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Introduction

In this paper, we examine performance aspects of fat-tree topol ogies and compare these to k-ary n-
cube topologies. In particular, we apply the analytic techniques devel oped for cube topol ogies upon fat
trees to understand better the characteristic of that topology. The organization of this paper is asfollows:
Section 1 contains an overview of k-ary n-cube and fat-tree topologies. Section 2 contains a discussion of
baseline assumptions used in modeling these network topologies. Section 3 contains an analysis of
network performance in terms of bisection bandwidth and network latency. Lastly we conclude in Section

4 with a general overview and criticism of the papers we read.

1. Topology Overview

Fat Tree Topology

Fat tree network topologies was first presented in theliterature in [Lei85]. They are represented
by a tree with the intuitive characteristic that the edge capacity get "thicker further from the leaves’
meaning that the capacity of the network closer to theroot islarger than that towards the leaves. Fat trees
are organized with processing elements at the leaves, and router nodes at the root and intermediate nodes.
M essages entering a routing node from the parent link may leave from any of the children links; messages
entering from a child link may leave through ether ancther child link or the parent link. In contrast to
meshes and tori, fat trees are acyclic and therefore deadl ock free.

Let us now characterize the basic properties of fat trees. For this paper we describe fat trees as k-
ary n-trees where the use of k and n is analogous to k-ary n-fly butterfly networks. For fat trees, k

represents the number of logical children nodes of a given parent node, while n represents height of the

tree. N represents the number of processor nodes found at the leaves, N = k" . Edge capacities grow with
the height of the tree, and growth rates are constrained by a volume-universality criterion (discussed
below). Increasing capacity implies a proportionate increase in pins for routers closer to root, which in

practice may result in an unpackagable number of pins. Thisis handled in two ways. First, the actual



implementation of the fat treeis usually done through a hyper-tree topology detailed in the next section.
Second, the parent edge capacity of routersin fat trees may be concentrated. Concentration in afat tree
network means the parent edge capacity of a node is less than the sum of the children edge capacities.
We first consider the fat tree construction based on the node design in [Lei85] and the
interpretation by [DeHon90]. We consider designs that are volume-universal, in which successive levels

towards the root of the fat tree increase in bandwidth at a rate that conserves the rel ationships given by
Bua
v L Number of Terminals

where
B © Bisection bandwidth
v ° volume
a ° Surface Areaenclosed by given v

ap v¥?
For ak-ary fat tree, where k isthe number of child links of atree node, the volume increases between

stages according to the relationship

v. . = kv

i+1 i
wherethetreelevd i is numbered from leafnode=0 to root=n.

The bisection bandwidth must increase by at least

Bi a = k% Bi
from leve to leve in order to preserve volume-universality. Volume universality of fat treesisthe key idea
of [Lei85] which makes use of this assumption to prove a communication latency relationship between fat
trees and any other network with equal volume-cost. Leiserson provesthat it takes O(t |93 n)time to
route a message that would routein t time in any other network with equal volume-cost. The implication is
that universal fat trees can simulate any other routing topology in polylogarithmic time for the same
amount of hardware volume proving that fat-trees are close to ideal in a theoretical-computational sense.

[Lei85] applies proves volume-universality on a binary (k=2) fat tree. But his conclusions should

be applicable to any k-ary tree as long as surface area to communication rate relationship should still hold.



Hyper-Tree

Hyper-trees are a variation of the fat-tree topol ogy that follows realistic pin constraints. Unlike
[Lei85] fat trees, router nodes have up to k many parent edges, and the parents notes and children within
thelocal sub-tree are fully bipartite. In other words, each child node sees the same set of parent nodes as

the other children, and the parent nodes see the same children. Concentration is allowed. The number of
internal nodesis N, = nk ™ *assuming no concentration and the number of terminal nodesis N = k".

