
k-ary n-cubes versus Fat Trees
Weihaw Chuang and Wilson Chin

EE482 Research Paper, Spring 1999

Introduction

In this paper, we examine performance aspects of fat-tree topologies and compare these to k-ary n-

cube topologies. In particular, we apply the analytic techniques developed for cube topologies upon fat

trees to understand better the characteristic of that topology. The organization of this paper is as follows:

Section 1 contains an overview of k-ary n-cube and fat-tree topologies. Section 2 contains a discussion of

baseline assumptions used in modeling these network topologies. Section 3 contains an analysis of

network performance in terms of bisection bandwidth and network latency. Lastly we conclude in Section

4 with a general overview and criticism of the papers we read.

1. Topology Overview

Fat Tree Topology

Fat tree network topologies was first presented in the literature in [Lei85]. They are represented

by a tree with the intuitive characteristic that the edge capacity get "thicker further from the leaves"

meaning that the capacity of the network closer to the root is larger than that towards the leaves. Fat trees

are organized with processing elements at the leaves, and router nodes at the root and intermediate nodes.

Messages entering a routing node from the parent link may leave from any of the children links; messages

entering from a child link may leave through either another child link or the parent link. In contrast to

meshes and tori, fat trees are acyclic and therefore deadlock free.

Let us now characterize the basic properties of fat trees. For this paper we describe fat trees as k-

ary n-trees where the use of k and n is analogous to k-ary n-fly butterfly networks. For fat trees, k

represents the number of logical children nodes of a given parent node, while n represents height of the

tree. N represents the number of processor nodes found at the leaves, nkN = . Edge capacities grow with

the height of the tree, and growth rates are constrained by a volume-universality criterion (discussed

below). Increasing capacity implies a proportionate increase in pins for routers closer to root, which in

practice may result in an unpackagable number of pins. This is handled in two ways: First, the actual

implementation of the fat tree is usually done through a hyper-tree topology detailed in the next section.

Second, the parent edge capacity of routers in fat trees may be concentrated. Concentration in a fat tree

network means the parent edge capacity of a node is less than the sum of the children edge capacities.

We first consider the fat tree construction based on the node design in [Lei85] and the

interpretation by [DeHon90]. We consider designs that are volume-universal, in which successive levels

towards the root of the fat tree increase in bandwidth at a rate that conserves the relationships given by

aB ∝

Terminals ofNumber ∝v

where
bandwidthBisection ≡B

volume≡v
va given by enclosed Area Surface≡

32va ∝

For a k-ary fat tree, where k is the number of child links of a tree node, the volume increases between

stages according to the relationship

ii kvv =+ 1

where the tree level i is numbered from leafnode=0 to root=n.

The bisection bandwidth must increase by at least

ii BkB 32
1 =+

from level to level in order to preserve volume-universality. Volume universality of fat trees is the key idea

of [Lei85] which makes use of this assumption to prove a communication latency relationship between fat

trees and any other network with equal volume-cost. Leiserson proves that it takes ()ntO 3lg time to

route a message that would route in t time in any other network with equal volume-cost. The implication is

that universal fat trees can simulate any other routing topology in polylogarithmic time for the same

amount of hardware volume proving that fat-trees are close to ideal in a theoretical-computational sense.

[Lei85] applies proves volume-universality on a binary (k=2) fat tree. But his conclusions should

be applicable to any k-ary tree as long as surface area to communication rate relationship should still hold.

Hyper-Tree

Hyper-trees are a variation of the fat-tree topology that follows realistic pin constraints. Unlike

[Lei85] fat trees, router nodes have up to k many parent edges, and the parents notes and children within

the local sub-tree are fully bipartite. In other words, each child node sees the same set of parent nodes as

the other children, and the parent nodes see the same children. Concentration is allowed. The number of

internal nodes is 1
int

−= nnkN assuming no concentration and the number of terminal nodes is nkN = .

Hence we find that Nint the total number of internal nodes in the fat tree without concentration is

nk
k
n

nkN 




 += 1),(int .

