 05, 2001

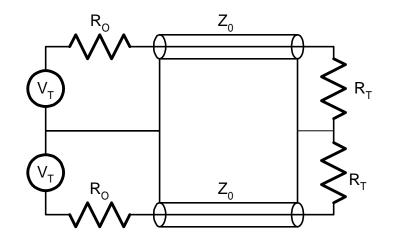
Today's Assignment

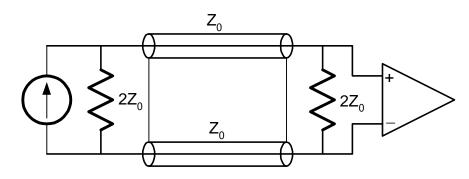
- Reading
 - Sections 8.1 through 8.4
 - Complete before class on Wednesday 2/7
- Demonstration
 - This Friday 2/9
- Midterm
 - evening of 2/12
 - room 200-02 7PM to 9PM
 - local SITN students must come to Stanford for the exam
 - we will have class on 2/12

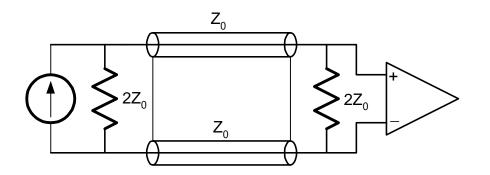

A Quick Overview

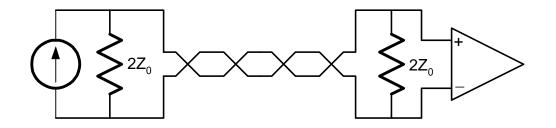
- Differential signaling
 - requires more pins (1.3x to 1.8x) but has many noiserejecting properties
- Number of signal levels
 - binary vs multi-level signaling
- Some real driver circuits
 - bipolar current-steering driver
 - source-terminated voltagemode driver

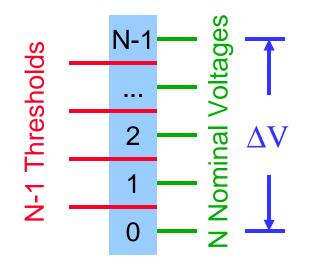
- Signaling over capacitive media
 - isolating power supply noise
 - current-mode signaling
 - references
 - pulsed signaling
 - SRAM example

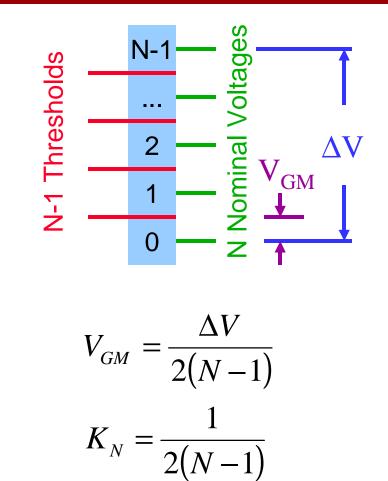

Differential Signaling


- A *differential* signal is sent as a difference in voltage or current between two lines
- Typically a positive signal is sent on one line and its complement on the other line
- This uses twice as many pins as single-ended signaling right?
 - wrong! 1.3-1.8x
 - differential signaling has a separate return for each signal
 - typically have 1 return for 2-8 signals
 - also gives an implicit transmitter generated reference

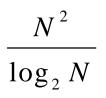

Advantages of Differential Signaling


- Signal serves as its own reference
 - compare positive signal to complement to detect
- Twice the signal swing
 - effective swing is A-B
- Noise immunity
 - many noise source become common mode
- Return current
 - becomes strictly DC
 - can be 0 for bipolar signaling


Differential Signaling and Balanced Transmission Lines

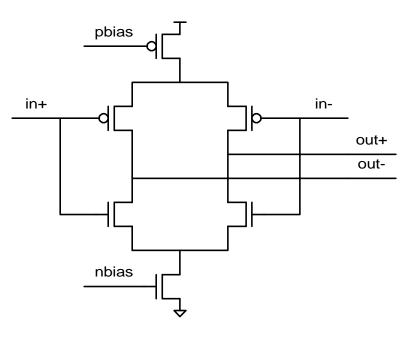

Number of Signal Levels

- There is nothing magical about 2-level or *binary* signaling
 - But its *almost* always the best choice
- Could use N-levels
 - N symbols
 - N nominal symbol voltages
 - N-1 thresholds
 - Nominal voltage separated from threshold by ΔV/2(N-1)

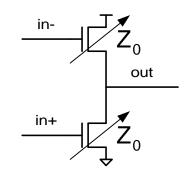

Multi-Level Signals and Noise

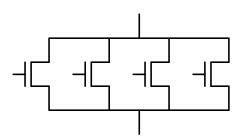
- In the worst case, signal can swing through ΔV , from 0 to N-1
 - proportional noise is proportional to full swing
- Gross margin is distance from nominal voltage to threshold
- Proportional noise constant, K_N must be kept very small to allow more signaling levels
- Number of bits per symbol is log₂(N)

Multi-Level Signals and Power


- Power per symbol (worst case) is proportional to ΔV^2
- With fixed noise sources this grows as N².
- So power per bit grows as