Hence we find that N, the total number of internal nodesin the fat tree without concentration is
N,y (ko) = &+ 1%
ek g

This equation provides an upper bound on the router node count. One problem with the hyper-treeisthat,
though it is referred to several times, a strong definition does not exist in the literature.
k-ary n-cube Topology

k-ary n-cubes are networks with n dimensions and k nodes in each dimension. The width of links
between nodesis uniform across al nodesin the network. We consider only tori, in which each row of k

nodes in each dimension is connected in aring.

2. Baseline modeling assumptions
Prdiminary investigations in the literature assumed that

network latency can accurately be measured by hop count (a constant)
link width is independent of dimensionality

These assumptions tended to favor high-dimension, low hop count topologies (such as hypercubes).

As networks grow in size, constraints imposed by packaging and cost become significant. Dally introduces
the concept of a constant bisection constraint [Dal90] to capture the cost related to the complexity imposed
by wiring, in order to more fairly compare cost-equivalent networks. Agarwal introduces the concept of a
constant node size congtraint, which captures the costs related to packaging pin-count limitations [Aga9l].
Others examine advancements in signaling and switching technol ogy, which affect the underlying latency

models of components that make up the network. For instance, Scott in [Sco94] investigates the impact of



pipelining packet transmissions, which allows the removal of transmission time from cycle time, which

makes high-dimension (high-length) topol ogies somewhat |ess unattractive than in [Dal90] and [Aga9l].

We examine networks using a combination of the constant bisection bandwidth constraint and the constant
node size constraint. We also briefly look at wire delay, and draw some conclusions about the effect of

wire delay on performance.

3. Network Performance
We begin by examining the bisection bandwidth of each topology. We then examine latency and network

performance in terms of latency in the presence of contention.

k-ary n-cube Bisection Bandwidth
Following the analysisin [Dal90], the bisection bandwidth of a k-ary n-cube torus with W-wide

communication channelsis

:M,N:kn
k

Dally introduces the concept of comparing networks with constant bisection: cost of a network is directly
related to the number of wires crossing the bisection of the network, so to compare networks of equivalent
cost, we should hold the bisection of that network constant.

Applying this constant bisection constraint and normalizing to the case of the 2-ary n-cube (hypercube)
with W=1 channels, the channel width of an arbitrary k-ary n-cube with the same cost as the basdine

hypercube becomes a function of the topology k and n [Dal90]

Sl

W(k,n) = N

N X
N

Agarwal [Agarwal91] argues that packaging limitations (pins per chip or pins per board) impose a hard
limit on the total number of wires connected to a node, and this node size constraint (rather than the

bi section bandwidth) may limit the design of the network. Because of this physical limitation, we should



also consider the case wheretotal channed width out of any given node remains fixed as other topology
parameters are varied. Applying this constant node size constraint and normalizing to the case of the 2-ary

n-cube, we get the relationship:

NodeSze(k,n) = 2nW = const °© NodeSze(2,n)

_ NodeSze(2, n)
2n

\W

In both models, the link bandwidth decreases with higher dimension. Link bandwidth falls off more
rapidly with the constant bisection bandwidth constraint, compared to the constant node size congtraint.
For example, possible k-ary n-cube torus networks with 4096 nodes may be implemented in the following

ways, depending on which of these is most constraining.

4096-node network, maximum bisection bandwidth=4096

k n W, link width Node Size B, bisection bandwidth
2 12 1 24 4096

4 6 2 24 4096

8 4 4 32 4096

16 3 8 48 4096

64 2 32 128 4096

4096-node network, maximum node size=24

k n W, link width Node Size B, bisection bandwidth
2 12 1 24 4096

4 6 2 24 4096

8 4 3 24 3072

16 3 4 24 2048

64 2 6 24 768

We observe the following:

Dally's paper does not constrain node size, which may result in large node sizes for low-dimension

networks for a given bisection bandwidth. Such nodes are likely to be much more expensive to

implement than smaller nodes.

