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This class talked about the basics of topology, definition of important concepts, quan-
titative characterization of interconnection networks and few examples to illustrate the
idea.

1 Nomenclature

The class goes through two examples and illustrates how the terminology fits in each of
those.

An interconnection network I is specified by two sets C and N∗. C represents the set
of channels. N∗ represents the set of nodes. There is a distinguished set N ⊆ N∗, that
represents the set of terminal nodes. We often refer to the number of terminal nodes in
a network as N instead of |N | and likewise for the number of channels.

In Figure 1, N∗ = N = {0, 1, 2, 3, 4, 5, 6, 7}. This kind of network is termed as a
direct network and N denotes the set of nodes. In a direct network every node is both a
terminal and a switch.

In Figure 2, N = {0, 1, 2, 3} and N∗ = {0, 1, 2, 3, 0.0, 0.1, 1.0, 1.1}. Here N and N∗

are different.
The degree of a node x is specified by δ, which is the sum of the number of input and

output channels connected to the node. We often split δ by δI , the in degree and δO, the
out degree.
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Figure 1: An eight node ring.
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Figure 2: A 2-ary 2-fly network

The degree of node 0 in Figure 1 is 4. Because there are two bi-directional channels
attached to it. The in-degree of the node 0, δI is 2 and the out-degree, δO is 2. The
degree of the switching node 0.0 in Figure 2 is 4, with δI = 2 and δO = 2. Because they
are unidirectional channels.

The bandwidth of a channel c ∈ C is bc = fcwc. fc is the rate at which bits are
transported on each signal. wc is the number of parallel signals the channel contains.
The latency of a channel tc = lc/ν, where lc denotes the length of the channel and ν
denotes the propagation velocity.

A cut of the network is two sets N1 and N2 such that N1∪N2 = N∗ and N1∩N2 = φ.
A bisection of the network is a cut with |N1| approximately same as |N2|. A minimal
bisection is a bisection that cuts minimum number of channels. We define a channel
bisection Bc as the number of channels cut by a minimal bisection of the network. For
example in Figure 1 Bc = 4 and in Figure 2 Bc = 2. We are interested in bisection
because it gives a bound on the throughput.

A path is an ordered set of channels P = {c1, c2, ..., cn} where dci
= sci+1

for i =
1...(n − 1). The length or hop count of a path is |P |. A minimal path from node x to
node y is a path with smallest hop count. We denote the set of all path from x to y as
R′

xy. The set Rxy ⊆ R′

xy is the set of all minimal path from node x to node y. H(x, y)
is the hop count of a minimal path from x to y. The diameter of a network Hmax is the
largest minimal hop count over all pairs of terminal node of the network.

Hmax = max
x,y∈N

H(x, y)
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In Figure 1 Hmax = 4. In Figure 2 Hmax = Hmin = 3. If a network has N terminals and
switches of degree δ, then Hmax ≥ logδ/2

N . The ring network doesn’t achieve the lower
bound on Hmax asymptotically.

2 Traffic Patterns

The traffic pattern is represented by a matrix Λ, where each entry λs,d gives the fraction
of traffic sent from node s to node d.

∑

s

λs,d = 1
∑

d

λs,d = 1

A very trivial example of Λ is a permutation matrix Π, where each column has one 1
and each row has one 1. We will look at two special classes of permutation called bit
permutation and digit permutation (bit permutation is a special case of digit permutation
where digites are binary). In a digit permutation, each (radix-k) digit of the destination
address dx is a function of a digit sy of a source address. A bit permutation di = sb−i−1( b
is size of the address), is called a bit reversal permutation. Each node sends its traffic to a
destination with the address digit reversed. For example in Figure 1 the node 0 (Address
000) sends to 0 (Address 000), 1 (001) sends to 4 (100), 2 sends to itself, 3 sends to 6 and
so on. Similarly we can also do digit permutation, where each node address is a radix k
number.

