OO0 0 0 0

United States Patent . 111 Patent Number: 5,615,350
Hesson et al. 451 Date of Patent: Mar. 25, 1997
[54] APPARATUS TO DYNAMICALLY CONTROL 5,185,871 2/1993 Frey et al. .
THE OUT-OF-ORDER EXECUTION OF 5,247,635 9/1993 Kamiya .
LOAD-STORE INSTRUCTIONS IN A 5,261,067 1171993 Whelanccevveeesncenvnnnenns 395/425
PROCESSOR CAPABLE OF DISPATCHING, S20615 11998 Chusc et a 2951650
ISSUING AND EXECUTING MULTIPLE ama . Tommmmm—
5,323,489 6/1994 Bird 3957425
INSTRUCTIONS IN A SINGLE PROCESSOR 5,363,495 11/1994 Fry et al. ..o 395/375
CYCLE 5377341 12/1994 Kaneko et al. .o..ooomrrossrrsern. 395/425
[75] Inventors: James H. Hesson; Jay LeBlanc; OTHER PUBLICATIONS
Stephen J. Ciavaglia, all of Chittenden Lightner et al., “The Metaflow Lightning Chipset*” 1991
County, Vt. IEEE.
. . . . Mike Johnson, “Superscalar Microprocessor Design”, 1991,
[73] Assignee: ICn;:;x;::t(i)‘I;;l Busx;l:}fsgl;chmes pp. 21-22, 45, 48—%2, 105-110, 124—163. 8
’ ' Primary Examiner—William M. Treat
[21] Appl. No.: 563,859 Assistant Examiner—Kenneth R. Coulter
Attorney, Agent, or Firm—Whitham, Curtis, Whitham &
[22] Filed: Dec. 1, 1995 McGinn; Ira D. Blecker
Related U.S. Application Data [57] ABSTRACT
. An apparatus to dynamically controls the out-of-order
[63] Continuation of Ser. No. 328,185, Oct. 24, 1994, abandoned. execution of load/store instructions by detecting a store
[51] Int. CLS GO6F 9/38 violation condition and avoiding the penalty of a pipeline
[52] US. Ch .vrreeene 395/394; 395/585; 395/392 recovery process. The apparatus permits a load and store
[58] Field of Search ... 395/375, 800 instruction to issue and execute out of order and incorporates
395/585, 394, 392’ a unique store barrier cache which is used to dynamically
predict whether or not a store violation condition is likely to
[56] References Cited occur and, if so, to restrict the issue of instructions to the
load/store unit until the store instruction has been executed
U.S. PATENT DOCUMENTS and it is once again safe to proceed with out-of-order
4,042,913 8/1977 Bimey et 4. . execution. The method implemented by the apparatus deliv-
4:722:049 1/1988 Lahti . ers performance within one percent of theoretically possible
4903,196 2/1990 Pomerene et al. 395/375 with apriori knowledge of load and store addresses.
4,903,264 2/1990 Talgam et al. eeer 371/16.1
5,075,840 12/1991 Grohoski et al. . 4 Claims, 4 Drawing Sheets
I i
{ 15 INSTRUCTION FETCH & DISPLAY UNT]
1 Pe
1
[LRENAME UNT | [13™ WRITEBACK UNIT -
INSTRUCTION I | 1%5%1
CACHE REGSTER AILE [-IMMEDT | IMNED2 ‘
16 P4/P5/P6 RA1 RB1 RC1| RA2 RB2 RC2
ol TR [— -
1W82 W83
DA | areer E- r—=l1g COMPLETION BUFFER
ADDRESS BUFFER | | CACHE P3] SNC_ CA1 CBI| CC1| CA2| CB2| CC2
R4 5T | H EEENEEEEEN
&/CNTL B L‘(HERORY =1 ux} S IR N e S
§ e MANAGEMEI%T g | 19 RESERVATION STATION
DATA = WNT__ 28 121 T) = 235 VS 2BB 233
&/ECC B | TICACHE] [STORE F2 PQA,I PIE
31 |FIL | [BARRIER g__ k1 LOAD/STORE
[I 1BUFFER | {CACHE & LOAD SPEC
[FUNCTION UNIT ™
PB— Tz plg £ (P
DATA T mix BRANCH c
CACHE UNT 20 S LPE/P3E
PZ(‘] ~P1C o | internal Pipel
DATA |-(BD) FIXED POINT Z | Stages
. (write) J UNT 1 21 E
24 DATA | P2 1D =
(read) I FIXED POINT
UNT 2 29 23

