Network Topology Scalability

Tze Jen Leong

Abstract: Scalability is arguably theraison
d’étre for interconnection networks. As demand
for more higher performance supercomputers
and higher bandwidth switches increases, there is
increased interest in scalable networks. In this
paper, we look at several distinct approaches to
designing network topologies for scalability.
Each emphasizes a different aspect of network
topology scalability, thus resulting in disparate
topology designs. We discuss the characteristics
and strengths of each design and compare the
designs.

1. Introduction

The size (number of processors) of computer
systems has increased steadily over the last two
decades as a result of rising demand for
processing power. Ideally, the performance of a
multi-processor system would scale linearly with
the number of processors it has. This quality is
virtually impossible to achieve with traditional
bus-based systems as they grow larger.
Interconnection networks emerged as the
solution to system scalability. The increasing
disparity between logic (on-chip) and wire (off-
chip) speeds also makes interconnection
networks essential to system performance.

In addition, packet switches used in the Internet
are growing in size (number of ports, aggregate
bandwidth). The internal fabrics of such
switches, currently implemented as crossbars, do
not scale well and thus are increasingly being
implemented in multiple chips. Some form of
interconnection network (e.g. Clos network) is
then required to stitch the component switches
together into a large fabric.

Such demand further propels the study of
interconnection network scalability.

Accordingly, there has been a shift in research
emphasis towards networks that can efficiently
accommodate large numbers of nodes. Given the
breadth of issues and factors involved in the
design of interconnection networks, researchers
usually select one (or a few) preferred

parameters, such as network diameter, to

Melvyn Lim

optimize and use as a basis of the superiority of
their designs over other designs [Ni96]. In this
paper, we select several attributes of network
scalability that researchers have chosen to
employ in their designs and examine some new

network topologies that emphasize these
attributes.
Section 2 briefly discusses several key

considerations in making a topology scalable.
Section 3 looks at a few topologies with different
approaches to achieving network scalability.
Section 4 compares these topologies and Section
5 concludes.

2. Scalability Considerations

What makes a topology scalable? There are
many factors that are involved in scaling a
network topology, including change in

communication latency, bisection bandwidth,
change in network throughput, packaging and
layout cost, size and cost of expansion, change in
routing and flow control, and change in

performance to cost ratio. Many of these
conventional factors can only be improved at the
expense of others, thus requiring designs to
either optimize for one or find an optimal

compromise between many. We now briefly
discuss several somewhat atypical factors that
have been the basis of a few very different
proposed scalable topologies.

2.1 Link Complexity

The link complexity of a topology refers to the
number of links needed in the topology to be
connected to a node as the network is scaled up.
It depends on the node degree, which is the
number of channels incident to a node. Link
complexity has a direct correlation to hardware
cost and complexity. Channels are implemented
either as wide buses or optical cables for high
bandwidth. Buses occupy a significant amount
space on circuit boards and suffer bandwidth
limitations, while optical cables are expensive
and require optical-electrical interfaces. Since
integrated chips and circuit boards have limited
pin bandwidth, high node degree means narrower

channels, which means higher serialization
latency. For scalability, a network topology
should ideally have constant node degree. That
is, the node degree of each node stays the same
regardless of the number of times the network is
scaled up. For example, a binary tree topology
has low link complexity because of its constant
node degree of 3, while a torus has relatively
high link complexity because its node degree is 4
times its number of dimensions (4n for a k-ary n-
cube).

2.2 Incremental Scalability

Incremental scalability refers to the number of
additional nodes that have to be added to a
topology when it is scaled up in order to
maintain the same topology. (Strictly speaking,
incremental scalability includes link complexity,
but we consider just the increase in number of
nodes here.) For example, each time a k-ary n-
cube (torus) is scaled up (i.e. n is increased by 1),
the number of nodes increases by a factor of k.
Incremental scalability is important because it
affects the ease and cost of increasing the size of
a network. There might be a need for the
processing power (number of nodes) of a system
to be expanded but not by the amount dictated by
the topology. If a network topology can be scaled
up in small or constant increments, then the
amount of additional wiring needed is probably
small. The amount of modification to the routing
algorithm needed, if any, is also of concern,
since it might require significant software and/or
hardware changes to the existing network for
proper functioning.