While Scott and Agarwal investigate models based on each of these constraints separately; they do not

compare the resulting network performance of these models on an equal cost basis.




Fat Tree and Hypertree Bisection Bandwidth

Using a similar framework, we can examine the bisection bandwidth in the context of fat trees and

hypertrees. Wefirst consider the fat tree construction based on the node design in [Leiserson85] and the

interpretation by [DeHon]. We consider designs that are volume-universal, in which successive levels

towards the root of the fat tree increase in bandwidth at a rate, which conserves the relationships given by

Bua

v L Number of Terminals

For ak-ary fat tree, where k is the number of child links of a tree node, the volume increases between stage

according to the relationship
v, =kv,_,

, i
The bisection bandwidth must increase by at least
B =k*B_,
from level to level in order to preserve volume-universality.
We have the following relationships
levels=1log, N -1

O levels-1

Niw(kn)=a,_, ki

NodeSize =k ¥ +k**W

B = (k> +kW b W, =k2TB+k,bidirectiona links

4096-node network, flat fat tree, fixed max bisection bandwidth

k Levels, n routers Root Root Leaf-node | Link |eaf-node

Node Size | Bisection Node Size | Width, Bisection
Bandwidth leaf-node | Bandwidth

2 12 2047 4096 4096 25.4 7 25.4

4 6 1365 4096 4096 40.3 6.2 40.3

8 4 585 4096 4096 64 5.4 64

16 3 273 4096 4096 102 4.6 102

64 2 65 4096 4096 256 3.2 256




For the hypertree, we fix the router size and use multiple routers for each logical node. Given a growth rate

of G per level (G® k?® to preserve volume universality) we have a router count of

Ny (k,n) = Q

i=n-
o

i=0

1 . .
len-l

4096-node network, hyper tree with fixed node size=24; minimum G = k?°

k Levels,n | Node Root Leaf-node | leaf-node | leaf-node
Size, Bisection Node Size | Link Bisection
Root Bandwidth Width Bandwidth

2 12 162x24 3870 24 6.7 24

4 6 102x24 2438 24 3.7 24

8 4 64x24 1536 24 2 24

16 3 41x24 968 24 1.07 24

64 2 X X 24 <1 X

k-ary n-cube Baseline L atency

The baseline latency modd is

T; = Tnet + Tnode

In [Dal90] concentrates on deriving T, which isalatency model based on serialization delay and routing

delay astherouting delay is well documented in other papers. [Aga91] contributes T _ contention term to
mode blocking in terms of latency but we don't consider this at this point. To simplify our work we deal

with T, :

T eTfbele
e Wg

L
D is average hop count with uniform distribution of destinations, and V_V isthe serialization delay if the

packet sizeislarger than the width of thewire. Dally's[Dal90] models T, channel time as either a

constant, short wire or long wire delay in order to characterize the range of physical wire models. Constant
delay is provided to clarify examples though is unrealistic. For short wires, delay is essentially based on

capacitive loading of the wire dependent on wire length | and is logarithmic of I

t, =telog, Kl



For very long wires, wire delay looks like a transmission line, which has a delay proportionate to the speed

of light; hence delay is proportionate towire length |.

Dally then normalizes away the coefficientsto find T, channel time based on n and k using the following

length equation.

We use Agarwal explanation of the derivation to understand how length isrelated to n and k. Theright

hand side of the equation is trying to map an n dimensional network onto a 2-dimension physical plane.
Each network dimension contributes factor k nodes, and\/F distance to each dimension in the physica

plane. The T" (2) term normalizes out a baseline 2-D distance between nodes. Note thisis generalized to

n
the z-dimensional case asfollows: | = k2

For some source node, the mean number of hops to a destination node assuming uniform distribution of
destinationsis
15
D= ?‘—Qn
e 2 g9
We use the above planar length model to find T in terms of k an n, and subsequently T, from

either the linear or logarithmic delay model. Using alogarithmic delay model (applicable to short wires),

