
EE273
Fall ‘98

Problem Set #6 Solution

SPICE deck files are in the directory /usr/class/ee273/spice/hw6 directory.

Problem 9-6: Sequential Phase-Only Comparator

The following table shows the transition table of the comparator logic:

a0 = a * x_b * b0_b
b0 = b * x_b * a0_b
x = (a * b) + ((a + b) * x)

ab
a0 b0 x 00 01 10 11
0 0 0 000 010 100 111
0 0 1 000 001 001 001
0 1 0 000 010 000 011
0 1 1 000 001 001 001
1 0 0 000 000 100 101
1 0 1 000 001 001 001
1 1 0 000 000 000 001
1 1 1 000 001 001 001

The each row indicated by (a0, b0, x) indicates the current state, each column of (a,b) indicate the current
input, and each entry of the table indicates the next state (a0, b0, x).  Since this is an asynchronous system,
there’re no latches between the current state (a0,b0, x), and the next state (a0, b0, x).  Therefore, one
change in input may cause multiple state transitions.  For example, if the current state is (1,0,0) and the
input changes from (1,0) to (1,1), state first changes to (1,0,1), but the entry at row (1,0,1) and column (1,1)
suggests that the state will now transition to 001, at which state it will remain until input changes again.
Therefore, now there are stable states and unstable ones, and bold entries indicate the stable ones.
Basically, if the next state is equal to the current state, the state will not transition any more for the given
input, and it is stable.   If inputs are constrained so that only one bit changes at a time, the construction and
analysis of such an asynchronous system is pretty straightforward.  But in this case, two inputs bits can
change simultaneously.  (In fact, the closed loop system in which this comparator will be used forces them
to change simultaneously.)  Therefore, the actual behavior is a bit more tricky since it depends on delay of
each input transition to output transition etc.  As we’ll see later,  even if the two input bits don’t change
simultaneously, if the transitions happen in a short amount of time compared to the delay of the logic, it
looks as if the bits changed simultaneously.  This can be a good thing or bad thing, as will be shown later.

Just by following the transition table above, we can see the general behavior of this comparator.  Basically,
when input bits are (0,0), the comparator goes into reset state of (0,0,0).  It stays there until one of the input
bits goes high, at which point one of the a0 and b0 lines is raised.  This continues until the other edge goes
up.  Then both a0 and b0 lines go low, and x goes high, indicating that the comparator has registered both
edges.  This state is (0,0,1), which may be labeled ‘wait’ state, since it sits there until both the input bits
become zero, at which time the cycle repeats.  Careful observation also reveals that this comparator
depends on the facts that there’s at least some overlap between high a and high b regions and also between
low a and low b regions.  If the a and b waveforms do not have overlap 1-regions, (which would be the case
if the duty cycle is less than 50% and the two input signals have large phase offset,) the table predicts that
a0 and b0 will have equal duty cycles.  Since the actual phase offset information is gotten by subtracting
the b0 duty cycle from a0 duty cycle, this non-overlapping a and b waveforms result in phase reading of
zero, which is an error.  Also, when a and b have no overlapping low regions, (which would be the case if
duty cycle > 50% and phase offset so that (a,b) is not equal to (0,0) at any time,) we can see that the system
will get stuck in the ‘wait’ state, since the comparator is reset by (a,b) being (0,0).   Other than these two



requirements, the frequencies of the two inputs should be matched as well.  The feedback loop will
probably correct any small frequency error, but the phase reading will be meaningless unless the two inputs
are at similar frequencies.

 Two example waveforms predicted by the table are shown below.

As shown, a0 will indicate that a0 is leading (starting from the reset state), and b0 will indicate that b0 is
leading.  Also, the duty cycle of these two signals show the amount of phase offset.  When they’re exactly
matched, meaning a and b go high and low at the same time, a0 and b0 will both stay at 0, if we assume the
logic delay is none and transitions are instantaneous.  On the table, this corresponds to state transitions of
(0,0,0) -> (1,1,1) -> (0,0,1) -> (0,0,0), which confirms that a0 and b0 are zero at all stages.  But again, the
logic delay will show slightly different behavior, as will be shown on the HSPICE simulation.