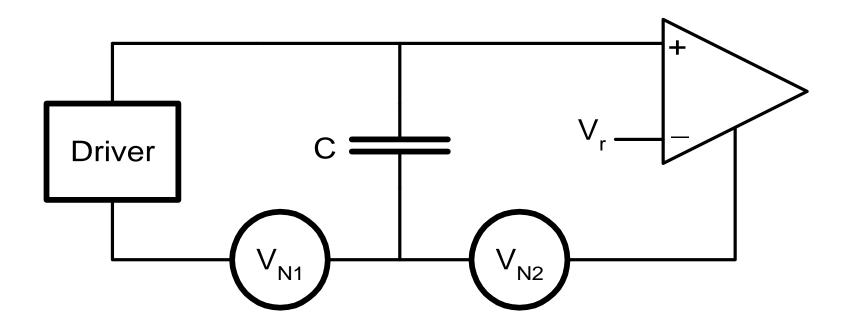
- So why use multilevel signaling?
 - when channel is band-limited
 - it may be the *only* way to get more bits over a channel
 - AND
 - when there is a very large SNR
 - so proportional noise doesn't swamp the multi-level signal.


A Typical Bipolar Current-Mode Driver

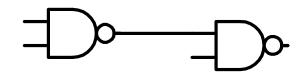

- Steers 5mA current between out+ and out-
 - constant draw from both current sources
- Relatively small devices
 - about 8μm/0.18μm
 - termination is much bigger
- Use directly for differential signaling
- Tie out- to return for single-ended signaling
- Half the supply power of a unipolar driver with the same signal swing

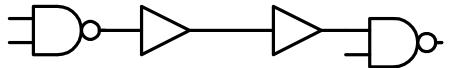
A Voltage-Mode Source Terminated Driver

- Looks like an simple driver, but...
 - Must digitally *trim* FETs to get $R_T = Z_0$ to an acceptable tolerance
 - Need a very low transmitter supply (500mV or less) to get an appropriate signal level
 - ±125mV would be better
 - if transmit supply is generated with a switching regulator, very low power is possible
 - Need to keep FETs in resistive region
 - non-linearity of resistance causes reflections

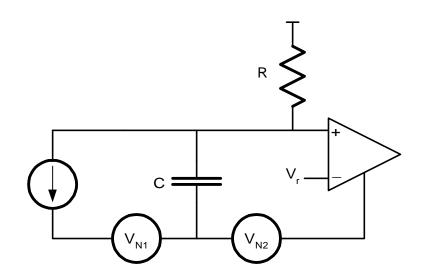


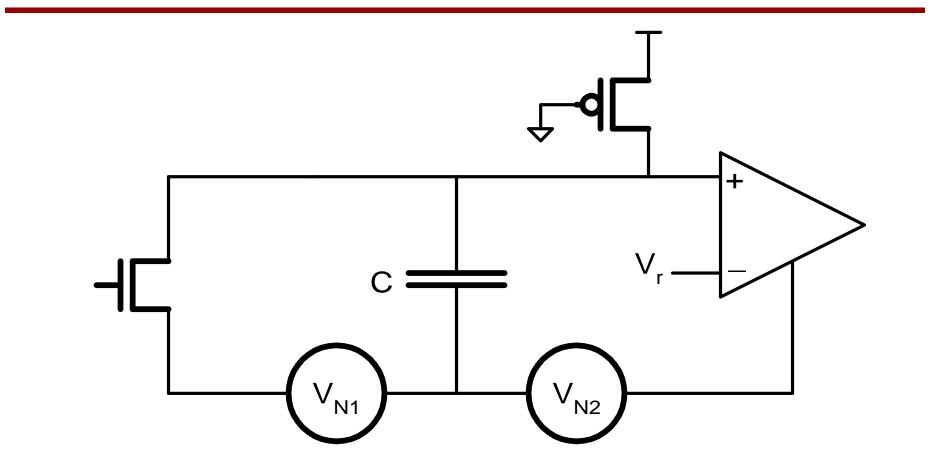
Signaling Over Capacitive Media


- Where do we find capacitive wires?
 - short on-chip wires with high fan-out or fan-in
 - e.g. buses, register files, RAMs
 - note that long on-chip wires are RC lines a more difficult problem
- Desiderata
 - fast transitions
 - low power
- These imply a small signal swing
 - to support a small swing one needs to isolate power supply noise


Block Diagram of Capacitive Signaling System

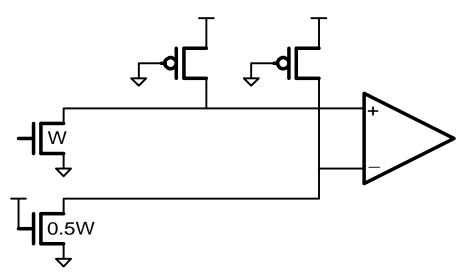
Logic Signaling vs Transmission Signaling