This equation provides an upper bound on the router node count. One problem with the hyper-tree is that,

though it is referred to several times, a strong definition does not exist in the literature.

k-ary n-cube Topology

k-ary n-cubes are networks with n dimensions and k nodes in each dimension. The width of links

between nodes is uniform across all nodes in the network. We consider only tori, in which each row of k

nodes in each dimension is connected in a ring.

2. Baseline modeling assumptions
Preliminary investigations in the literature assumed that

• network latency can accurately be measured by hop count (a constant)

• link width is independent of dimensionality

These assumptions tended to favor high-dimension, low hop count topologies (such as hypercubes).

As networks grow in size, constraints imposed by packaging and cost become significant. Dally introduces

the concept of a constant bisection constraint [Dal90] to capture the cost related to the complexity imposed

by wiring, in order to more fairly compare cost-equivalent networks. Agarwal introduces the concept of a

constant node size constraint, which captures the costs related to packaging pin-count limitations [Aga91].

Others examine advancements in signaling and switching technology, which affect the underlying latency

models of components that make up the network. For instance, Scott in [Sco94] investigates the impact of

pipelining packet transmissions, which allows the removal of transmission time from cycle time, which

makes high-dimension (high-length) topologies somewhat less unattractive than in [Dal90] and [Aga91].

We examine networks using a combination of the constant bisection bandwidth constraint and the constant

node size constraint. We also briefly look at wire delay, and draw some conclusions about the effect of

wire delay on performance.

3. Network Performance
We begin by examining the bisection bandwidth of each topology. We then examine latency and network

performance in terms of latency in the presence of contention.

k-ary n-cube Bisection Bandwidth
Following the analysis in [Dal90], the bisection bandwidth of a k-ary n-cube torus with W-wide

communication channels is

nkN
k

WNB == ,2

Dally introduces the concept of comparing networks with constant bisection: cost of a network is directly

related to the number of wires crossing the bisection of the network, so to compare networks of equivalent

cost, we should hold the bisection of that network constant.

Applying this constant bisection constraint and normalizing to the case of the 2-ary n-cube (hypercube)

with W=1 channels, the channel width of an arbitrary k-ary n-cube with the same cost as the baseline

hypercube becomes a function of the topology k and n [Dal90]

nN
k

nkW
1

2
1

2
),(==

Agarwal [Agarwal91] argues that packaging limitations (pins per chip or pins per board) impose a hard

limit on the total number of wires connected to a node, and this node size constraint (rather than the

bisection bandwidth) may limit the design of the network. Because of this physical limitation, we should

also consider the case where total channel width out of any given node remains fixed as other topology

parameters are varied. Applying this constant node size constraint and normalizing to the case of the 2-ary

n-cube, we get the relationship:

),2(2),(nNodeSizeconstnWnkNodeSize ≡==

n
nNodeSizeW

2
),2(=

In both models, the link bandwidth decreases with higher dimension. Link bandwidth falls off more

rapidly with the constant bisection bandwidth constraint, compared to the constant node size constraint.

For example, possible k-ary n-cube torus networks with 4096 nodes may be implemented in the following

ways, depending on which of these is most constraining.

4096-node network, maximum bisection bandwidth=4096
k n W, link width Node Size B, bisection bandwidth
2 12 1 24 4096
4 6 2 24 4096
8 4 4 32 4096
16 3 8 48 4096
64 2 32 128 4096

4096-node network, maximum node size=24
k n W, link width Node Size B, bisection bandwidth
2 12 1 24 4096
4 6 2 24 4096
8 4 3 24 3072
16 3 4 24 2048
64 2 6 24 768

We observe the following:

• Dally's paper does not constrain node size, which may result in large node sizes for low-dimension

networks for a given bisection bandwidth. Such nodes are likely to be much more expensive to

implement than smaller nodes.

• While Scott and Agarwal investigate models based on each of these constraints separately; they do not

compare the resulting network performance of these models on an equal cost basis.

