Introduction

* Stream processor: high computation to
bandwidth ratio

* To make legacy hardware more like stream
pProcessor:

— Increase computation power
— Make the best use of available bandwidth

* We study the bandwidth problem

Stream Programming on Legacy
Architectures

Solutions to Bandwidth Problem

» Reduce the memory bandwidth requirement
(algorithm level: strip-mining)

» Re-arrange data layout to more efficiently
use bandwidth (SW/HW)

» Overlap memory operations with
computations to hide latency (L1/L2 cache
as SRF, prefetch, compiler)

MM: Reduce BW Demand

“2D” strip-mine matrix multiplication
(tiling)

Keep working-set small so 1t fits in the
cache

Apply as many operations as possible for
its life 1n cache

MM: Naive Way

BW Demand = O(c_-n°)

MM: 2D Strip-Mined

I
s

BW Demand = O(c_n*°)
c, <<c, n-blocksize < cache size

MM: Results

Pro: strip-mined implementation 1s a lot
faster

Con: have to rewrite the algorithm

Problem: cannot “pin” the rows in cache, so
they may get evicted

This may be a general problem for using
cache as SRF: not enough explicit control!

Impulse

* Impulse: a memory controller that does
gather/scatter

 Can do this 1n either software or hardware

» Re-organize data layout for better
(sequential) access

At what cost?

MM: Data Re-organization

—

* To access columns 1n row-major layout, do a
strided access

 (Can first transpose into column major, and do
sequential access — better exploit spatial locality

RSIM configuration

of processor 1
Processor Speed 1.2GHz
Issue Width 4
Instruction window size 64
Memory queue size 32
Cache line size 32 bytes
L1 cache size 16KB
L1 latency 1 cycle
L2 cache size 64KB
L2 latency 5 cycles
Memory Latency (for L2 miss) 72 cycles

300000

250000

200000

150000

100000

50000

0

Matrix Multiplication (row, col)

&
g

——no prefetch
prefetch

32 64 128 256

e computation increases N3

* no benefit from prefetch (degrades performance slightly)

» most of prefetch classified as unnecessary

Matrix Multiplication II (row X row)

300000 -
250000 -
200000 -

1me

——no prefetch
prefetch

150000 ~

run t

100000 ~
50000 -

0 ¢ T - T T |
32 64 128 256
matrix size

e compiler inserted prefetch

« significant increase in performance as size increase beyond
cache size

Performance of Matrix Mult (128)

40
35 A [0 Mem stall
30 - H FU stall
g 25 - @ Busy
= 20
2 15 -
10 A Q
5 | l
: - .
r*c rr impulse r*r* pref imp/pref sm/ur
pref
optimizations

» why is impulse better then r*r? higher L2 cache hit rate?

* by performing both optimization, memory stall time reduced
significantly

* (r*c not drawn to scale)

45
40
35

30 -
25

20
15

10

Performance on Saga

—— 1T
—=— jmpulse

—A—r7C

64

128

256

Matrix Size

912

1024

Compiler Optimizations

* From last week’s status update:
— Treat streams as arrays of records

— Perform data reuse analysis to identify probably
cache misses

— Use software pipelining to prefetch records in
advance (split loop into prolog, steady state,

epilog)

MediaBench results

* Performance 1s worse with prefetch

* Plausible explanations:

— These apps stream off files on disks, not arrays resident
In memory

— Redundant prefetches add overhead (prefetch in inner
loops w/o unrolling?)

— Mismatch between gcc assumption of hardware and
stimulated hardware

» Possible solutions:
— Rewrite the apps
— Fix compiler/simulation environment

Problems

* “Short Stream Effects™
— Small steady state loops
— Prefetches from prolog are ‘late’

— No stream scheduling

» Difficult to debug
— GCC has many hacks and poor docs

— Bugs 1n reuse analysis code result in ‘unnecessary’
prefetches

— Should have used SUIF to emit C then GCC

Problems (cont.)

« Hardware Stride Prediction

— For uniprocessors w/affine array accesses,
hardware 1s pretty good

— Problems for shared memory/MP
— Added logic/area

— We can handle indexed streams B[A[1]]

Conclusions Future Work

 Use L1 as SRF, L2 as buffer

» Unroll outer loops, fuse inner loops to
increase computation/reduce prolog effects

 Ideally: use cache partitioning and separate
prefetch thread to handle stream scheduling

— We don’t really utilize knowledge of access
patterns early enough

Extra slides follow

Cache as SRF

Prefetch data given knowledge of memory
access pattern

Either by explicit use of prefetch instruction
or by implicit touch of data

Prefetch requires loop-unrolling to reduce
overhead and redundancy

Prefetch controls what and when gets into
the cache; what about what gets evicted?

Cache as SRF (cont’d)

L1 orL2?

Ideally, do computation with data in L1 and
overlap that with prefetch into L2

L1 seems more useful as SRF (needs to
combine with strip-mining to keep data-set
really small?); L2 kind of redundant

Unless we do hierarchical strip-mining
(haven’t tried yet)