3 Throughput

We define load on a channel c, denoted by γc, the amount of traffic that must cross the
channel if each input injects one unit traffic according to a given traffic pattern. The
maximum channel load γmax = maxc∈C γc . The channel corresponding to γmax is a
bottleneck channel and thus determines the throughput. Because we can put as many
traffic as we want on input until the bottleneck channel saturate.

For example consider the eight node ring shown in Figure 1. Lets consider a random
traffic pattern and minimal routing algorithm. We pick the channel 2 → 3 is called c. In
this example node 7 contributes 1

16
of its traffic to the load of channel c. Similarly, node

0 contributes 3

16
( calculated 1

8
+ 1

16
), node 1 contributes 5

16
, node 2 contributes 7

16
of their

respective traffic. All this sums to 1. Here γmax is equal to 1. In Figure 2 γmax = 1 for
uniform random traffic pattern.

The ideal throughput of the topology Θideal:

Θideal =
b

γmax

where b is the bandwidth of the bottleneck channel. If we apply b/γmax amount of traffic
to all the input, then the bottleneck channel will have load of b which is its capacity. So
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we can apply Θ∗Λ as the load to all the inputs. That would exactly load the bottle neck
channel to its capacity.

There are two useful bounds that we can put on the ideal throughput. One of them
is a bisection bound. In Figure 1 with uniform traffic pattern, half of the traffic has to
cross the bisection. For N node ring N/2 traffic has to cross the bisection. So bound on
γ is N/2 traffic has to cross Bc channels.

γmax ≥ N

2Bc
=

8

2 ∗ 4
= 1

The equality is achieved if the bisection is loaded uniformly and bisection is the bottleneck
point. Another way of comming up to the bound is by using average hop count . For the
figure 1 :

Havg =
0 + 1 + 2 + 3 + 4 + 3 + 2 + 1

8
= 2

Each traffic will use 2 links. To send all the traffic we need N ∗ Havg number of links.
Hence :

γmax ≥ N ∗ Havg

C
=

8 ∗ 2

16
= 1

4 Latency

The latency of a network is the time required for a packet to traverse the network, from
the time the head of the packet arrives at the input port to the time the tail of the packet
departs the output port. There are two main components of the latency:

• Head latency : The time required for the head of the message to traverse the
network. It has three main components.

– The router delay tr

– The time of flight tw

– The contention delay

• Serialization latency : The time required for the rest of the message to catch up.

The Figure 3 describes the latency of a packet in the absence of contention. From the
time message arrives at the node it takes some amount of time tr before it leaves that
node. This is called the router delay. When the message arrives, the router looks at part
of the header to see how to route it, makes a decision how to route it, allocates resources
to it and eventually it gets to leave the node x after time tr. It takes some amount of
time txy, the time of flight to reach the node y. Eventually it reaches the destination.
Then rest of the message catch up in time L/b (serialization latency).

T = Th + Ts
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Figure 3: Gantt chart showing latency of a packet traversing two channels in the absence
of contention

Th = Htr + Davg/ν + Tc

Ts = L/b

The total latency is describe in the above equations. If we look at the equation without
contention delay, then the latency is called zero other load latency. This is the time taken
by a packet to reach its destination, if there are no other packets in the network. We can
decrease serialization latency by widening the channel. We cannot increase the channel
width indefinitely. The pin count(or packaging constraints) limits how wide a channel
can be made. At every package boundary we have a limit on the bandwidth. Consider
a ring network with bandwidth of a node, Bn = 128Gbps and bisection bandwidth
Bs = 1024Gbps. The bandwidth of the channel bc satisfies following constraints:

bc ≤
Bn

δ
=

128

4
= 32Gbps

bc ≤
Bs

Bc
=

1024

4
= 256Gbps

Hence this network is pin limited. We don’t want our system to be pin limited, because we
are throwing away lot of system bandwidth. We want to saturate the system bandwidth,
that would give us the most global bandwidth with the given packaging technology. We
dould like to saturate both node and system bandwidth. Usuallly we win by operating
on the edge.
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Figure 4: A 2-ary 4-fly network