T, 1 1+log, | =1+(2- Dlog, k
hence

n ak-1o L0
T =Ccl+(=- Dl kg: —n+—=

Using alinear delay model (applicable to long wires),

Tul = k 2 °

C



hence

@ 10mk-10 L0
T :kzggi—%+—¢
; 2 /] W 1]
In order to validate my own calculations, we plotted out the equation for constant bisection bandwidth
obtaining similar but not exactly the same results as Dally. Dally finds that for N=256,16384 that the

minimum latency points are n=2,4. Our results concur giving us confidence that the following spreadsheet

models arein working order’.

Fat tree Latency
Following the above method we build a latency modd for fat trees. We find the average hop
count D, assuming uniform distribution, using the observation that packets as they are routed up the tree

will take a child exit proportionate to the size of the sub-tree. Thisis summed up as

p=2§ &2 & 19
wekg e k g

Traffic through the root node dominates asillustrated in Figure 1.

n k D
1.00 16384.00 2.00
2.00 128.00 3.98
3.00 25.40 5.92
4.00 11.31 7.80
5.00 6.96 9.60
6.00 5.04 11.50
7.00 4.00 13.33
8.00 3.36 15.00
9.00 2.94 16.00
10.00 2.64 18.00
11.00 2.42 20.00
12.00 2.24 22.00

13.00 211 24.00
14.00 2.00 26.00

Figure 1. Fat Tree Average Hop Count

To ssmplify our Fat Tree latency approximation, we simplify D to

D=2n



at the cost some additional error in the range of 0 to +2 which should be conservative since we are adding
to hop count.

The wire length derivation for fat trees below is motivated by the analysis method used on the k-
ary n-cubetopology in [Dal90]. Since we are concerned with a physical model of afat tree, we use a
hyper-tree. First we observethat starting from the root, the k sub-trees of the root will only communicate
within that sub-tree and to its parent. This partitioning isrecursively applied. We use this observation to
find the wire distance for each stage. We approximate this by first finding the number of channels C
between each stagei in a sub-tree where i=0 at the terminals, and assuming no concentration.

C =k(k")=k'

Aswires have a crass section, the number of channels-in ratio to the channdls at root is proportional to the

surface area as follows
ApC =k""
We normalize out the K" term. Tofind length | of stagei (i=0 level isthe terminal nodes parent channels;
n represents the height of the tree), we take the diagonal of thisto get
| Ki'2
Next we use the observation that communication delay at the root dominates, having the worst-case wire

length.

Ii u kn/2
We normalize thisto a plane resulting in the following approximate relationship

I - kn/2»l
Because of the normalization step taken above, this length approximation is most likely not directly
compatible with k-ary n-cube.

From thiswe can find T, the channel delay as derived aboveand T, .
For logarithmic delay (short wire)

! We would provide graphs of this, except that we can't get the Excel graphing function to show the correct
results!? All we can dois provide the raw data.



Lo
T =&+ (- Dlog, kn+ =0
e 2 o W g
For linear delay (long wire)

& 214 Lo
T, =¢k? CB% +—=
-

If we hold bisection bandwidth B = NW constant and normalizeit to N by setting B = N, we find that W=1.

For fat trees, the constant-bisection constraint provides freedom on k and n so long asit obeysN. Hence
graphing T, would seemingly lead usto find that the lowest possible n (a "flat" network) will give usthe

lowest latency. For physical implementation thisis unrealistic, and we should apply the constant-node

constraint from Agarwal's paper.
For constant bisection bandwidth where W =1, wefind T,

For logarithmic delay (short wire)
§i+ (= - 1log, k9(2n+ L)
For linear delay (long wire)
= gla(;l g(Zn +L)
2

NodeSze(k, n)

