
BLOCK PARALLEL PROGRAMMING

FOR REAL-TIME APPLICATIONS ON MULTI-CORE

PROCESSORS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

David Black-Schaffer

April 2008

c© Copyright by David Black-Schaffer 2008

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(William J. Dally) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Mark Horowitz)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Anwar Ghuloum

(Intel Inc.))

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

This thesis presents a streaming block-parallel programming language for describing

applications with hard real-time constraints and several transformations for paral-

lelizing and mapping such applications to many-core architectures. The language

parameterizes the data movement within the application in such a manner as to en-

able simple application analysis and rapid software development. Key enhancements

for both programmer productivity and application analyzability include the use of

native two-dimensional data streams to simplify image processing algorithms, flexi-

ble control distribution for intuitive and analyzable synchronous and asynchronous

control, explicit data dependency edges for specifying limited parallelism, and mul-

tiple computation methods per kernel. The benefits of this application description

are shown through the intuitive analyses and manipulations required to parallelize,

buffer, and map such applications to a many-core architecture while insuring that

they meet their real-time computation requirements.

To evaluate this programming approach, a program analysis and manipulation

framework and a cycle-accurate simulation environment were constructed. These

were used to automatically analyze, parallelize, buffer, and execute a variety of test

programs to ensure that they met their specified real-time constraints. The results

suggest that this block-parallel programming approach is both easier to use and an-

alyze than previous streaming programming models.

v

Acknowledgements

First and foremost I must thank my wife Annica. Without her support, encouragement,

and belief in my ability to complete this work, it would never have happened.

Secondly, I am grateful to my advisor Bill. Not only has he supported and guided

me through this processes, but he is one of those rare people with enough experience and

knowledge to almost always be right, but enough self-confidence and grace to admit it when

he is not. Interacting with him has always been academically challenging, but his push to

keep the big picture in mind and hone in on the essence of the problem has been invaluable.

Thirdly, my committee members Mark and Anwar have provided me with different

points of view which have helped me to focus on the value of my work and its presentation.

I must also thank my family, in particular my parents, for their unending support and

encouragement during my long tenure at Stanford. Even their gentle insinuations that

graduating would be appreciated have been helpful.

And of course I thank my friends and colleagues here at Stanford. In the cva group

I am grateful to James Balfour, Mattan Erez, Paul Hartke, Abhishek Das, JungHo Ahn,

Tim Knight, Vishal Parikh, JongSoo Park, James Chen, and Curt Harting, and in the soe

Charlie Orgish and Keith Gaul. My special thanks go to my friends Kristof Richmond,

Greg and Cami Kuhnen, Oren and Dorit Kerem, Tibor Fabian and Rika Yonemura, and

Sarah Seestone and Darsi Rueda. And, of course, thanks to the members of the Seleccion

Natural soccer team for all of the fun (and injuries) I’ve had over the past several years.