5,615,350

Sheet 1 of 4

Mar. 25, 1997

U.S. Patent

¥4 AT (poau) BNIE
| |_INod a3xi4 vIva
— ald mNn_ Awu_._;v ﬁN.
= T2 1L INN VIva
sabo)g = INIOd 03X
jpdig fowseyuy | 22 9ld- o2d W0
30d/37d] m 0Z LNn YIva
= N HONVY8
Td| S Bd_yn @ —
- NN NOLLONN4 L
93dS evg e @ ﬁm__nm«m %ﬁmi
3401S/Qv0T 14— -
" ?J) g 2015 | (3Hovq . 903/%
i REX OB Q8B 2= - , E AT = VIva
NOLLYLS NOLYAYISTY %z% w;
T TITLLLLLY . : Ag %mm%
L 700 (280 [ovd [100 |18 [IvD NS 3HOVO | [Eatingl
¥3dhg NolTldmoo 8T L3oWVLI | T
COM 70M |BN-~——— NV mo%_J
{ {
708 ¢ad ovd 109 1ad Ivd TT | 9d/6d/vd ar
e T YS9
L dNYNAINI LA zo:o%%m
TNY
qw.%i NN Sovehum €1 [N awwnaelT]
EJ
LN AV1dSIO % HOL34 NOLLONMISNI GT |

i

5,615,350

Sheet 2 of 4

Mar. 25, 1997

U.S. Patent

®

V¢ Ol

JHL MOTIO4 LVHL SNOLLONYLSNI V0T ANV
ONIONT0X3 AQVIY SONVY3J0 304n0S SU
40 TIV SYH IVHL NOLLYLS NOIVAYISHY
AOY4 NOLLONALSNI 1S3010 3NSSI

|

AQv3d SONWY1d0 304N0S SO 40
TIV SVH IVHL SNOUVIS NOLVAY3S3Y
JHL WOYH4 NOLLONALSNI 1S3010 3NSSI

1NN INWNTY N L3S

mm\

118 dIIfive FH0LS

TOMINOD ¥3IY¥vE FYOLS L3S

1NN JAVN3Y NI L8
TOYINOD ¥3idyvE 3YOLS 13S 10N 0

(ETHIEYF|

nm\

NOLLYIOIA J401S

JOVIS HOL34 NOLLONYLSNI

LG~
430U0 WVHO0Ud NI FH0LS
saj
as
[
|
S
1NN JINVN3Y NI L8
sof
[AY
}
1S~

INIINA FHOVO Y3RHVE FHOLS SSIIIV

NSSI

‘HOLVdSIa

WIEL)

5,615,350

Sheet 3 of 4

Mar. 25, 1997

U.S. Patent

®

SIANIE

£9—"]

JHOVO Y3lyvE OIS NI
ASVSSI0IN AYINT ON ANV SIA1dH0D
JY0LS ANV NOISITIOD 340LS ON

L} 3IVLIS OL MOvaillym Lv L3S 38 TiM

SUE AYOLSIH 3SOHM AMINI NV SV 3HOVO
Y3uvE FHOLS JHL NI NOLLONUISNI FHOLS MyVW
‘Y07 INSSIAY ANV ¥3040 WYHO0dd

NI d3Lv1 ANV QvO1 ONIQITIOD WOd4
SNOLLONYLSNI TIV HSM ‘NOISFTI00 3MOLS

(L3l 33S) NOLLIONOD
sa <~ NOISITI00 SS3¥aav vy
a0 OIS

19

NwR

ANSSI NIVOY JONO NYO 118

YMHVE JHOLS IHL A9 dN 0T3H FYIM IVHL
J40LS FHL MOTI04 LYHL SNOHLONYLSNI
@v07 IVHL 0S LINN JAWYNRY 3HL NI

1@ T04INOD Y3V FHOLS 3HL 13S3Y

mm%

118 0YINOD

09— | ¥3RyvA 3W0IS FHL (IS LON 0d

SALNJ3X3 NOLLIMYLSNI
sa)