- Historically signal levels were defined to facilitate *logic circuits* not *transmission*
 - for example:
 - 0 = TGND, 1 = TVDD
 - V_r=(RGND+RVDD)/2
 - slow
 - lots of power dissipation
 - no rejection of supply noise
- When transmission is a large fraction of delay or power, its better to switch to a representation tailored for transmission

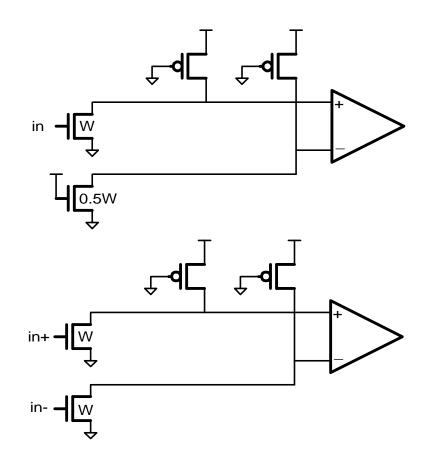


Current-Mode Signaling

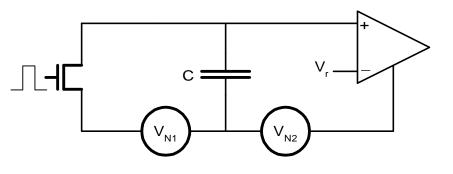
- Send logic values as small currents
 - 1=1mA
 - 0=0mA
- Detect across 'resistor' at receiver
- High Tx impedance isolates Tx supply noise
- High-pass RC removes lowfrequency Rx supply noise
- Still need to generate a reference

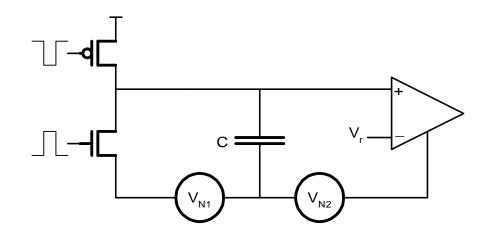

A Current-Mode Signaling Circuit

Copyright (C) by William J. Dally, All Rights Reserved

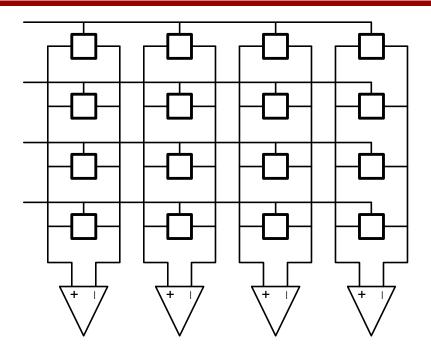

Transmitter References

- Would like to set receiver reference half-way between a '1' and a '0'
- Simplest approach is to send half the '1' current from the transmitter
 - this reference can be shared by many signals
- If drive current is 1mA, signal swing is 0.3V, and capacitance is 3pF, what is the rise time?
 - how does it depend on signal swing?


Differential Signaling

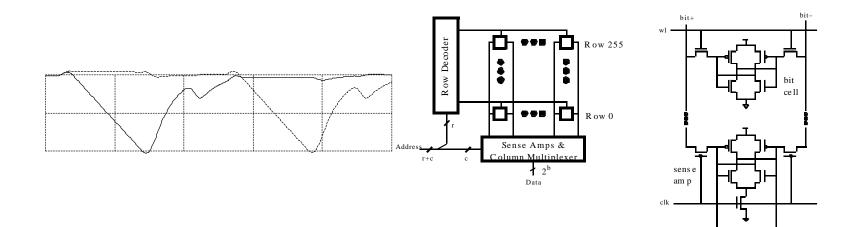

- If wire tracks are available, best noise cancellation is to send the signal and its complement
 - *twist* the signals periodically to balance crosstalk
 - better noise rejection
 - balanced load on the two lines
 - twice the signal swing for the same current (or half the rise time)
- But this still dissipates DC power!

Pulsed Signaling


- To eliminate DC power dissipation just
 - (1) remove the 'resistors'
 - (2) drive the line with current pulses
- What does (1) do to noise rejection?
- How do we set the DC level of the line?
 - precharge
 - feedback
 - self-timed pull-down
- Do we need to pulse the line in both directions?

Case Study, SRAM Bit Lines

- SRAMs have high fan-out on the word lines and high fanin on the bit lines
- Bit lines use differential, pulsed, precharged currentmode signaling
- Typically have 50mV to 300mV swing
 - careful ground rules to make all crosstalk common mode
- Detected with clocked amplifier 30mV offset+sensitivity


SRAM Numbers

- Typical subarray
 - 256 rows x 1024 columns
 - 0.5pF bit line, 2pF word line
 - on-current is 0.2mA
 - pulse width is 500ps

$$\Delta V = \frac{It}{C} = \frac{(0.2 \,\mathrm{mA})(0.5 \,\mathrm{ns})}{(0.5 \,\mathrm{pF})} = 200 \,\mathrm{mV}$$

• How long would it take to go full-swing (3.3V) ?

SRAM Waveforms

out+

ou t-

Next Time

- Signaling wrapup
- Dealing with long on-chip RC lines
- Dealing with lossy LRC lines
- Simultaneous bidirectional signaling