Fat Tree and Hypertree Bisection Bandwidth

Using a similar framework, we can examine the bisection bandwidth in the context of fat trees and

hypertrees. We first consider the fat tree construction based on the node design in [Leiserson85] and the

interpretation by [DeHon]. We consider designs that are volume-universal, in which successive levels

towards the root of the fat tree increase in bandwidth at a rate, which conserves the relationships given by

aB ∝

Terminals ofNumber ∝v

For a k-ary fat tree, where k is the number of child links of a tree node, the volume increases between stage

according to the relationship

1−= ii kvv

The bisection bandwidth must increase by at least

1
32

−= ii BkB

from level to level in order to preserve volume-universality.

We have the following relationships

1log −= Nlevels k

∑ −

== 1

0int),(
levels

i iknkN

iii WkWkNodeSize 32+⋅=

() links nalbidirectio,3/2
3/2

kk
BWWkkB iii +

=⇒+=

4096-node network, flat fat tree, fixed max bisection bandwidth
k Levels, n routers Root

Node Size
Root
Bisection
Bandwidth

Leaf-node
Node Size

Link
Width,
leaf-node

leaf-node
Bisection
Bandwidth

2 12 2047 4096 4096 25.4 7 25.4
4 6 1365 4096 4096 40.3 6.2 40.3
8 4 585 4096 4096 64 5.4 64
16 3 273 4096 4096 102 4.6 102
64 2 65 4096 4096 256 3.2 256

For the hypertree, we fix the router size and use multiple routers for each logical node. Given a growth rate

of G per level (G≥k2/3 to preserve volume universality) we have a router count of

∑
−=

=

−=
1

0
int),(

ni

i

ini kGnkN

4096-node network, hyper tree with fixed node size=24; minimum G = k2/3

k Levels, n Node
Size,
Root

Root
Bisection
Bandwidth

Leaf-node
Node Size

leaf-node
Link
Width

leaf-node
Bisection
Bandwidth

2 12 162x24 3870 24 6.7 24
4 6 102x24 2438 24 3.7 24
8 4 64x24 1536 24 2 24
16 3 41x24 968 24 1.07 24
64 2 X X 24 <1 X

k-ary n-cube Baseline Latency
The baseline latency model is

nodenet TTT +=;

In [Dal90] concentrates on deriving netT which is a latency model based on serialization delay and routing

delay as the routing delay is well documented in other papers. [Aga91] contributes cT contention term to

model blocking in terms of latency but we don't consider this at this point. To simplify our work we deal

with netT :






 +=

W
L

DTT cnet

D is average hop count with uniform distribution of destinations, and
W
L

is the serialization delay if the

packet size is larger than the width of the wire. Dally's [Dal90] models cT channel time as either a

constant, short wire or long wire delay in order to characterize the range of physical wire models. Constant

delay is provided to clarify examples though is unrealistic. For short wires, delay is essentially based on

capacitive loading of the wire dependent on wire length l and is logarithmic of l:

Klet es logτ=

For very long wires, wire delay looks like a transmission line, which has a delay proportionate to the speed

of light; hence delay is proportionate to wire length l.

c
l

tl
ε=

Dally then normalizes away the coefficients to find cT channel time based on n and k using the following

length equation.

()
()

1
2

2

2

−−
===

n
n

w

w

kk
T

nT
l

We use Agarwal explanation of the derivation to understand how length is related to n and k. The right

hand side of the equation is trying to map an n dimensional network onto a 2-dimension physical plane.

Each network dimension contributes factor k nodes, and k distance to each dimension in the physical

plane. The ()2wT term normalizes out a baseline 2-D distance between nodes. Note this is generalized to

the z-dimensional case as follows:
1−

= z
n

kl

For some source node, the mean number of hops to a destination node assuming uniform distribution of

destinations is

n
k

D 




 −=

2
1

We use the above planar length model to find cT in terms of k an n, and subsequently netT from

either the linear or logarithmic delay model. Using a logarithmic delay model (applicable to short wires),

∝cT knl λλ log)1
2

(1log1 −+=+

hence





 +





 −





 −+=

W
L

n
k

k
n

Tnet 2
1

log)1
2

(1 λ

Using a linear delay model (applicable to long wires),

∝cT
1

2
−

=
n

kl .

hence





 +





 −







=

−

W
L

n
k

kT
n

net 2
11

2

In order to validate my own calculations, we plotted out the equation for constant bisection bandwidth

obtaining similar but not exactly the same results as Dally. Dally finds that for N=256,16384 that the

minimum latency points are n=2,4. Our results concur giving us confidence that the following spreadsheet

models are in working order1.