‘NOILF1dW0D

-NOLLNDO3X3

5,615,350

Sheet 4 of 4

Mar. 25, 1997

U.S. Patent

J¢ Il

Co

"AYOWIN OL VIVQ QILIYWHO4 MOVEILIIM

0L @3sn St SS3YAQY NOLONALSNI FH0LS
"JHOVO ¥IRYYE FHOLS FHL NI AMINA
YINUVE FYOLS FHL JAONRY OL (3INDY
JdY SNOILIANOD YvI10 JAISSIIONS OML
*ALON "31VIS 103130 ION QI0 ¥3RM¥vE Y
HUM AYOLSIH 3HOVO Y3RIvE RIOLS 31vAdn

mm\

JHOVD 4O AYOWIN NIV Ol
Ve YIVQ Q3LIVWE0S FH0LS MOVEILAM OL
99 @3sn Sl SSWAQY NOLONMISNI FHOLS
‘NOISITI0O ON O¥H 3¥0IS

IR0 Wva0dd NI
Y31V ¥NJ20 LVHL SNOLONALSKI
aQv01 TV 40 HOYVAS JALUWIOOSSY
NV NI SNOISITIOO SSRYAAV av01 ANV
103130 1ON S300 NOLYIOIA OIS V
03101034d IVHL NOLLONYLSNI FH0LS

AOVEALRIM

5,615,350

1

APPARATUS TO DYNAMICALLY CONTROL
THE OUT-OF-ORDER EXECUTION OF
LOAD-STORE INSTRUCTIONS IN A
PROCESSOR CAPABLE OF DISPATCHING,
ISSUING AND EXECUTING MULTIPLE
INSTRUCTIONS IN A SINGLE PROCESSOR
CYCLE

CROSS-REFERENCE TO RELATED
APPLICATION

This is a continuation of application Ser. No. 08/328,185
filed Oct. 24, 1994, now abandoned.

The subject matter of this application is related to that of
copending patent application Ser. No. 08/328,184, filed
concurrently herewith by J. Hesson et al. for Apparatus to
Perform Source Operand Dependency Analysis, Perform
Register Renaming and Provide Rapid Pipeline Recover for
Microprocessor Capable of Issuing and Executing Instruc-
tions Out-of-Order in a Single Processor Cycle and assigned
to a common assignee. The disclosure of application Ser.
No. 08/328,184, is incorporated herein by reference.

DESCRIPTION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to the control of
instructions to a pipelined processor of a stored program
dam processing machine and, more particularly, to an appa-
ratus for controlling the instruction dispatch, issue, execu-
tion and memory update of a microprocessor capable of
executing multiple instructions out-of-order every machine
clock cycle.

2. Description of the Prior Art

A microprocessor that is capable of issuing and executing
machine instructions out of order will in general permit
loads to be executed ahead of stores. This feature permits a
large performance advantage provided that the load address
and the store address do not both have the same physical
address. In typical programs, the frequency that a load
proceeds ahead of the store and that their physical address
matches is low. However, since the discovery of this store
violation condition is typically late in the instruction execu-
tion pipeline, the recovery penalty can be quite severe. The
recovery process typically involves invalidating the load
instruction that caused the violation and all newer instruc-
tions in program order beyond the load instruction, and
second reissuing the load instruction.

One approach to solve this problem in the prior art for a
machine capable of executing instructions out of order was
to permit only nonload/store instructions to execute out of
order and restrict load and store instructions to execute in
order. A second approach utilized in the prior art was to
speculatively execute load/store instructions as well as non-
load/store instructions and to perform collision recovery
only when necessary. A third approach was to permit the
load to execute only when it is determined safe to do so. The
third approach requires that the virtual or real address of the
store and load be computed to resolve that no store load
collision exists which would require the store to issue and
execute before the load in program order ahead of the store
can issue and execute.

