
Introduction

• Stream processor: high computation to
bandwidth ratio

• To make legacy hardware more like stream
processor:
– Increase computation power
– Make the best use of available bandwidth

• We study the bandwidth problem

Stream Programming on Legacy
Architectures

Solutions to Bandwidth Problem

• Reduce the memory bandwidth requirement
(algorithm level: strip-mining)

• Re-arrange data layout to more efficiently
use bandwidth (SW/HW)

• Overlap memory operations with
computations to hide latency (L1/L2 cache
as SRF, prefetch, compiler)

MM: Reduce BW Demand

• “2D” strip-mine matrix multiplication
(tiling)

• Keep working-set small so it fits in the
cache

• Apply as many operations as possible for
its life in cache

MM: Naive Way

BW Demand = O(cn·n3)

= X

MM: 2D Strip-Mined

BW Demand = O(cs·n2.5)
cs << cn, n·blocksize < cache size

= X

MM: Results

• Pro: strip-mined implementation is a lot
faster

• Con: have to rewrite the algorithm
• Problem: cannot “pin” the rows in cache, so

they may get evicted
• This may be a general problem for using

cache as SRF: not enough explicit control!

Impulse

• Impulse: a memory controller that does
gather/scatter

• Can do this in either software or hardware
• Re-organize data layout for better

(sequential) access
• At what cost?

MM: Data Re-organization

• To access columns in row-major layout, do a
strided access

• Can first transpose into column major, and do
sequential access – better exploit spatial locality

RSIM configuration

5 cyclesL2 latency

72 cyclesMemory Latency (for L2 miss)

64KBL2 cache size

1 cycleL1 latency

16KBL1 cache size

32 bytesCache line size

32Memory queue size

64Instruction window size

4Issue Width

1.2GHzProcessor Speed

1# of processor

Matrix Multiplication (row, col)

0

50000

100000

150000

200000

250000

300000

32 64 128 256

no prefetch
prefetch

• computation increases N^3

• no benefit from prefetch (degrades performance slightly)

• most of prefetch classified as unnecessary

Matrix Multiplication II (row X row)

0

50000

100000

150000

200000

250000

300000

32 64 128 256

matrix size

ru
n

tim
e

no prefetch
prefetch

• compiler inserted prefetch

• significant increase in performance as size increase beyond
cache size

Performance of Matrix Mult (128)

0
5

10
15
20
25
30
35
40

r*c r*r impulse r*r* pref imp/pref sm/ur
pref

optimizations

ru
n

tim
e

Mem stall
FU stall
Busy

• why is impulse better then r*r? higher L2 cache hit rate?

• by performing both optimization, memory stall time reduced
significantly

• (r*c not drawn to scale)

Performance on Saga

0

5

10

15

20

25

30

35

40

45

64 128 256 512 1024

Matrix Size

r*r
impulse
r*c

Compiler Optimizations

• From last week’s status update:
– Treat streams as arrays of records
– Perform data reuse analysis to identify probably

cache misses
– Use software pipelining to prefetch records in

advance (split loop into prolog, steady state,
epilog)

MediaBench results

• Performance is worse with prefetch
• Plausible explanations:

– These apps stream off files on disks, not arrays resident
in memory

– Redundant prefetches add overhead (prefetch in inner
loops w/o unrolling?)

– Mismatch between gcc assumption of hardware and
simulated hardware

• Possible solutions:
– Rewrite the apps
– Fix compiler/simulation environment

Problems

• “Short Stream Effects”
– Small steady state loops
– Prefetches from prolog are ‘late’
– No stream scheduling

• Difficult to debug
– GCC has many hacks and poor docs
– Bugs in reuse analysis code result in ‘unnecessary’

prefetches
– Should have used SUIF to emit C then GCC

Problems (cont.)

• Hardware Stride Prediction
– For uniprocessors w/affine array accesses,

hardware is pretty good
– Problems for shared memory/MP
– Added logic/area
– We can handle indexed streams B[A[i]]

Conclusions Future Work

• Use L1 as SRF, L2 as buffer
• Unroll outer loops, fuse inner loops to

increase computation/reduce prolog effects
• Ideally: use cache partitioning and separate

prefetch thread to handle stream scheduling
– We don’t really utilize knowledge of access

patterns early enough

Extra slides follow

Cache as SRF

• Prefetch data given knowledge of memory
access pattern

• Either by explicit use of prefetch instruction
or by implicit touch of data

• Prefetch requires loop-unrolling to reduce
overhead and redundancy

• Prefetch controls what and when gets into
the cache; what about what gets evicted?

Cache as SRF (cont’d)

• L1 or L2?
• Ideally, do computation with data in L1 and

overlap that with prefetch into L2
• L1 seems more useful as SRF (needs to

combine with strip-mining to keep data-set
really small?); L2 kind of redundant

• Unless we do hierarchical strip-mining
(haven’t tried yet)