5 Butterfly Network

The Figure 4 shows a binary 4-fly butterfly network. In general a k-ary n-fly butterfly
network has n stages and k is the radix of each switch. Table 1 shows some information
about a general k-ary n-fly network. Each terminal has an address of n-digit radix-k
number, {dn−1, dn−2, ..., d0}. Each channel at each stage has address of n-digit radix-k
number. The address of a switch node is a n−1-digit radix-k number. The first n−1 digit
of a terminal address corresponds to the switch, it is connected to. The wiring between
the stages permutes the terminal address. Between stages i − 1 and i (numbering starts
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Number of stage n
Degree of a switch, δ 2k
Total number of terminal, N kn

Total number of switch nodes n ∗ kn−1

Diameter, Hmax n + 1

Table 1: Information about a k-ary n-fly network

from 0) the wiring exchanges digits dn−i and d0. For example in the stage 0, the channel
10 (0.1010) goes to 3 (0.0011) as shown in the Figure 4. Similarly wire 6 of stage 1 goes
to 3.

Channel load on every butterfly network under uniform traffic pattern is equal to one.
All traffic evenly splits everywhere. There is no path diversity in a k-ary n-fly network.
This can lead to significant degradation in throughput due to load imbalance across the
channels when traffic pattern is not uniform.

6 Packaging

Consider packaging a butterfly network. We have two constraints on the packaging.
Wiring constrains Wn per node and Ws across in the middle of the system. Channel
width of a butterfly network:

W = min(
Wn

δ
,
2Ws

N
) = min(

Wn

2k
,
2Ws

N
)

In butterfly network half (N/2)the wire cross the bisection. We would like to satisfy both
the constraints at the same time.

Wn/2k = 2Ws/N → k = NWn/4Ws

For example consider Wn = 128, Ws = 1024, N = 256. Table 2 shows width of
a channel, W and the diameter, H in different networks. For k = 2 the diameter is

k Wn/2k 2Ws/N W H
2 32 8 8 9
4 16 8 8 5
8 8 8 8 4
64 1 8 1 3

Table 2: Packaging a butterfly network

large. k = 8 satisfies both of the constraints simultaneously. For k=64 we are giving
up throughput by not using all the system bandwidth and serialization latency would be
large because of single bit channel.
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Figure 5: 2-dimentional view of a butterfly network

Figure 6: 2-dimentional view of a butterfly network with extra stages

7 Path diversity

In butterfly network there are no redundant paths. Therefore an adversary can choose a
particular traffic pattern to reduce the throughput. For example in the butterfly network
shown in Figure 4 if 0, 1, 8, 9 send their traffic to 0, 1, 2, 3 then the link 1.0000 is used by
all these channels. If we rotate one bit left in 0, 1, 8, 9, we get 0, 1, 2, 3. Here γmax = 4.
In general if we apply ”rotate one bit left” traffic pattern then we get γmax =

√
N . This

is a very serous degradation in performance if the network is very large.

This traffic concentration is easy to visualize if we draw out butterfly network in two
dimensions as illustrated in Figure 5. The figure shows that a k-ary n-fly can be thought
of as 2n/2 y-axis switching planes, each with 2n/2 switches per stage followed by an equal
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number of z-axis switching planes with the same number of switches per stage.
If all the nodes in vertical plane sends their traffic to all the nodes in one horizontal

plane then a single channel would carry all this traffic. The easy solution to this problem
is to add extra stages as shown in Figure 6. The extra stages is used to distribute the
traffic uniformly over the channels. However congestion can still occur entirely within
the vertical plane. We can for example divide each vertical plane into two n/4 stage
network and concentrate the traffic at the junction of these two networks.

The load balance problem for butterflies can be solved by duplicating all n stages of
the network. The resulting 2n-stage network is called a Beneš network.