10

25

30

50

60

65

2
SUMMARY OF THE INVENTION

1t is therefore an object of the present invention to provide
an apparatus to dynamically control the out-of-order execu-
tion of load/store instructions which detects a store violation
condition and avoids the penalty of a pipeline recovery
process.

It is also an object of the present invention to permit an
aggressive speculative issue and execution of load and store
instructions wherein the load instruction can speculatively
issue and execute ahead of a store instruction in program
order ahead of the load prior to resolving whether it is safe
to do so and thus benefit from the fact that most of the time
this will provide a significant performance advantage over
first resolving that it is indeed safe to do so.

According to the preferred embodiment of this invention,
there is provided an improved apparatus for permitting load
and store instruction issue and execute out of order. The
apparatus incorporates a unique store barrier cache whose
data structure is used to dynamically predict whether or not
a store violation condition is likely to occur and, if so, to
restrict the issue of instructions to the load/store unit until
the store instruction has been executed and it is once again
safe to proceed with out-of-order execution. The method
implemented delivers performance within one percent of
theoretically possible with apriori knowledge of load and
store addresses.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed
description of a preferred embodiment of the invention with
reference to the drawings, in which:

FIG. 1 is a block diagram of a superscaler microarchitec-
ture that incorporates store barrier cache apparatus; and

FIGS. 2A, 2B and 2C, taken together, are a flow diagram
showing the logic of the method implemented by the appa-
ratus of FIG. 1.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

Referring now to the drawings, and more particularly to
FIG. 1, there is shown a superscalar microarchitecture that
incorporates a unique store barrier cache apparatus 11 as
well as other functional units typical of a superscaler pro-
cessor. More particularly, the superscalar processor includes
a bus interface unit 29 which communicates with a system
bus (not shown) to receive and transmit address and control
codes and to receive and transmit data and error correcting
codes (ECC) or byte parity information. The address and
control codes are buffered by instruction cache (ICACHE)
fill buffer 27 and input to the instruction cache 16. The data
and ECC are buffered by data cache (DCACHE) fill buffer
28 and input to the data cache 24. Memory management unit
(MMU) 26 controls the writing to and reading out of
instructions and data, respectively, for both the instruction
cache 16 and the data cache 24.

The superscalar microarchitecture further contains mul-
tiple fixed point execution units 21 and 22, a dedicated
branch processor 20, a dedicated load/store unit 14, and a
floating point unit 23. Instructions are fetched from the
instruction cache 16 to the instruction fetch and dispatch unit
15 under the control of the rename unit 12 and dispatched to
the central pool of reservation station buffers 19. During the
dispatch of instructions from the instruction fetch buffer

5,615,350

3

dispatch window, the destination result field of the instruc-
tion is renamed and the most recent copy of the source
operands are either tagged or supplied along with any
instruction control bits to the reservation station entry iden-

4

performance advantage over the prior art by permitting
speculative execution of load and store instructions. The
store barrier cache 11 is accessed in parallel with the
instruction cache 16 and contains history bits that are used