From the example waveforms shown, we can see the dynamic range of this comparator.  Assuming one
period of the periodic waveform corresponds to 2*π, and positive phase means a is leading, the response
looks as follows:

Therefore, a0 – b0 gives a linear phase response of this comparator.  By the way, when the phase offset is
exactly ±π, meaning they’re complement of each other, funny thing happens.  Over a broader region around
that area, it can be deduced that the phase response will wrap around, so that a0’s duty cycle of 50% will be
small offset away from b0’s duty cycle of 50%.  However, a metastable point exists when they’re exactly π
apart.  In the table, it means that the comparator will stay in ‘wait’ state forever, since the  inputs are never
(0,0) and they switch from (1,0) and (0,1) only.  ‘Wait’ state is a stable state for both of these inputs, and
the comparator never gets out of it.  This has nothing to do with the logic delay, since it strictly depends on
the input transition.  This is a bad thing unless phase lock of ±π radians is also okay, but hopefully, this
exact phase offset will not occur when the closed loop control is doing its work well.  Notice that this state
is called meta-stable, since any deviation from it will force the system toward phase offset of zero, which is
the only truly stable point of the system.

a

b

a0

b0

a

b

a0

b0

duty
cycle

50%

π

a0
duty
cycle

50%

-π

b0



Now, let’s consider how to construct this phase comparator using only two input NAND gates.  One
possible solution is shown below, which is gotten by pushing bubbles around.  Notice that inverters were
obtained by tying both inputs of NAND gates together.  I didn’t really worry about gate sizing at all, and
simply used the default gates sizes.

The following page shows the HSPICE simulation results.  The upper plot shows the waveforms when a
arrives earlier than b by about 0.15*π, and the lower plot shows the waveforms when b arrives earlier then
a by about 0.35*π.  For both of these plots, the top graph is the input waveforms, and the bottom one is the
output (state) waveforms.  As shown, the period of the pulse waveforms is 10nsec, corresponding to
100Mhz frequency.

Even though the edges of the output waveforms are not very sharp due to non-optimal gate sizings, and
there’re some noticeable delays, the waveforms closely resembles the expected waveforms.  That is, when
a is early, a0 goes high for a while, and when b is early, b0 goes high for a while.  Also, the duty cycle is
approximately proportional to the offset amount.





Even for relatively ideal response as shown on the previous page, the effect of logic delay is evident.  For
example, when a is leading, a0 doesn’t go high at the same moment a goes high, and a0 doesn’t go low at
the same moment b goes high.  Also, the overlap between x and a0 is quite visible, which is not predicted
by naïve interpretation of the state transition table.  Now, my concern is whether this comparator has a dead
zone or not.  Dead zone is where there is non-zero offset which the comparator can’t see.  We’ve already
seen one kind of dead zone around phase offset of ±π.  But since this is a meta-stable state, we can count on
the fact that small disturbance will eventually bring the system out of this state.  Besides, assuming the
closed loop does its job well, we will not spend much time around this region at all.  The more crucial
region is around phase of zero.  Since we want zero offset, the comparator response around this region must
be very sensitive.  Now, three possibilities of a0 and b0 response and its effect on the comparator response
is shown below.  Note that comparator response is simply a0 response minus b0 response.

The first case shows the ideal case, when we neglect any delay.  This gives a perfectly linear comparator
response (which is not necessarily good, as explained in the lecture.)  However, due to process variations,
it’s not a good idea to rely on this ideal behavior.  For example, something like the second case can happen,
where there’s some area when neither a0 and b0 are high for small offset.  For this case, the comparator
will say that there’s no phase error even when there is, which prevents accurate phase locking from
happening.  So, second case is definitely a bad thing.  What we want is something like the third case, which
gives some margin to tolerate adverse process variation toward direction of the second case.  For this, we

-π

b0

π

a0

π-π

V

-π

b0

π

a0

π-π

V

-π

b0

π

a0

π-π

V


