
Cellular Automata as
“Hello, World”

Dan Bentley
Ben Serebrin

We’re going to talk about:

Why Conway’s Game of Life is useful
Language/Design Proposals
Prose Composition (aka: Why it’s not
as easy as it looks to be an English
major)
Where we’re going

Why Life is Useful

Introductory Program (“Hello, World”)
for new programmers
Introductory Program for new systems
Useful in this case for both roles

As we’ll go into

Bugs I found in Brook

Copying
Copy-in, copy-out semantics
streamCopy

Stencil-ing
1-D

Commenting

What I’d like to do:

while(generations--) {

streamShape(board, 2, size, size);

streamStencil(boardp, board, STREAM_STENCIL_CLAMP,

2, -1, 1, -1, 1);

Generation(board, boardp);

}

What I had to do:
while(generations--) {

streamShape(board, 2, size, size);

streamStencil(boardp, board, STREAM_STENCIL_CLAMP,

2, -1, 1, -1, 1);

Generation(boardTemp, boardp);

myCopy(board, boardTemp); //streamCopy

}

kernel void myCopy(out cell_s s1, cell_s s2) { s1 = s2; }

1-D Stenciling

Seems to not work
80% sure that this isn’t my error

Get “random” values…
0, 16 and 134612816 popular
Calling streamShape changes the
values, but not to anything definite

Commenting

Meta-compiler doesn’t like certain
trigrams involving comments, nasty
compile errors at C++ level
}*/ and {*/ seem to be culprits
Spaces sometimes work
// also has its demons

Language/Design Proposals

stdout/in as FileStream
Sequential kernels
Stream Programs within kernels

stdin/out as FileStreams
Allow ability to create FileStreams from
FILE*, not just filename.
Trivial, but useful and important. Why?
If we stray from C philosophy here, and
stray from C philosophy there, then
eventually we’ll have enough un-
orthoganality so people’s conceptions
don’t hold

Sequential Kernels

Example: Print out stream, newline at
every nth element
Proposal: Use static keyword in
kernels. Assures programmer of
sequential semantics
Why this isn’t as harmful as it seems:

Why this isn’t that bad:

Used for book-keeping kernels (not
much time)
Allows programmers to not dump
streams to memory, get back, etc.
Only semantics guaranteed, may still be
optimized

Stream Programs within
Allow full stream programs within kernels,
and all operations WITH a certain keyword,
e.g. slow
Allows kernels on different levels
(TLP/DLP/ILP)
Great Kernels have little kernels upon their
backs to bite ‘em, and little kernels have
lesser kernels, and so on ad infinitum

Example

kernel void Generation(out cell_s
newBoard, cell_s cell) {

int tally = 0;
SumNeighbors(cell.neighbors, &tally);
newBoard = computeNext(cell, tally);

}

Stream Programs Within

Also, circuit decomposition (from
hardware design)
Inter-procedural analysis
Draw picture on board for this one

Prose Composition

Problem: Consistent Nomenclature
Goal: Lay out a clear, concise and
consistent lexicon for the Stream
community (at least in Stanford)
Example: Stream Programming (the
whole area) vs. Stream Functions (as
opposed to kernel functions)

Your input
What should mean what?
Is there a better name for Stream
Functions?
My suggestion: Have a different name
for the StreamC part of our duality
Also: Should my intro focus on Stream
Programming, or on Brook as an
instance of Streaming Computation?

Where we’re going

Considering Irregular Grids more
Writing more test-like programs for
multiple dimensions?
Other corner cases?

Conclusion

Having a simple program makes it easy
to diagnose more complex problems, by
reducing the problem domain

	Cellular Automata as “Hello, World”
	We’re going to talk about:
	Why Life is Useful
	Bugs I found in Brook
	What I’d like to do:
	What I had to do:
	1-D Stenciling
	Commenting
	Language/Design Proposals
	stdin/out as FileStreams
	Sequential Kernels
	Why this isn’t that bad:
	Stream Programs within
	Example
	Stream Programs Within
	Prose Composition
	Your input
	Where we’re going
	Conclusion