tified by the rename tag. The execunonlumts 14,20,21,22, s to predict the condition wherein a load instruction has
and 23 are directed by the rename unit 12 to perform the R L
. . . X executed ahead of a store instruction in program order and
oldest instruction that has each of its operands valid from that the d ; the load and store instruction h
one of the four reservation ports. The four reservation ports at the data structure of the load an store 1nstruction ave
are sourced to the execution units from the central pool of ~ the same real address. If the store barrier cache 11 predicts
reservation station buffers 19 and the execution units direct 10 2 store load conflict, this information is used during the
the computed results to the completion buffer 18 entry dispatch of the store instruction to mark a barrier bit within
pointed to by the destination tag assigned by the rename unit the rename unit 12 so that no loads in program order are
12. As reservation station buffers 19 and completion buffer permitted to execute ahead of the store that is predicted to be
18 entries are assigned in pairs during the dispatch stage by violated. In this fashion, aggressive out-of-order instruction
the: Tename unit 12, they share the same tag. The wntebz.zck 15 execution is enabled with the accompanying performance
unit 13 writes the computed results from the completion
- . . advantages.
buffer 18 back to the architected register or to memory in . .
. . The data structure of the store barrier cache 11 dynami-
program order under the direction of the rename unit. In the . L T .
case of the branch execution unit 20, the computed result is cally predicts whether or not a store violation condition is
written from the completion buffer 18 to the branch target 20 likely to occur and if so restricts the issue of instructions to
cache 25 which is accessed by the instruction fetch and the load/store unit 14 to program order until the store
dispatch unit 15. instruction has been executed and it is once again safe to
The pipelined stages for each of the major type of proceed with out-of-order execution. A store violation con-
machine instructions is illustrated in FIG. 1. For example, dition is defined as the situation wherein a load instruction
the data store operation consists of six stages: instruction 25 that follows a store instruction in program order executes
fetch, instruction dispatch, address generation (i.e., execu- ahead of the store and produces the same real address. When
tion stage), memory translation lookaside buffer (TLB) and this store violation condition occurs, incorrect program
cache hit/miss search, completion (i.e., write cache and TLB behavior results and a potentially costly pipeline recovery
results to completion buffer), and finally writeback to cache. » process is required.
The store barrier cache line entry Table 1 consists of the
Data Store Instruction Data Load Instruction virtual address of a store which was previously violated, a
]) valid bit, history bits which are updated during the writeback
IE(I) ID“ii‘“;f;:’“ Fetch g(l) : g:s"‘;fc"h"“ Feich stage of the pipeline according to the persistence of the store
P2 Add';ess Generation P2 Addiess Generation 35 Vviolation condition, and least recently used (LRU) bits
P3 - Memory Table Search P3 - Memory Read according to the associativity of the store barrier cache 11.
P4 - Complete P4 - Complete
P5 - Writeback (to DCACHE) P5 - Writeback (RF) TABLE 1
Fixed Point Instruction Floating Point Instruction
3 STORE BARRIER CACHE LINE ENTRY
PO - Instruction Fetch PO - Instruction Fetch 40
PL - Dispatch P1 - Dispatch Virtual Address Tag Word (byte) Offset ~ Valid History 1-0 LRU
P2 - Execute P2 . Execute 1
P3 - Complete P3 - Execute 2
P4 - Writeback P4 - Execute 3 The store barrier cache history bits are used to record the
P5 - Complete state of the persistence condition for each store barrier cache
P6 - Writeback . . .
45 entry. Table 2 illustrates one possible algorithm for the
update of the history bits.
TABLE 2
STORE BARRIER CACHE HISTORY BIT UPDATE
barrier barrier barrier
occurred occurred occurred
bardernot [——> barriernot | ——=> bardernot | ———> barrier not
predicted [€—— | prediced |[<—— | predicted [<—— | predicted
00 01 10 n
barrier did barrier did barrier did
not occur not occur not occur

In the foregoing table, the numbers with the prefix “P”
designate stages in the pipeline. Thus, the PO pipeline stage
is the instruction fetch stage, the P1 pipeline stage is the
dispatch stage, and so forth.

The data structure of the store barrier cache 11 works in
conjunction with the instruction fetch and dispatch unit 15,
the rename unit 12, the load/store and load special function
unit 14, and the writeback unit 13 to obtain a significant

60

65

The store barrier cache operation is now described as a
store instruction proceeds through the instruction pipeline.
As mentioned above, the store barrier cache entry contains
the violated store instruction address and history information
on the presistence of a violated store condition. During the
instruction fetch pipeline stage 15, the store barrier cache 11
is accessed in parallel with the instruction cache 16 and
branch target cache 25.