For constant node size, where W = >
n

,wefind T,

For logarithmic delay (short wire)

n A 2nL o
T =F+-)log kBn+—= 2
o gi (2 log, é NodeSize g

For linear delay (long wire)

B )
T, =gk? B2k 0
§ £ NodeSze g

And finally, we have the basdline latency given by



2nL 0§

T, — =
NodeSze g

base_latency

=T

node

+T, =T . +§<g_l%%n+
*

We can see from the following charts that cubes and trees have similar absolute minimal latencies using the

following formula. However, the dimensions at the minimal latencies differ:

K-ary N-Cube for const node

N 256

n k w D L/W Tnet
1 256.00 320.00 127.50 3.13 130.63
2 16.00 160.00 15.00 6.25 21.25
3 6.35 106.67 8.02 9.38 17.40
4 4.00 80.00 6.00 12.50 18.50
5 3.03 64.00 5.08 15.63 20.70
6 2.52 53.33 4.56 18.75 23.31
7 2.21 4571 4.23 21.88 26.10
8 2.00 40.00 4.00 25.00 29.00
9 1.85 35.56 3.83 28.13 31.96
10 1.74 32.00 3.71 31.25 34.96
11 1.66 29.09 3.61 34.38 37.98
12 1.59 26.67 3.52 37.50 41.02
13 1.53 24.62 3.46 40.63 44.08
14 1.49 22.86 3.40 43.75 47.15
15 1.45 21.33 3.35 46.88 50.23

K-ary N-Cube for const node

N 16384

n k w D L/w Tnet
116384.0 320.00 8191.50 3.13 8194.63

0

2 128.00 160.00 127.00 6.25 133.25
3 2540 106.67 36.60 9.38 45.97
4 11.31 80.00 20.63 12.50 33.13
5 6.96 64.00 14.91 15.63 30.54
6 5.04 53.33 12.12 18.75 30.87
7 4.00 45.71 10.50 21.88 32.38
8 3.36 40.00 9.45 25.00 34.45
9 2.94 35.56 8.73 28.13 36.85
10 2.64 32.00 8.20 31.25 39.45
11 2.42 29.09 7.79 34.38 42.16
12 2.24 26.67 7.47 37.50 44.97
13 211 24.62 7.21 40.63 47.84
14 2.00 22.86 7.00 43.75 50.75
15 191 21.33 6.82 46.88 53.70

K-ary N-Tree for const node size
N 256



L 150

NodeSize 640

n k w D L/W Tnet

256.00 1.25 2.00 120.00 122.00
16.00 20.00 4.00 7.50 11.50
6.35 50.40 6.00 2.98 8.98
4.00 80.00 8.00 1.88 9.88
3.03 105.56 10.00 1.42 11.42
252 126.99 12.00 1.18 13.18
221 144.92 14.00 1.04 15.04
2.00 160.00 16.00 0.94 16.94

coO~NO O WNLBE

K-ary N-Tree for const node size

N 16384
L 150
NodeSize 640
n k w D L/W Tnet
116384.0 0.02 2.00 7680.00 7682.00
0

2 128.00 2.50 4.00 60.00 64.00
3 2540 12.60 6.00 11.91 17.91
4 1131 28.28 8.00 5.30 13.30
5 6.96 45.95 10.00 3.26 13.26
6 5.04 63.50 12.00 2.36 14.36
7 4.00 80.00 14.00 1.88 15.88
8 3.36 95.14 16.00 1.58 17.58
9 294 108.86 18.00 1.38 19.38
10 264 121.26 20.00 1.24 21.24
11 242 13244 22.00 1.13 23.13
12 2.24 14254 24.00 1.05 25.05
13 211 151.69 26.00 0.99 26.99
14 2.00 160.00 28.00 0.94 28.94

This table does not fully take into account the increased wire latencies of the fat tree, which in general must
traverse much longer distances. In general, the worst-case wire length, assuming a hollow-cube

construction [DeH90], is proportional to

o M 3K

s0 asthe number of terminals grows, the worst-case wire length grows much morerapidly in the fat tree.