Fat tree Latency

Following the above method we build a latency model for fat trees. We find the average hop

count D, assuming uniform distribution, using the observation that packets as they are routed up the tree

will take a child exit proportionate to the size of the sub-tree. This is summed up as

i
k

k
k

D
inn

i





 −





=

−

=
∑ 11

2
1

Traffic through the root node dominates as illustrated in Figure 1.

n k D
1.00 16384.00 2.00
2.00 128.00 3.98
3.00 25.40 5.92
4.00 11.31 7.80
5.00 6.96 9.60
6.00 5.04 11.50
7.00 4.00 13.33
8.00 3.36 15.00
9.00 2.94 16.00

10.00 2.64 18.00
11.00 2.42 20.00
12.00 2.24 22.00
13.00 2.11 24.00
14.00 2.00 26.00

Figure 1. Fat Tree Average Hop Count

To simplify our Fat Tree latency approximation, we simplify D to

nD 2=

at the cost some additional error in the range of 0 to +2 which should be conservative since we are adding

to hop count.

The wire length derivation for fat trees below is motivated by the analysis method used on the k-

ary n-cube topology in [Dal90]. Since we are concerned with a physical model of a fat tree, we use a

hyper-tree. First we observe that starting from the root, the k sub-trees of the root will only communicate

within that sub-tree and to its parent. This partitioning is recursively applied. We use this observation to

find the wire distance for each stage. We approximate this by first finding the number of channels C

between each stage i in a sub-tree where i=0 at the terminals, and assuming no concentration.

() ii
i kkkC == − 1

As wires have a cross section, the number of channels-in ratio to the channels at root is proportional to the

surface area as follows

ni
ii kCA −=∝

We normalize out the nk term. To find length l of stage i (i=0 level is the terminal nodes parent channels;

n represents the height of the tree), we take the diagonal of this to get

2/i
i kl ∝

Next we use the observation that communication delay at the root dominates, having the worst-case wire

length.

2/n
i kl ∝

We normalize this to a plane resulting in the following approximate relationship

12/ −= nkl

Because of the normalization step taken above, this length approximation is most likely not directly

compatible with k-ary n-cube.

From this we can find cT the channel delay as derived above and netT .
For logarithmic delay (short wire)

1 We would provide graphs of this, except that we can't get the Excel graphing function to show the correct
results!?! All we can do is provide the raw data.

1

2

−

=

n

kl






 +





 −+=

W
L

nk
n

Tnet 2log)1
2

(1 λ

For linear delay (long wire)






 +





=

−

W
L

nkT
n

net 2
1

2

If we hold bisection bandwidth B = NW constant and normalize it to N by setting B = N, we find that W=1.

For fat trees, the constant-bisection constraint provides freedom on k and n so long as it obeys N. Hence

graphing netT would seemingly lead us to find that the lowest possible n (a "flat" network) will give us the

lowest latency. For physical implementation this is unrealistic, and we should apply the constant-node

constraint from Agarwal's paper.

For constant bisection bandwidth where 1=W , we find netT

For logarithmic delay (short wire)

()Lnk
n

Tnet +




 −+= 2log)1

2
(1 λ

For linear delay (long wire)

()LnkT
n

net +





=

−
2

1
2

For constant node size, where
n

nkNodeSizeW
2

),(= , we find netT

For logarithmic delay (short wire)






 +





 −+=

NodeSize
nL

nk
n

Tnet
2

2log)1
2

(1 λ

For linear delay (long wire)






 +





=

−

NodeSize
nL

nkT
n

net
2

2
1

2

And finally, we have the baseline latency given by






 +





+=+=

−

NodeSize
nL

nkTTTT
n

nodenetnodelatencybase
2

2
1

2
_

We can see from the following charts that cubes and trees have similar absolute minimal latencies using the

following formula. However, the dimensions at the minimal latencies differ:

