EE273 Digital Systems Engineering Midterm Exam

February 12 ${ }^{\text {th }}, 2001$
$($ Total time $=120$ minutes, Total Points $=100)$

Name: (please print)__ SOLUTION

In recognition of and in the spirit of the Stanford University Honor Code, I certify that I will neither give nor receive unpermitted aid on this exam.

Signature: \qquad

This examination is open notes open book. You may not, however collaborate in any manner on this exam. You have two hours to complete the exam. Please do all of your work on the exam itself. Attach any additional pages as necessary.

Before starting, please check to make sure that you have all 9 pages. (11 for the solution)

1		40
2		20
3		25
4		15
Total		100

Problem 1: Short Answer (40 Points: 10 questions, 4 points each)

A. Consider a stripguide transmission line with an impedance of 50Ω, a capacitance of $100 \mathrm{pF} / \mathrm{m}$, and a delay of 4 ns . Suppose you insert a 10 pF capacitor across the line (between the line and GND) every 1 cm . What is the impedance of the line with the capacitors inserted?

$$
Z=\sqrt{\frac{L}{C}}=\sqrt{\frac{L}{C_{0}+C_{1}}}=\sqrt{\frac{L}{C_{0}}} \sqrt{\frac{C_{0}}{C_{0}+C_{1}}}=(50 \Omega) \sqrt{\frac{100}{100+1000}}=(50 \Omega)(0.302)=15.1 \Omega
$$

B. For the transmission line of (A), what is the delay of the line with the capacitors inserted?

$$
\begin{aligned}
& t_{d}=d \sqrt{L C}=d \sqrt{L\left(C_{0}+C_{1}\right)}=d \sqrt{L C_{0}} \sqrt{\frac{C_{0}+C_{1}}{C_{0}}} \\
& =(4 n s) \sqrt{\frac{100+1000}{100}}=(4 n s)(3.32)=13.2 n s
\end{aligned}
$$

C. For the transmission line of (A), including the additional capacitors, what is the fastest rise time that can be applied such that modeling the line with capacitors as a uniform line gives an accurate result?
$L=Z^{2} C=(50 \Omega)^{2}\left(100 \frac{\mathrm{pf}}{\mathrm{m}}\right)=250 \frac{\mathrm{nH}}{\mathrm{m}}$
$v=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\left(250 \frac{\mathrm{nH}}{\mathrm{m}}\right)\left(1.1 \frac{\mathrm{nF}}{\mathrm{m}}\right)}}=6.03 \times 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}}$
$t_{s}=\frac{d}{v}=\frac{0.01 \mathrm{~m}}{6.03 \times 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}}}=166 \mathrm{ps}$
$t_{r} \geq 4 t_{s}=(4)(166 \mathrm{ps})=663 \mathrm{ps}$
D. Consider a differential transmission line. Which is higher: the even-mode impedance or the oddmode impedance?

Even mode - since $\sqrt{\frac{L+M}{C-C_{M}}} \geq \sqrt{\frac{L-M}{C+C_{M}}}$
E. If the space between the two signal conductors on a differential transmission line is reduced, what happens to the odd-mode impedance? (a) it increases, (b) it decreases, (c) it stays the same.
(b) decreases since C_{M} and M increase
F. Sketch a resistor network that allows three 50Ω transmission lines to be connected together so that a wave arriving at the network from any one of the lines causes two equal waves to be propagated down the other two lines with no reflection back into the first line. Make sure to include all component values.

$R+\left(R+Z_{0}\right) \|\left(R+Z_{0}\right)=Z_{0}$
$R+0.5\left(R+Z_{0}\right)=Z_{0}$
$1.5 R=0.5 Z_{0}$
$R=\frac{0.5}{1.5} Z_{0}=\frac{1}{3} Z_{0}=16.7 \Omega$
G. Sketch a qualitative circuit that will produce the following trace on a time-domain reflectometer (TDR). Just draw the type of components. Do not include numerical component values.

H. A pair of 45Ω lines have a near end (reverse) crosstalk coefficient $k_{r x}=0.1$ and a far-end (forward) crosstalk coefficient of $k_{f x}=0$. Both lines are terminated at both ends with 55Ω resistors. As a fraction of signal swing, what is the noise due to crosstalk on each line?