k-ary n-cube latency with contention
Following [Dal90] and [Aga91], the latency of messages with contention due to randomly distributed

traffic of different k-ary n-cube implementations of an N-node is given by



T =T +T

contention_latency — ' base_ latency c
where the total waiting time due to contention is derived in [Dal90]. We reproduce a numerical example
from [Dal90] below to give the reader a sense of the latency-contention trends, but the reader is referred to

[Dal90] for details of analysis.

kK n Max throughput | Latency | =0.1 Latency | =0.2 Latency | =0.3
2 12 41 241 288 357
4 6 .36 135 181 287
8 4 31 79.9 112 245
16 3 31 55.2 70.3 135
64 2 .35 70.7 73.1 78.6

Fat Tree latency with contention
From [Lei85], the latency of afat tree with the same traffic as an equivalent (Nsaree=Neune) K-ary n-cubeis

provably within a polylogarithmic factor of the latency of that k-ary n-cube.

3
Tlatency, fattree Ii Llatency,k— ary,n- cube ><Ig N
However, Leiserson does not investigate the detail s of construction that make up this proportionality
constant, which iscritical for comparing real systems. For thisinvestigation, we follow the analysisin

[Dal90].

Following the assumption made above in the basdline latency cal culations, we assume that for our worst-
case latency, we need to pass upward through all levels of the fat tree before descending towards the
destination endpoint. We assume a random uniform distribution of destinations for any given source node.
Note that as a consequence, the probability of routing from a child-link to a parent-link is much higher
towards the leaves of the tree, where the subset of nodes reachable by the sub-tree rooted at that level is

small compared to the set of all possible destinations.

If we consider a k-way node on levd i (i=0 at the leaf-level of thetreg; i=n at theroot level of thetree), we

have the following probabilities:

Out of the k™ sub-trees at the current level i, k™ -1 sub-trees are reachable only viaa parent link. The




probability of a message entering from a child link and exiting on a parent link (Pcp) is

Pox = —~ (not normalized); Py =
k™' Poc T (K- 1P,

cpx

(normalized)

Out of the k™** sub-trees at the level below i, k sub-trees are reachable via a lateral route from child-node

to child-node. The probability of a message entering from a child link and exiting on a child link (Pcc) is

k _ P.. _
P = =y (notnormalized); P, = (normalized)
k™! P T (kK- 1P,

Downward packets are evenly distributed among children links, since destinations are assumed to be

uniformly distributed. The probability of a message entering from a parent link and exiting on a child link

(Ppc) is

T
I
x|

pc

Because of the asymmetry of probahilities, we consider the route into two parts: the up-route from the
source to the root, and the down-route from the root to the destination. Probabilities of collision for each of

these routes are

P =1- (1- P!

collison_up ™

P

— k-1
collison_down — 1- (1' Pod) de
We assume a blocking flow control in which the rate of packets| isequal acrossall logical links, and
compute the effective waiting time T,,, which we add to the basdline latency to give us the resultant latency

for agivenl! .

To afirst-order approximation, the expected waiting time given acollision is
E(T, |collison) =T, /2
The waiting time of a message each level up is

T

w_up,i = I:)collis'on_up

E(T,, |collison)l T,

p,i+1



and each level down is

T =P

w_ down,i collision_down

E(T,, | collision)!l T,

own,i-1

Waiting time at each nodeis given by

Tup,i = Tup,i+lTw_up,i
Tdown,i = Tdown,i— 1Tw_down,i
Tdown,n = Tup,n

The network saturates when the duty factor is one.

| Typo =1
| = 1
st
Tup,O
Total time waiting due to contention is
g
Tc = a Tw_up,i +Tw_down,i
i=0
and latency becomes
Tlatency,contention = Tlatency,baseline + Tc

We observe that P, is close to 1 for levels near the bottom, while Py islow at 1/k, so contention for
upward pathsis high compared to the downward paths. We see that waiting time is dominated by
contention for upward channels, and can be improved by increasing growth rate of the link bandwidth
towardstheroot. In[DeH90], DeHon proposes a hybrid fat-tree by changing the linear upward path into a
tree-like structure and using a greater link-width growth rate to reduce hop-count and upward contention.