2.3 Traffic Pattern

To examine the effect of traffic patterns on
scalability, we first make a distinction between
space and time division networks. As its name
suggests, the communication bandwidth of a
space division network is divided spatially
among the links that traverse the network, since
different links connect to different nodes in
space. Nodes are connected using multiple links
and data is transferred within the network by
routing and switching traffic through these links.
The mesh topology is an example of such a space
division network. In contrast, a time division
network divides the available bandwidth into
time slices, which are then allocated to data
traversing the network. In time division networks
such as bus based networks, multiple nodes share
a common link.

Space division networks have a tendency to
leave certain links idle while other links in the
network experience congestion. Time division
networks perform considerably better than space
division networks in this aspect, managing to
utilize a greater fraction of the bandwidth by
recycling bandwidth that is not used by idle
nodes, and which would otherwise be wasted if
the bandwidth could not be shared with other
nodes. Thus, time division networks are better
suited to handle dynamic nonuniform traffic.

Time division networks, however, do not scale
up well. With more nodes on the shared link, it
would require more substantial overhead to
arbitrate for bandwidth on the link, effectively
reducing throughput. Given these tradeoffs, we
suggest that truly scalable networks should be
able to accommodate bursty, unpredictable
traffic, which is characteristic of certain
applications, while somehow getting around the
scalability problem of time division networks.

3. Scalable Topologies

In this section, we examine 3 distinct topologies
that were designed with some aspect of
scalability as their objective. We chose these
topologies to reflect the diversity of approaches
and ideas in scalable topology design. Each
targets a different aspect of interconnection
networks to optimize, and hence are rather
specialized and may not represent the best or
most authoritative method for specialized or
generic network topology design.

3.1 Hybrid Tree

The Hybrid Tree topology proposed by E. John,
Hudson, and L. John is a combination of binary
trees and fat trees [JHJ98]. A binary tree
topology exactly resembles a binary tree
structure in graph theory and consists of a
number of processing nodes, usually a power of
2, forming the leaves of the tree, and routers at
the non-leaf nodes. The binary tree topology has
a constant node degree of 3 and therefore
requires minimal wiring even for larger numbers

of processing nodes. However, the traffic on the
top- level channels and the root router is very
heavy, making the binary very bisection limited.

The fat tree, proposed by Leiserson [Lei85], is a
tree topology with channels of increasing width

from the leaves to the root. The fat tree solves
the bisection problem of the binary tree with

higher bandwidth where traffic is likely to be

heaver. (Interestingly, fat trees more closely
resemble real trees since the branches get thicker
towards the root.) However, as the number of
processing nodes increases, the bandwidth
required at the root of the fat tree in order to
eliminate the bottleneck there tends to exceed the
practical wiring and electrical transmission
limits.

The hybrid tree proposed by the authors consists
of a fat tree on the upper levels of the tree and
identical binary trees each connected to a leaf of
the fat tree. The authors suggest using optical
interconnects to overcome the bandwidth
limitation problem at the root of the tree. Optical
fibers offer bandwidth many orders of magnitude
higher than that of electrical cables. Although the
authors assert that they are not introducing a new
topology, but rather exploiting new technology
to realize the potential of an existing topology,
we choose to showcase this topology because of
the scalability it claims to offer.

The heights of the binary tree components are
kept small to minimize the bottleneck effect,
while the fat tree connecting the binary trees
helps overcome the bottleneck. The single
biggest advantage of the hybrid tree is the low
link complexity afforded by the constant node
degree within the binary tree portions of the
topology. For each node added, only 3 channels
need to be added. (This is assuming the fat tree is
no modified.) However, if the topology is scaled
up too much, then the fat tree portion must be
augmented for it to continue to serve its purpose
well. The hybrid tree could conceivably be
expanded one processing node at a time, though
this would create an unbalanced tree structure
and require exceptions in its routing relation.
Rather, to take advantage of the simple routing
of a tree topology, the tree should be built with a
complete set of leaf (processing) nodes. This
means that the number of processing nodes is
doubled each time the hybrid is scaled up one
level. Also, in the case of expanding an existing
hybrid tree network (with a complete set of leaf
nodes), a large amount of rewiring must be done.
The processing nodes must be disconnected, new
routers must be connected where the processing
nodes were before, then existing and new
processing nodes must be connected at the
leaves.