Near end crosstalk gives a wave at the near end of the line with a magnitude of $0.1 \Delta V$. This reflects off the terminator with $k_{r}=10 / 100=0.1$ giving an overall contribution of 0.01. Also, the incident wave reflects off the far end with $k_{r}=0.1$ which directly induces near end crosstalk at the far end with a magnitude of 0.01. Thus the total crosstalk coefficient is $\boldsymbol{k}_{N X}=\mathbf{0 . 0 2}$.
I. A system has a signal swing of 100 mV and bounded noise sources (fixed and proportional) that total 30 mV . If there is 10 mV RMS of Gaussian noise, what will the BER of the system be? (a simplified expression is fine, you need not give a numerical answer).
the gross margin, $V_{G M}=50 \mathrm{mV}$. Subtracting the 30 mV of bounded noise gives a net margin, $V_{N M}=20 \mathrm{mV}$. With $V_{G}=10 \mathrm{mV}$ of Gaussian noise, we have $V S N R=V_{N M} / V_{G}=2$ and $B E R=\exp \left(-V S N R^{2} / 2\right)=0.135$.
J. Making the source impedance of a transmission system infinite reduces what type(s) of noise?

Signal return crosstalk at the transmitter and transmitter power supply noise.

Problem 2: Transmission Lines (20 Points)

Consider the pair of coupled transmission lines shown below. The coupled section of the pair (segments BC and FG) has a near-end crosstalk coefficient $k_{r x}$ of 0.1 and a far-end crosstalk coefficient, $k_{f x}$ of 0 . The aggressor line is driven directly by a 1 V step source with a rise time of 100 ps and a matched source impedance. The far end of both lines (points D and H) are left open. The victim line is terminated with a matched impedance at the near end.

Using this information, sketch and dimension the voltage waveform at the far-end of the victim line (point H). You may ignore any effects that lead to waves with less than 10 mV amplitude.

The response is a 100 mV 4ns pulse from 6 ns to 10 ns .
The source injects a 500 mV forward traveling wave at point A. When this wave reaches B (at lns) it induces a 50 mV reverse traveling wave at F with a pulse width of 4 ns (the round trip from B to C and back). This 4ns pulse is absorbed at the termination of E.

The forward wave reaches D at $4 n s$ and completely reflects generating a 500 mV reverse traveling wave. At 5ns this wave reaches C where it induces a 50 mV forward traveling wave at G with a pulse width of $4 n s$ (the round trip from C to B and back). At 6 ns this reverse traveling wave reaches H and completely reflects. This gives a 100 mV pulse from 6 ns to 10 ns on H .

The 50 mV reverse traveling wave reflected from H returns over the victim line and is absorbed into the terminator at E.

Similarly, the 500 mV reverse traveling wave that passed C at $5 n s$ reaches B at $7 n s$. At this point the injection of reverse crosstalk stops, but it takes until 9ns for the crosstalk injected to reach G and 10ns for the last of the crosstalk to reach H - hence the end of the pulse at 10 ns . The 500 mV reverse traveling wave is absorbed into the terminator at A at $8 n s$.

There is secondary crosstalk induced at C by the 50 mV reverse traveling wave at G, but its magnitude is 5 mV , below our threshold of concern.

A SPICE plot showing the voltages at all points is attached.

* solution to midterm problem 2

* solution to mbderm problem 2

Problem 3: Signaling and Noise Analysis (25 points total)

Consider the $2 \mathrm{~Gb} / \mathrm{s}\left(t_{\text {bit }}=500 \mathrm{ps}\right)$ bipolar current-mode signaling system shown below. At nominal levels, a logic " 1 " is represented with 5 mA of current drive and a logic 0 is represented with -5 mA of drive. The actual transmitter levels are within 10% of these nominal levels. The transmitter has a rise/fall time of 250 ps . The line is terminated at the source only with a matched impedance with 10% tolerance. Midway down the $4 \mathrm{~ns} 50 \Omega$ line a connector introduces a large 1 pF lumped capacitance. The receiver has a combined sensitivity and offset voltage of 20 mV . In addition, there is a 10 mV Gaussian noise source (not shown) adding noise to the line.

A. (10 points) List all of the bounded, proportional noise sources that affect this system and give the magnitude of each as a fraction of signal swing. (Hint: you may ignore all forms of crosstalk and you may ignore all reflections after the second. Make sure to consider all of the effects of the 1 pF capacitance.).