5,615,350

5

The store barrier cache 11 performs a comparison of the
next instruction prefetch fetch buffer virtual address against
the virtual instruction address field in each of its cache
entries. In general, the store barrier hit is defined as a match
of the next instruction virtual address with the store barrier
cache virtual address field and the condition that the store
barrier bit is asserted. There may be more than one store
barrier hit within the instruction fetch buffer specified by the
next instruction prefetch buffer virtual address. Therefore,
the store barrier cache output that is produced is the first
store barrier cache hit within the store barrier cache line that
is greater than or equal to the next instruction prefetch buffer
address. If a store barrier cache hit results from the next
instruction prefetch buffer virtual address, then the store
barrier cache hit control output is a logic one. If no match is
found, then the store barrier cache hit control output is a
logic zero.

During the dispatch stage, the store barrier cache data
structure is used to set a control bit in the rename unit 12 to
indicate that a store violation condition has been predicted
by the store barrier cache 11. The rename unit 12 is in charge
of allocating and deallocating paired reservation station and
completion buffer entries. The rename unit 12 maintains a
stack order of most recently dispatched to least recently
dispatched instruction and instructions are dispatched in
order from the instruction fetch buffer 15. Reservation
station and completion buffer tags are assigned from a pool
of tags so that multiple writes to a given architected register
from the register file 17 can be dispatched to the reservation
station buffers 19.

The rename unit 12 is also used to perform local operand
dependency checks within the current instruction fetch dis-
patch buffer 15 as well as on a global basis similar to a
classical scoreboard so that the most recent result tag is
assigned to an instruction source operand as it is dispatched.
The rename unit 12 is also utilized to control the issue of the
oldest instruction that has all of its operands valid within the
reservation station 19 to the appropriate functional unit, e.g.,
data load/store unit 14, branch unit 20, fixed point unit 21,
fixed point unit 22, and floating point unit 23. The rename
unit 12 is also utilized by the writeback unit 13 to writeback
a completed instruction in program order and during pipe-
line recovery operations such as recovery from a mispre-
dicted branch, during an external interrupt 30, servicing of
a fast trap sequence (e.g., a renormalization of a floating
point denormal), or pipeline recovery of a mispredicted
branch of pipeline recovery of a store barrier collision. In
each of these cases, as the microarchitecture is capable of
speculative execution, the incorrect instructions are flushed
and the recovery begins at the next valid instruction. As the
rename unit 12 maintains program order via a stack of all
instructions in program order after the collision or mispre-
dicted branch can be instantly flushed.

Those skilled in the art will recognize that the concept of
renaming is not new. However, the preferred rename unit is
that which is disclosed in copending application Ser. No.
08/328,184 referenced above. It should be understood for
the purposes of practicing this invention, it is not necessary
that the store barrier cache be tied to the specific rename unit
disclosed in application Ser. No. 08/328,184. Another
rename unit could also be updated to accommodate the
concept of a store barrier cache. Other rename units will in
general not be able to perform the partial flush as fast as the
preferred rename unit.

If classical register scoreboarding is utilized versus reg-
ister renaming only, one pending write t0 an architected
register is possible. Out of order execution is still possible

0

-

5

30

40

45

50

55

65

6

with scoreboarding; however, the single write to an archi-
tected register yields a significant performance constraint on
the issue of instructions to the functional units 14, 20, 21, 22,
and 23 and their subsequent execution. In any case, the store
barrier mechanism is viable for either dispatch of instruc-
tions via renaming or classical scoreboarding.

Store violation and violation persistence history informa-
tion is used to control the dispatch of instructions by the
rename unit 12 in such a manner as to prevent all load
instructions from issuing until the store instruction that had
previously been violated has successfully proceeded through
the execution stage of the instruction pipeline. Indeed, the
store barrier condition is used as a instruction dispatch filter
to permit arithmetic and logical condition from proceeding
but not subsequent load instructions. The store instruction is
permitted to execute once all its dependencies including the
store data are resolved. Load instructions are once again
permitted to proceed after the violated store instruction has
executed and, as a result, not request the cache memory
location that the store instruction is about to update. Since
the store instruction may not have written the data back to
the cache memory, a load snoop special function unit 14 is
employed to cover for this condition and perform load data
forwarding. Permitting all load instructions to proceed after
the store instruction has executed versus after it has written
back has two benefits. First, all load instructions are held up
at the instruction issue stage 2 minimum amount of time and,
second, history information on the persistence or lack of
persistence of this store violation condition is provided. By
dynamically controlling the issue and execution of load
instructions according to a single violation condition and its
history information using the data structure of the store
barrier cache 11, significant performance advantages are
achieved over the prior art.