The authors assert that optical binary trees
perform satisfactorily for 7 to 10 levels more
than electrical binary trees, and that binary trees

will suffice if built with optical interconnects for
systems of up to 1024 processing nodes. They
further state that a network of 16384 processors
can be feasibly built with a hybrid tree consisting
of a fat tree with 4 or 5 levels and binary trees of
9 or 10 levels each. We feel that the hybrid tree
topology is scalable to the extent that it retains
the desirable quality of low link complexity in a
network of a significant number of nodes,
although it is dependent on using optical
interconnects, which may not always be
economically viable.

3.2 Extended Incomplete Mesh

The Extended Incomplete Mesh is a specific case
of a general approach to incremental design of
scalable interconnection networks using basic
building blocks proposed by Yang and Ni
[YNOO]. The networks are constructed in such a
way that they can be scaled up by as few as one
building block each time while requiring little or
no rewiring and maintaining high bisection
bandwidth and short diameter. Though the
authors intend for this incremental design
approach to be generalized for any topology, we
refer only to the extended incomplete mesh for
ease of describing the approach.

Figure 1: A 2-D Extended Incomplete Mesh

An incomplete mesh is formed by removing
some nodes in a mesh, such that no remaining
node is unconnected and only the channels
connecting the remaining nodes in the original
mesh remain. An extended incomplete mesh is
an incomplete mesh with some additional
channels between some pairs of boundary nodes
along the same dimension but in opposite
directions. An example of an extended
incomplete mesh is shown in Figure 1, where the

west channel of A is connected to the east
channel of B. Without A, the topology is an
incomplete mesh. The extended incomplete mesh
is designed to use X,Y dimensional routing.

When A is added to form an extended
incomplete mesh, it is connected to its southerly
neighbor and also B. As a result, A can also be
seen as both being in its position shown in the
figure and in position A’. This allows A to send
messages to other nodes by X,Y dimensional
routing.

When sending a message from A to another node
using X,Y dimensional routing, the position A’
can be used to compute the message header. A
can be distinguished from other nodes using a
flag bit.

If the additional channels that map A to A’ are
treated as X-direction channels, then there is no
cycle in the channel dependency graph based on
X,Y dimensional routing, and therefore the
incomplete mesh is deadlock free. When more
nodes are added, there are cases where the
additional channels introduce alternative non-
minimal routes, which need to be disallowed to
ensure that the network remains deadlock free.
When adding nodes, care must be taken to avoid
deadlock.

Nodes must be added in a systematic way,
shown in Figure 2. Suppose there is already a
square or rectangular 2-D mesh. To add a node,
suppose there is an axis that lies in the X
dimension and divides the mesh into two equal
halves. The next node is added to the east side of
the mesh on or beside from inside to outside
until a complete mesh is obtained. The same

Figure 2: Order of adding nodes

method is applied for adding nodes on the north
side of a complete mesh. Figure 2 shows the
order in which nodes are added to obtain the
incomplete mesh.

The incremental building approach obviously
emphasizes incremental scalability indeed does
well. It deserves credit as an innovative method
to tackling the problem. The extended
incomplete mesh can maintain bisection
bandwidth and short diameter, and can also
avoid deadlock. Rewiring is almost always
unnecessary when adding nodes to the topology.
However, routing becomes a little more
complicated, since extra care must be taken to
prevent deadlock even with previously deadlock
free routing. Consequently, more information
must be maintained at each node and routing
tables may lose the simplicity provided by X,Y
dimensional routing. Although incomplete
meshes give a lot of freedom in constructing
irregular topologies, a regular topology is still
desired to simplify routing. The extended
incomplete mesh is very scalable, though more
on a small, incremental scale than on a large,
expansionary scale, since it is ultimately similar
to a mesh topology.

3.3 Virtual Bus

The Virtual Bus architecture was designed by K.
C. Lee to handle the bursty traffic generated by
the parallel processing of data intensive
applications while placing a high priority on
scalability [Lee93]. While many previous
instances of parallel processors using time
division networks have glossed over the
scalability problem mentioned in Section 2.3 by
exploiting the locality of data accesses to reduce
the amount of traffic on the interconnection
network, certain applications do not exhibit this
property. Hierarchical topologies that take
advantage of the locality property are rendered
useless in these cases. Yet all applications that
are supported must have their performance
requirements met by the interconnection
network. With these considerations in mind, the
author proposes an architecture to tackle afresh
the scalability problem for dynamic nonuniform
communication.