K-ary N-Cube for const node
N 256
n k w D L/W Tnet

1 256.00 320.00 127.50 3.13 130.63
2 16.00 160.00 15.00 6.25 21.25
3 6.35 106.67 8.02 9.38 17.40
4 4.00 80.00 6.00 12.50 18.50
5 3.03 64.00 5.08 15.63 20.70
6 2.52 53.33 4.56 18.75 23.31
7 2.21 45.71 4.23 21.88 26.10
8 2.00 40.00 4.00 25.00 29.00
9 1.85 35.56 3.83 28.13 31.96

10 1.74 32.00 3.71 31.25 34.96
11 1.66 29.09 3.61 34.38 37.98
12 1.59 26.67 3.52 37.50 41.02
13 1.53 24.62 3.46 40.63 44.08
14 1.49 22.86 3.40 43.75 47.15
15 1.45 21.33 3.35 46.88 50.23

K-ary N-Cube for const node
N 16384
n k w D L/W Tnet

1 16384.0
0

320.00 8191.50 3.13 8194.63

2 128.00 160.00 127.00 6.25 133.25
3 25.40 106.67 36.60 9.38 45.97
4 11.31 80.00 20.63 12.50 33.13
5 6.96 64.00 14.91 15.63 30.54
6 5.04 53.33 12.12 18.75 30.87
7 4.00 45.71 10.50 21.88 32.38
8 3.36 40.00 9.45 25.00 34.45
9 2.94 35.56 8.73 28.13 36.85

10 2.64 32.00 8.20 31.25 39.45
11 2.42 29.09 7.79 34.38 42.16
12 2.24 26.67 7.47 37.50 44.97
13 2.11 24.62 7.21 40.63 47.84
14 2.00 22.86 7.00 43.75 50.75
15 1.91 21.33 6.82 46.88 53.70

K-ary N-Tree for const node size
N 256

L 150
NodeSize 640
n k w D L/W Tnet

1 256.00 1.25 2.00 120.00 122.00
2 16.00 20.00 4.00 7.50 11.50
3 6.35 50.40 6.00 2.98 8.98
4 4.00 80.00 8.00 1.88 9.88
5 3.03 105.56 10.00 1.42 11.42
6 2.52 126.99 12.00 1.18 13.18
7 2.21 144.92 14.00 1.04 15.04
8 2.00 160.00 16.00 0.94 16.94

K-ary N-Tree for const node size
N 16384
L 150
NodeSize 640
n k w D L/W Tnet

1 16384.0
0

0.02 2.00 7680.00 7682.00

2 128.00 2.50 4.00 60.00 64.00
3 25.40 12.60 6.00 11.91 17.91
4 11.31 28.28 8.00 5.30 13.30
5 6.96 45.95 10.00 3.26 13.26
6 5.04 63.50 12.00 2.36 14.36
7 4.00 80.00 14.00 1.88 15.88
8 3.36 95.14 16.00 1.58 17.58
9 2.94 108.86 18.00 1.38 19.38

10 2.64 121.26 20.00 1.24 21.24
11 2.42 132.44 22.00 1.13 23.13
12 2.24 142.54 24.00 1.05 25.05
13 2.11 151.69 26.00 0.99 26.99
14 2.00 160.00 28.00 0.94 28.94

This table does not fully take into account the increased wire latencies of the fat tree, which in general must

traverse much longer distances. In general, the worst-case wire length, assuming a hollow-cube

construction [DeH90], is proportional to

3
max

nkl ∝

so as the number of terminals grows, the worst-case wire length grows much more rapidly in the fat tree.

k-ary n-cube latency with contention

Following [Dal90] and [Aga91], the latency of messages with contention due to randomly distributed

traffic of different k-ary n-cube implementations of an N-node is given by

clatencybaselatencycontention TTT += __

where the total waiting time due to contention is derived in [Dal90]. We reproduce a numerical example

from [Dal90] below to give the reader a sense of the latency-contention trends, but the reader is referred to

[Dal90] for details of analysis.

k n Max throughput Latency λ=0.1 Latency λ=0.2 Latency λ=0.3
2 12 .41 241 288 357
4 6 .36 135 181 287
8 4 .31 79.9 112 245
16 3 .31 55.2 70.3 135
64 2 .35 70.7 73.1 78.6

Fat Tree latency with contention

From [Lei85], the latency of a fat tree with the same traffic as an equivalent (Nfattree=Ncube) k-ary n-cube is

provably within a polylogarithmic factor of the latency of that k-ary n-cube.