The writeback unit 13 is responsible for the store barrier
cache 11 history update, the branch target cache 25 target
history update information, writeback of store results to the
cache 24 in the case of uncachable stores (video frame
buffer) to a store writeback buffer (not shown) and the
writeback of completed results to the register file 17. When-
ever the store instruction writes back the formatted store
data, persistence of a store violation condition is monitored
by comparing the store address against all newer load
instructions that have completed. If the condition persists,
the store barrier violation control bit is left in tact in the store
barrier cache 11. If the store violation condition is mot
detected when the store instruction data is about to be
written back to memory, the store barrier history bits are
updated. The preferred embodiment uses two history bits so
that the store barrier control bit is deasserted when two
successive writebacks of store instruction data exhibit no
violation condition, as indicated in Table 2. Other history bit
update algorithms are certainly possible and are an obvious
extension of the basic concept.

The pseudocode below summarizes the essential opera-
tion of the store barrier cache 11 to facilitate aggressive
speculative execution in a superscaler microprocessor
capable of executing multiple instructions out of order.

PSEUDO CODE FOR STORE BARRIER CACHE OPERATION

IFETCH: {access store barrier cache during instruction fetch stage}
DISPATCH:

IF {store violation is predicted}

THEN {set store barrier bit in rename cam}

ELSE {do not set store barrier bit}
ISSUE:

5,615,350

7

-continued

PSEUDO CODE FOR STORE BARRIER CACHE OPERATION

IF {store barrier is set in rename cam entry corresponding
to that store}

THEN {issue oldest instruction from the reservation stations that
has all of its operands ready and excluding any load
instruction that follow the store in program order}

ELSE {issue oldest instruction from the reservation stations that
has all of its operands ready}

EXECUTION:

IF {store barrier instructions executes}

THEN {reset store barrier bit in rename cam entry so that load
instructions that follow the store that were marked by the
store barrier bit can once again issue}

{find next oldest rename cam entry with store barrier bit}

ELSE {do not reset store barrier bit}

COMPLETION:

IF {store instruction does not detect a load instruction that
ran ahead of it when the store instruction address and the
formatted store operand are written to the completion
buffer}

THEN {no store collision, and store is ok}

ELSE {store collision, and flush all instructions from colliding
load and later in program order and reissue load}

{mark store as a store barrier cache entry whose history
bits will be set at writeback to state 11}
WRITEBACK:

IF {store instruction that predicted a store violation does not
detect a load address collision in a associative search of
all load instructions that occur later in program order}

THEN {update store barrier cache history with a barrier did not
detect. Note: two successive clear conditions are required
to remove the store barrier entry in the store barrier
cache}

{store instruction address is used to writeback formatted
data to memory}

ELSE {store that had no collision this time around}

{store instruction address is used to writeback formatted
data to memory}

The store barrier cache barrier cache operation is illus-
trated in FIGS. 2A to 2C. Referring first to FIG. 2A, at
IFETCH, the store barrier cache 11 is accessed in function
block 51. At DISPATCH, a test is made in decision block 52
to determine if a store violation is predicted. If so, the store
barrier control bit is set in the rename unit 12 in function
block 53; otherwise, the store barrier control bit is not set, as
indicated in function-block 54. Then, at ISSUE, a test is
made in decision block 55 to determine if the store barrier
bit has been set in the rename unit 12. If so, the oldest
instruction is issued from the reservation station buffers 19
that has all of its source operands ready excluding any load
instructions that follow the store in program order, as
indicated in function block 56. If not, the oldest instruction
is issued from the reservation stations that has all of its
source operands ready, as indicated in function block 57.