The virtual bus employs a packet-parallel time-
space-time switching architecture, consisting of
multiple time division switches that are

connected by a single nonblocking space
division switch. The architecture exploits the
ability of time division networks to share

bandwidth among multiple nodes and handle
nonuniform traffic without significant

performance degradation, while using the central
space division switch to scale up the time

division switches, which do not scale well
themselves. The object of the architecture is to
enable the entire interconnection network to
appear virtually as a bus to the nodes connected
to it.

The configuration proposed by the author and
shown in Figure 3 involves a three-dimensional
space division switch, implemented as an output-
buffered crossbar switch, that facilitates
communication betweeM bus clusters, which
are in fact time division networks and can be
further partitioned as necessary into local buses.
Figure 4 aids in the visualization of the
functionality and structure of the space division
switch. The packet size of the network is also the
height of the switchH. Since switching entire
packets in parallel requires very fast arbitration,
using a high speed variable round-robin arbiter is
suggested.

cluste 1

clusteg 0 space

switch

cluste M-2

cluste M-1

Figure 3: Virtual bus configuration

\ /
A
— L —»
‘ - MKst and
H bits T switch frofm clifters
_ slices ﬁ
v — //
v
/ \

Figure 4: Datapath for 3-D space switch

To evaluate the scalability of the virtual bus, we
assume that the packet size lisand that the
datapath width,H is bounded by 1<H <L.
Everything else being equal, B/H by N/H
switch with a H bit datapath, like the one
employed in the virtual bus architecture, is
equivalent to aN input by N output 1-bit wide
switch in terms of switching throughput. The
space complexity of & by N bit-serial crossbar

switch is O(N2) as opposed t@(NZ/H) for our
space switch of heighH.

For the time switched portion of the network,
since each of thé&l nodes require$l drivers to
drive the packet-wide datapath, we have
complexity of O(NH). Setting the constants for
the asymptotic complexities of the space and
time switched networks equal, we arrive at a
total complexity ofO(N(N/H + H)). (Discarding
the constants in the asymptotic complexities
gives us just a ballpark figure for the total
complexity, but this will suffice for our
scalability evaluation.) Fromlthis figure, we see
that the optimaH is rougthN/z, which puts the
optimal complexity of the virtual bus @(NNVZ),

which is a much better result than tﬁléNz) we
would expect from the simple crossbar switch
that has similar functionality and throughput.

The virtual bus scores points just for its simple
and novel idea of fitting together dissimilar
networks in an attempt to harness the positives
that each type of network brings. It is also easy
to incrementally scale up the system by adding
further cluster buses and space division switches
if needed to facilitate more nodes. However, it
appears that the network is not truly scalable if
the packet size is not scaled accordingly as well.
Keeping the packet size constant and adding
more nodes does not increase the bisection
bandwidth, while adding more space division
switches will increase the network complexity
significantly. We feel that the scalability of this
system is overly dependent on the usage of an
optimal packet size.

The architecture suffers from several
disadvantages like the short amount of time in
which it has to perform arbitration and the
increased likelihood of electrical issues regarding
the many packet-wide buses in the system, which
may arise when scaling up, especially if signals
have to go off chip. In this scenario, the number
of pins on a chip and the clock frequency may
limit performance.

Although we note that the author relied on many
assumptions in arriving at a favorable result, the
architecture does have some merit and, while
probably not achieving the ideal scalability

outlined in the paper, still represents an
improvement in scalability over that of purely

space or time division networks. While far from

perfect, we tended to be more lenient when
examining the virtual bus because it does not
claim to be the answer to all scalability concerns,
but was designed specifically to meet

performance requirements for certain types of
applications.

4. Comparisons

As in all engineering activity, there exist
tradeoffs between the various architectures
presented. A summary of these advantages and
disadvantages are presented in Figure 5.

The hybrid tree has constant node degree, giving
rise to low link complexity, low serialization
latency and fewer channels needing to be added
per additional node. Its binary tree structure
allows for simple routing and its fat tree structure
provides good bisection bandwidth. However, it
is not truly scalable because channels on the fat
tree must be modified to have increased
bandwidth whenever levels of nodes are added in
order to prevent bisection bottlenecks. It is not
incrementally scalable because the number of
nodes should be doubled each time to make a
complete binary tree in order to keep routing
simple. Significant rewiring is required to
expand the network and it is dependent on
optical interconnects beyond some small number
of levels.