NLT cubenaryklatencyfattreelatency
3

,,, lg⋅∝ −−

However, Leiserson does not investigate the details of construction that make up this proportionality

constant, which is critical for comparing real systems. For this investigation, we follow the analysis in

[Dal90].

Following the assumption made above in the baseline latency calculations, we assume that for our worst-

case latency, we need to pass upward through all levels of the fat tree before descending towards the

destination endpoint. We assume a random uniform distribution of destinations for any given source node.

Note that as a consequence, the probability of routing from a child-link to a parent-link is much higher

towards the leaves of the tree, where the subset of nodes reachable by the sub-tree rooted at that level is

small compared to the set of all possible destinations.

If we consider a k-way node on level i (i=0 at the leaf-level of the tree; i=n at the root level of the tree), we

have the following probabilities:

Out of the kn-i sub-trees at the current level i, kn-i -1 sub-trees are reachable only via a parent link. The

probability of a message entering from a child link and exiting on a parent link (Pcp) is

in

in

cpx k
k

P −

− −= 1
 (not normalized);

ccxcpx

cpx
cp PkP

P
P

)1(−+
= (normalized)

Out of the kn-i+1 sub-trees at the level below i, k sub-trees are reachable via a lateral route from child-node

to child-node. The probability of a message entering from a child link and exiting on a child link (Pcc) is

1+−= inccx k
kP (not normalized);

ccxcpx

ccx
cc PkP

P
P

)1(−+
= (normalized)

Downward packets are evenly distributed among children links, since destinations are assumed to be

uniformly distributed. The probability of a message entering from a parent link and exiting on a child link

(Ppc) is

k
Ppc

1=

Because of the asymmetry of probabilities, we consider the route into two parts: the up-route from the

source to the root, and the down-route from the root to the destination. Probabilities of collision for each of

these routes are

1
_)1(1 −−−= k

cpupcollision PP

pd
k

cddowncollision PPP 1
_)1(1 −−−=

We assume a blocking flow control in which the rate of packets λ is equal across all logical links, and

compute the effective waiting time Tw, which we add to the baseline latency to give us the resultant latency

for a given λ.

To a first-order approximation, the expected waiting time given a collision is

2/)|(1+= iw TcollisionTE

The waiting time of a message each level up is

1,_,_)|(+= iupwupcollisioniupw TcollisionTEPT λ

and each level down is

1,_,_)|(−= idownwdowncollisionidownw TcollisionTEPT λ

Waiting time at each node is given by

iupwiupiup TTT ,_1,, +=

idownwidownidown TTT ,_1,, −=

nupndown TT ,, =

The network saturates when the duty factor is one.

0,

0,

1

1

up
sat

up

T

T

=

=

λ

λ

Total time waiting due to contention is

idownw

n

i
iupwc TTT ,_

0
,_ += ∑

=

and latency becomes

cbaselinelatencycontentionlatency TTT += ,,

We observe that Pcp is close to 1 for levels near the bottom, while Ppc is low at 1/k, so contention for

upward paths is high compared to the downward paths. We see that waiting time is dominated by

contention for upward channels, and can be improved by increasing growth rate of the link bandwidth

towards the root. In [DeH90], DeHon proposes a hybrid fat-tree by changing the linear upward path into a

tree-like structure and using a greater link-width growth rate to reduce hop-count and upward contention.

However, as the network is scaled, the bottleneck is still the upward links toward the root.

Conclusions

k-ary n-cubes Versus Fat Trees

• Our calculations show that the fat tree is competitive with, and in some cases achieves lower latencies

than, the k-ary n-cube. However, the routing lengths grow much more rapidly in the fat tree compared

to the k-ary n-cubes, as the number of endpoints grows. This effect is a key limiter to the performance

of fat trees for larger N.