1. Transmitter offset, $k=0.05$, in the worst case a 1 or a 0 is signaled with 4.5 mA rather than $5, a$ 0.5 mA difference out of a 10 mA swing, so $k=1 \mathrm{~mA} / 10 \mathrm{~mA}=0.05$.
2. Reduced swing due to mismatched transmitter termination, $k=0.026,5 m A$ should generate 125 mV , with a 45Ω terminator, it generates only $118 m V . k=(125-118) / 250=0.026$. Note that it is impossible to get a combined 0.076 error from transmitter offset and mismatched source termination.
The worst case is a 4.5 mA current into a 45Ω termination generating 107 mV , in this case the
combined k for transmitter offset and source termination is $k=(125-107) / 250=0.074$ rather than 0.076 (full credit is given for this solution as well). Note that even though the full swing is 500 mV , we compute the proportional noise for the 250 mV incident wave. The reflection from the open end of the line doubles both the signal and the noise, so the proportion, k, remains the same.
3. ISI due to reflection from the end of the line reflecting off the capacitor. The capacitor has a time constant of $\tau=(1 p F)(25 \Omega)=25$ ps giving a reflection of $k_{r c}=\tau / t_{r}=25 p s / 250 p s=0.1$.
4. ISI due to reflections from the end of the line reflecting off the mismatched source termination, $k_{r r}=$ 0.05 .
5. ISI due to reflections from the capacitor reflecting off the mismatched source termination. Here $k=$ $k_{r c} k_{r r}=(0.1)(0.05)=0.005$, which is small enough to ignore.

So the total proportional noise is $0.074+0.1+0.05+0.005=0.23$
B. (5 points) List all of the bounded, fixed noise sources that affect this system and give the magnitude for each in millivolts.

Receiver offset, 20 mV
C. (5 points) Compute the net margin, VSNR, and BER for this signaling system.

Gross margin is 250 mV
Proportional noise is $0.23 * 500 \mathrm{mV}=114 \mathrm{mV}$
Fixed noise 20 mV
Net margin is 250-114-20 $=116 \mathrm{mV}$
The Gaussian noise is doubled at the open end of the line, so the total Gaussian noise is 20 mV RMS
Thus $V S N R=116 / 20=5.78$
$B E R<=\exp \left(-V S N R^{2} / 2\right)=5.5 \times 10^{-8}$
D. (5 points) What if the same system were used to send 2-bits per baud at 1 Gbaud using the encoding $0=$ $-5 \mathrm{~mA}, 1=-1.33 \mathrm{~mA}, 2=+1.33 \mathrm{~mA}$, and $3=+5 \mathrm{~mA}$ (all with 10% tolerance). Recalculate the noise sources from (A) and (B), if any, that change as a result of this change, and recalculate the net margin, VSNR, and BER.

The noise sources do not change, so we still have $k_{N}=0.23$. This is too large for a 4-level system where the gross margin is only 0.167 of signal swing.

Thus, there is no net margin and the BER is 0.5 .

Problem 4: Signaling over Lumped Loads (15 Points Total)

Consider the system shown below for signaling over a capacitive on-chip line. A 1 mA current driver signals over a 5 mm line with a 1 with 1 mA current and a 0 with no current. The receiver converts this current to a voltage using a 100-Ohm PFET resistor. A reference is generated at the receiver using an 0.5 mA current source and a second $100-\mathrm{Ohm}$ PFET resistor. Over the 5 mm from the transmitter to the receiver the ground supply has a resistance of $5 \Omega / \mathrm{mm}$ (25Ω total). There is a distributed capacitance from the signal line to the ground supply of $100 \mathrm{fF} / \mathrm{mm}$ (500 fF total). The ground supply carries a noise current I_{N} with a peak amplitude of 10 mA and the waveform shown.

A. (9 points) What is the magnitude (in mV) of the noise at the receiver due to the noise current I_{N} ? (Hint: approximate the distributed RC line with a Pi or Tee network).

Replacing the distributed RC with a PI model we get the following circuit

Here we see that the 10 mA from I_{N} causes a 250 mV drop across the 25Ω resistor. The 250 mV 1ns ramp is input to a high-pass filter composed of two $250 f F$ capacitors and a 100Ω resistor. The net
effect is the same as if 125 mV were applied across a 500fF capacitor (which you get with a Tee network approximation). The resulting time constant is $500 f F \times 100 \Omega=50 \mathrm{ps}$. Since this is much faster than the lns ramp, the high-pass acts as a differentiator converting the $125 \mathrm{mV} / 1 \mathrm{~ns}$ ramp into a 6.25 mV step as shown in the SPICE plot below. The net noise is $V=6.25 \mathrm{mV}$.

B. (6 points) What could you do to cancel the noise from part (A)?

The noise is probably small enough to ignore. However if you want to cancel it, the solution is to move the reference to the transmitter and run it over a matched line so it is contaminated by an identical 6.25 mV of power supply noise. In this case the noise on the signal and the reference cancel..