The extended incomplete mesh is very
incrementally scalable, as one node can be added
at a time. Because nodes are added in a
symmetric way, it retains good bisection
bandwidth and short network diameter. It is

possible to maintain a deadlock-free mesh.
Complicated routing, which requires significant
extra information to be kept at each node, is
needed to fully exploit the good qualities of the
network. The topology is limited to mesh
gualities since it must be restricted to simple
topologies to retain incremental scalability.

The virtual bus handles bursty traffic well
because of its use of time division switches close
to the nodes. Being a bus network, one node can
be added at a time, making it very incrementally
scalable. However, its scalability is somewhat
dependent on the network using an optimum
packet size, only a short period of time is
available for arbitration, and having a packet-
wide bus structure makes packaging harder and
gives rise to the possibility of electrical issues,
both of which may affect performance.

It is difficult to assess the relative worth of these
three systems, especially in the absence of
realistic network traffic and performance
measurements with respect to scalability. Each
have their strengths and weaknesses and would
probably perform well or poorly relative to the
other two based on the environment in which it
is used. Hopefully, we will be able to predict the
architecture that works best based on the
characteristics of the networks that we have
researched.

We can, however, safely say that the extended
incomplete mesh does give the best results with
respect to general-purpose scalability among the
three. The hybrid tree is not very scalable and
depends on optical interconnects beyond a
certain size. While the virtual bus works well
with certain applications and traffic patterns, it is
not truly scalable either. The mesh also has its
weaknesses and does not yet give an entirely
satisfactory solution to the scalability problem,
but appears to be the topology with the widest
application among the three.

Hybrid Tree

Extended Incomplete Tree

Virtual Bus

Advantages constant node degree
simple routing

good bisection bandwidth

very incrementally scalable
retains good bisection bandwidth
retains short network diameter
deadlock can be avoided

handles nonuniform traffic well
very incrementally scalable

Disadvantages| not truly scalable
not incrementally scalable
significant rewiring needed

dependent on optical interconnects

routing is complicated
extra information kept at each nodg short time for arbitration
limited to mesh qualities

dependent on packet size

physical and electrical constraints

Figure 5: Table of pros and cons

5. Conclusion 6. References

Issues regarding scalability will continue to grow [Ni96]
in importance as interconnection networks

attempt to match the advances in processing

power. This problem is not new and is
undoubtedly the right one. Not only will

networks have to provide more bandwidth

between chips, but also as transistors shrink, [JHJ98]
manufacturers will be able to squeeze more onto

a chip, requiring efficient interconnection

networks running both on and off chip, handing
interconnection network designers problems on

two fronts. The solutions put forth in the papers

address different areas of a large problem and

vary in scope. To give a more easily assessable

and usable solution, it would help to have the

original problem recast as a more closely defined [YNOO]
problem, like in the virtual bus example, based

on expected operating conditions, although

papers that are more general in scope could be of

use as repositories of knowledge for subsequent
researchers and designers.

There are many issues connected with the design
of scalable networks and the papers did their best [Lee93]
to address issues that their authors deemed most
critical. Ni suggests a list of considerations for
scalable networks such as range of scalability,
incremental scalability, performance metrics,
switching techniques, routing and flow control,
and reliability [Ni96]. Undoubtedly many key
issues were not elaborated on in the papers and a
solution that touches on all these aspects would
be ideal. What we hope to see is a solution that
attempts to answer the fundamental question of
scalability while managing to preserve desirable
properties and not compromise other aspects of
the network, but that would be a tall order.

L. Ni, "Issues in Designing Truly

Scalable Interconnection Networks",
in Proceedings of the ICPP
Workshop on Challenges for
Parallel Processing, pp. 74-83, 1996.

E. John, F. Hudson, and L.K. John,
"Hybrid Tree: A Scalable
Optoelectronic Interconnection
Network for Computing",
Proceedings of the Thirty-First
Hawaii International Conference on
System Sciences, volume 7, pp.
466-474, 1998.

M. Yang, and L. Ni, "Incremental
Design of Scalable Interconnection
Networks Using Basic Building
Blocks ", IEEE Transactions on
Parallel and Distributed Systems,
volume 11 issue 11, pp. 1126-1140,

2000.

K. C. Lee, "A virtual bus
architecture for dynamic parallel
processing”, IEEE Transactions on
Parallel and Distributed Systems,
volume 4 issue 2, pp. 121-130,
1993.