• Logical nodes of fat trees are nonuniform in capacity or connectivity (depending on whether fat trees

or hypertrees are used) across the network, which results in some non-uniformity (and potentially

added cost) in construction. Low-dimension cubes map naturally into a 2- or 3- dimensional system

of boards and chips.

• Routing decisions in Fat Trees are less complex than routing decisions in k-ary n-cubes, which may

result in faster node latencies for Fat Trees.

• Given the comparable first-order performance of k-ary n-cubes and fat trees, constraints of physical

implementation (effects like wire delay and packaging on practical bandwidth and latency) indicate

that as networks scale in size, the k-ary n-cube topologies will outperform Fat Trees.

Comments on Papers

• When examining latency, Leiserson [Lei85] assumes off-line scheduling in which the traffic pattern is

known beforehand, and can be optimally scheduled. A subsequent paper by Greenberg and Leiserson

proves a similar latency relationship for on-line scheduling.

• Lei85 paper takes a very different approach than the k-ary n-cube papers as it tries to prove

communication properties of fat trees in theoretical sense, as opposed to finding performance metrics.

Since its a dated paper, it uses dated technique (store and forward flow control, SAF), and assumes that

an arbitrary SAF zero load message flight time is the unit measure of time. To be fair, it acknowledges

that it is not an implementation paper, and leaves that for future research.

• Cost-Performance: From the literature surveyed by this paper, the high-performance interconnection

field is lacking a universal methodology for measuring cost-performance of different network

topologies in a uniform way. Ultimately of interest to network designers is an analysis of performance

of different topologies on an equal-cost basis, or equivalently an analysis of cost of different topologies

on an equal-performance basis. Dally in [Dal90] takes an equal-cost approach by introducing a

constant bisection bandwidth constraint. Later papers by [Aga91] and [Sco94] introduce a constant

node-size constraint to model packaging limitations, but consider each these constraints separately and

do not compare networks across these constraints using equal cost or equal performance. Lei[85] uses

a mathematical proof to show the cost-performance relationship between fat-trees and arbitrary other

networks, but his assumptions of volume-universality do not address package interface constraints.

• Modeling Assumptions: Network modeling assumptions vary widely from paper to paper, which

largely reflects evolutions in packaging, signaling and switching technology, new ideas in routing and

flow control, and application-specific focus. While each new innovation is modeled in comparison

with a prior baseline model, the lack of a uniform baseline set of assumptions makes it difficult to

compare the cost-performance benefit of innovations.

• Performance metrics: Performance metrics used in each paper varies widely, making direct

performance comparisons of different topologies and different innovations difficult. [Dal90] uses

Chaos Normal Format for the set of networks investigated, while [Aga91] reports latency with respect

to network request rate. [Lei85] uses a mathematical proof to show that performance of all universal

fat trees are within a poly-logarithmic factor of any other equivalent-cost network. [DeH90] derives

analytical models of latency and analyses performance in terms of probability of success given offered

traffic rates. Given this non-uniform body of data, it is not possible to directly compare the merits of

one network with another.

References

k-ary n-cube references

[Dal90] Dally, William J. "Performance analysis of k-ary n-cube Interconnection Networks". IEEE

Transactions on Computers. Vol. 36 No. 5, June 1990, pp 547-553.

[Aga91] Agarwal, Anant. Limits on Interconnection Network Performance. IEEE Transactions on

Parallel Distributed Systems, October 1991. pp 398-412.

[Sco94] Scott, Steven L. and Goodman, James R. "The Impact of Pipelined Channels on k-ary n-Cube

Networks". IEEE Transactions on Parallel and Distributed Systems. Vol. 5 No. 1, January 1994.

Fat tree references

[Lei85] Leiserson, Charles E. "Fat-Trees: Universal Networks for Hardware-Efficient Supercomputing".

IEEE Transactions on Computers. Vol. 34 No 10, October 1985, pp 892-901.

[DeH90] DeHon, Andre. "Fat-Tree Routing for Transit." MIT, A.I. Technical Report No. 1224. February

1990.

