Cellular Automata as

!'_ “Hello, World”

Dan Bentley
Ben Serebrin



i We're going to talk about:

= Why Conway’s Game of Life is useful
= Language/Design Proposals

= Prose Composition (aka: Why it's not
as easy as it looks to be an English
major)

= Where we're going




i Why Life is Useful

= Introductory Program (“Hello, World")
for new programmers

= Introductory Program for new systems

s Useful in this case for both roles
= As we'll go into



‘_H Bugs I found in Brook

= Copying
= Copy-in, copy-out semantics
= StreamCopy

= Stencil-ing
= 1-D

= Commenting




‘_H What I’d like to do:

while(generations--) {
streamShape(board, 2, size, size);
streamStencil(boardp, board, STREAM_STENCIL_CLAMP,
2,-1,1,-1, 1);

Generation(board, boardp);



i What I had to do:

while(generations--) {
streamShape(board, 2, size, size);
streamStencil(boardp, board, STREAM_STENCIL_CLAMP,
2,-1,1,-1, 1);
Generation(boardTemp, boardp);
myCopy(board, boardTemp); //streamCopy
’

kernel void myCopy(out cell_s s1, cell_s s2) { s1 =s2; }



i 1-D Stenciling

= Seems to not work
= 80% sure that this isn't my error

s Get "random” values...
= 0, 16 and 134612816 popular

= Calling streamShape changes the
values, but not to anything definite



i Commenting

= Meta-compiler doesn't like certain
trigrams involving comments, nasty
compile errors at C++ leve

= »*/ and {*/ seem to be culprits
= Spaces sometimes work
= // also has its demons




‘_H Language/Design Proposals

= Stdout/in as FileStream
= Sequential kernels
= Stream Programs within kernels



i stdin/out as FileStreams

= Allow ability to create FileStreams from
FILE*, not just filename.

= Trivial, but useful and important. Why?

= If we stray from C philosophy here, and
stray from C philosophy there, then
eventually we’ll have enough un-
orthoganality so people’s conceptions
don’t hold



i Sequential Kernels

= Example: Print out stream, newline at
every nt element

= Proposal: Use static keyword in
kernels. Assures programmer of
sequential semantics

= Why this isn’t as harmful as it seems:




i Why this isn't that bad.:

= Used for book-keeping kernels (not
much time)

= Allows programmers to not dump
streams to memory, get back, etc.

= Only semantics guaranteed, may still be
optimized




i Stream Programs within

= Allow full stream programs within kernels,
and all operations WITH a certain keyword,
e.g. slow

= Allows kernels on different levels
(TLP/DLP/ILP)

= Great Kernels have little kernels upon their
backs to bite ‘em, and little kernels have
lesser kernels, and so on ad infinitum



i Example

= kernel void Generation(out cell_s
newBoard, cell_s cell) {

int tally = 0;
SumNeighbors(cell.neighbors, &tally);
newBoard = computeNext(cell, tally);



‘_H Stream Programs Within

= Also, circuit decomposition (from
hardware design)

= Inter-procedural analysis
= Draw picture on board for this one




i Prose Composition

s Problem: Consistent Nomenclature

= Goal: Lay out a clear, concise and
consistent lexicon for the Stream
community (at least in Stanford)

= Example: Stream Programming (the
whole area) vs. Stream Functions (as
opposed to kernel functions)



i Your input

= What should mean what?

s IS there a better name for Stream
Functions?

= My suggestion: Have a different name
for the StreamC part of our duality

= Also: Should my intro focus on Stream
Programming, or on Brook as an
instance of Streaming Computation?




‘_H Where we're going

= Considering Irregular Grids more

= Writing more test-like programs for
multiple dimensions?

s Other corner cases?



i Conclusion

= Having a simple program makes it easy
to diagnose more complex problems, by
reducing the problem domain




	Cellular Automata as “Hello, World”
	We’re going to talk about:
	Why Life is Useful
	Bugs I found in Brook
	What I’d like to do:
	What I had to do:
	1-D Stenciling
	Commenting
	Language/Design Proposals
	stdin/out as FileStreams
	Sequential Kernels
	Why this isn’t that bad:
	Stream Programs within
	Example
	Stream Programs Within
	Prose Composition
	Your input
	Where we’re going
	Conclusion