However, asthe network is scaled, the bottleneck is still the upward links toward the root.

Conclusions

k-ary n-cubes VersusFat Trees
Our calculations show that the fat treeis competitive with, and in some cases achieves |ower latencies

than, the k-ary n-cube. However, the routing lengths grow much more rapidly in the fat tree compared



to the k-ary n-cubes, as the number of endpoints grows. This effect is akey limiter to the performance
of fat treesfor larger N.
Logical nodes of fat trees are nonuniform in capacity or connectivity (depending on whether fat trees
or hypertrees are used) across the network, which resultsin some non-uniformity (and potentially
added cost) in construction.  Low-dimension cubes map naturally into a 2- or 3- dimensional system
of boards and chips.
Routing decisionsin Fat Trees are less complex than routing decisions in k-ary n-cubes, which may
result in faster node latencies for Fat Trees.
Given the comparable first-order performance of k-ary n-cubes and fat trees, constraints of physical
implementation (effects like wire delay and packaging on practical bandwidth and latency) indicate
that as networks scalein size, the k-ary n-cube topol ogies will outperform Fat Trees.

Comments on Papers
When examining latency, Leiserson [Lei85] assumes off-line scheduling in which the traffic pattern is
known beforehand, and can be optimally scheduled. A subsequent paper by Greenberg and Leiserson
proves a smilar latency relationship for on-line scheduling.
Lei85 paper takes a very different approach than the k-ary n-cube papers asit triesto prove
communication properties of fat treesin theoretical sense, as opposed to finding performance metrics.
Sinceits a dated paper, it uses dated technique (store and forward flow control, SAF), and assumes that
an arbitrary SAF zero load message flight timeis the unit measure of time. To befair, it acknowledges
that it isnot an implementation paper, and leaves that for future research.
Cost-Performance: From the literature surveyed by this paper, the high-performance interconnection
field islacking a universal methodol ogy for measuring cost-performance of different network
topologiesin a uniform way. Ultimately of interest to network designersis an analysis of performance
of different topologies on an equal-cost basis, or equivalently an analysis of cost of different topologies
on an equal-performance basis. Dally in [Dal90] takes an equal-cost approach by introducing a
constant bisection bandwidth constraint. Later papers by [Aga91] and [Sco94] introduce a constant
node-size constraint to model packaging limitations, but consider each these constraints separately and

do not compare networks across these constraints using equal cost or equal performance. Lei[85] uses



amathematical proof to show the cost-performance relationship between fat-trees and arbitrary other
networks, but his assumptions of volume-universality do not address package interface constraints.
Modeling Assumptions. Network modeling assumptions vary widely from paper to paper, which
largely reflects evolutionsin packaging, signaling and switching technology, new ideasin routing and
flow control, and application-specific focus. While each new innovation is modeled in comparison
with a prior baseline modd, the lack of a uniform baseline set of assumptions makesit difficult to
compare the cost-performance benefit of innovations.

Performance metrics: Performance metrics used in each paper varieswiddly, making direct
performance comparisons of different topologies and different innovations difficult. [Dal90] uses
Chaos Normal Format for the set of networks investigated, while [Aga91] reports latency with respect
to network request rate. [Lei85] uses a mathematical proof to show that performance of all universal
fat trees are within a poly-logarithmic factor of any other equivalent-cost network. [DeH90] derives
analytical models of latency and analyses performance in terms of probability of success given offered
traffic rates. Given this non-uniform body of data, it isnot possible to directly compare the merits of

one network with another.
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