Turning next to FIG. 2B, at execution, a test is made in
decision block 58 to determine if the store barrier instruction
executes. If so, the store barrier control bit is reset in the
rename unit 12, as indicated in function block 59, so that
load instructions that follow the store that were held up by
the store barrier bit can once again issue. Otherwise, the
store barrier bit is not reset in function block 60. At
completion, a test is made in decision block 61 to determine
if the there is a store load real address collision condition. If
so, the collision is stored in function block 62, then all
instructions are flushed from the colliding load and later in
program order, and the load is reissued. The store instruction
is marked in the store barrier cache 11 as an entry whose
history bits will be set at writeback to state “11”. However,
if there is no collision condition, the store completes nor-
mally in function block 63, and no entry is necessary in the
store barrier cache 11.

15

20

25

45

50

55

60

65

8

In FIG. 2C, at writeback, a test is first made in decision
block 64 to determine if the store instruction that predicted
a store violation does not detect any load address collisions
in an associative search of all load instructions that occur
later in program order. If so, the store barrier cache history
is updated to reflect that a barrier did not detect any load
address collisions. Note, however, that two successive clear
conditions are required to remove the store barrier entry in
the store barrier cache. The store instruction address is used
to writeback formatted data to memory. Otherwise, the store
has no collision, as indicated in function block 66. The store
instruction address is used to writeback store formatted data
to main memory or cache.

While the invention has been described in terms of a
single preferred embodiment, those skilled in the art will
recognize that the invention can be practiced with modifi-
cation within the spirit and scope of the appended claims.

Having thus described our invention, what we claim as
new and desire to secure by Letters Patent is as follows:

1. A pipelined processor capable of issuing and executing
multiple instructions out-of-order every machine clock cycle
comprising:

a plurality of execution units receiving instructions and
data and executing instructions, said plurality of execu-
tion units including at least one fixed point execution
unit, a floating point execution unit, a branch unit, and
a load/store unit;

an instruction cache storing instructions to be executed by
said plurality of execution units;

a data cache for storing data to be operated on by said
plurality of execution units when executing instruc-
tions, said data cache being connected to said load/store
unit to supply data to said plurality of execution units;

a memory management unit controlling writing to and
reading out of instructions and data, respectively, from
the instruction cache and the data cache;

a branch target cache storing branch target history update
information;

an instruction fetch and dispatch unit connected to said
instruction cache for fetching instructions for execution
by said plurality of execution units, said instruction
fetch and dispatch unit controlling dispatch of instruc-
tions and issuing instructions to said plurality of execu-
tion units;

a completion buffer connected to receive and temporarily
store computed results from said plurality of execution
units;

a writeback unit controlling writeback of instructions, a
computed result from said branch unit being transferred
to said branch target cache from said completion buffer
by said writeback unit;

a store barrier cache accessed in parallel with said instruc-
tion cache and said branch target cache and having data
including history bits; and

a rename unit connected to and controlling said instruc-
tion fetch and dispatch unit to issue and dispatch a load
and store instruction out of order, said rename unit
using said history bits to dynamically predict whether
or not a store violation condition is likely to occur and,
if so, said rename unit restricting the issue of instruc-
tions until the store instruction has been executed and
it is once again safe to proceed with out-of-order
execution.

2. The pipelined processor according to claim 1 wherein

said rename unit marks a store instruction in said store

5,615,350

9

barrier cache during a dispatch pipeline stage so that no
loads in program order are permitted to execute ahead of the
store that is predicted to be violated.

3. The pipelined processor recited in claim 1 wherein said
store barrier cache stores history bits for virtual addresses to
record a state of a persistence condition for each cache store
barrier entry.

4. The pipelined processor according to claim 1 wherein
said rename unit performs source operand dependency

10
analysis, provides instruction scheduling wherein oldest
instructions are executed first, enables any execution or
memory access instruction to execute out-of-order and rapid
pipeline recovery due to a mispredicted branch or a store
load conflict.