vi

Contents

Abstract v

Acknowledgements vi

1 Introduction 1

1.0.1 The 2D Streaming Model . 3

1.0.2 Block Programming Example 5

1.1 Contributions . 11

1.2 Thesis Overview . 12

2 Background 15

2.1 Synchronous Data Flow . 15

2.2 Streaming architectures . 17

2.2.1 MIT’s Raw . 18

2.2.2 Stanford’s Imagine . 19

2.2.3 Others Streaming Architectures 21

3 Related Work 24

3.1 StreamIt . 24

3.2 StreamC and KernelC . 29

3.3 Brook . 31

3.4 Sequoia . 32

3.5 Multi-dimensional Synchronous Data Flow 34

3.6 Summary . 37

vii

4 Application Model 39

4.1 The Application Graph . 40

4.1.1 Simplified Application Graph 41

4.1.2 Full Application Graph . 43

4.1.3 Building Applications . 44

4.2 Data Model . 46

4.2.1 Inputs and Outputs . 47

4.2.2 Tokens . 48

4.2.3 Implementation . 51

4.2.4 Potential Optimizations . 52

4.3 Computation Model . 53

4.4 Kernel Examples . 55

4.4.1 Multiple Inputs . 55

4.4.2 Multiple Methods . 55

4.4.3 ControlTokens . 57

4.5 Discussion . 57

4.5.1 Application Model . 59

4.5.2 Data Model . 62

4.5.3 Computation Model . 64

4.5.4 Scheduling . 65

4.6 Conclusions . 66

5 Application Analysis 68

5.1 Frame Sizes, Frame Rates, and Iteration Sizes 68

5.2 Data Flow Analysis . 70

5.2.1 Feedback . 73

5.3 Example . 74

5.4 Discussion . 77

6 Buffers and Insets 79

6.1 Buffers . 80

6.1.1 Buffer Sizing . 80

viii

6.1.2 Implementation . 85

6.2 Insets . 85

6.2.1 Data Flow Analysis for Insets 87

6.2.2 Zero Padding . 93

6.3 Automatic Insertion of Buffers and Insets 94

6.4 Discussion . 96

7 Parallelization 100

7.1 Split/Join Kernels . 101

7.2 Data Parallel Kernels . 102

7.3 Kernels with limited parallelism . 105

7.4 BufferKernels . 106

7.5 Results . 111

7.6 Discussion . 116

7.6.1 BufferKernel Data Reuse . 116

7.6.2 Split/Join Inefficiencies . 121

7.6.3 Analysis . 123

7.6.4 Other Access Patterns . 125

8 Time Multiplexing 127

8.1 Näıve Mappings . 128

8.2 Greedy Merge Algorithm . 131

8.3 Results . 132

8.3.1 Greedy Mapping Results . 132

8.3.2 General Results . 133

8.4 Discussion . 137

9 Conclusions 140

A Placement 145

A.1 Simulated Annealing . 145

A.2 Cost Function . 146

ix

A.3 Results . 146

B Simulator Implementation 149

B.1 Functional Simulation via Threads 149

B.2 “Cycle-accurate” Simulation . 150

B.3 Enabling Time-multiplexing . 151

B.4 Parameters . 152

B.5 Application Correctness . 152

B.6 Simulation Traces . 153

C Future Work 156

C.1 Variable Rates and Sizes . 156

C.2 Phased Computation . 158

C.3 Dynamic Data Fetch . 158

C.4 Merging Buffers and Kernels . 159

C.5 High-level Blocking . 160

C.6 Higher Dimensional Data . 160

D Thesis Writing Progress 162

Bibliography 163

x

List of Tables

5.1 Default data analysis transfer functions 70

7.1 Purely round-robin Split/Join fsm 102

7.2 Split and Join kernel fsms for a (5× 5) Output BufferKernel 109

7.3 Automatic parallelization examples 113

xi

List of Figures

1.1 Basic stream program example . 3

1.2 2D streaming application model example 5

1.3 Example median filter . 6

1.4 Imperative (standard) median filter implementation 7

1.5 Data distribution for inner- and outer-loop parallelization 8

1.6 Block-parallel median filter implementation 9

1.7 Automatically parallelized block-parallel median filter implementation 10

2.1 Raw architecture . 19

2.2 Imagine architecture . 20

3.1 StreamIt supported hierarchical structures 25

3.2 StreamIt FIR filter example . 27

3.3 Sequoia hierarchical memory model 33

3.4 Pavings in Array-OL . 36

3.5 Comparison of Related Work . 38

4.1 Simplified application graph for JPEG compression 39

4.2 Simplified application graph for a convolution program 42

4.3 Simplified application graph for a differencing program 43

4.4 Application element hierarchy . 44

4.5 Full Application Graph Examples . 45

4.6 Application graph code for a convolution program 46

4.7 Input data usage and reuse for a 3×3 convolution kernel 49

xii

4.8 Comparison of native 2D stream access with 1D 50

4.9 Code for a simple subtraction kernel 56

4.10 Code for a convolution kernel . 58

4.11 Histogram application graph . 59

4.12 Code for a histogram kernel . 60

4.13 Parallelized Histogram Token Behavior 61

5.1 Data flow analysis for the first half of the difference program 75

5.2 Halo differences between 5x5 and 3x3 kernels 76

6.1 Automatically buffered and corrected differencing program 79

6.2 Two-dimensional circular buffer operation 81

6.3 Buffer sizes for double-buffering . 83

6.4 Buffer sizes for double-buffering between frames 84

6.5 Run loop for the BufferKernel . 86

6.6 Offset example for a 5× 5 convolution kernel 89

6.7 Bayer demosaicing program inconsistency 90

6.8 Bayer “hG” kernel inset calculations 91

6.9 Offset example for the Bayer hG kernel 92

6.10 Bayer “h-bayerIn” Input inset calculations 93

6.11 Bayer “h-bayerIn” Input inset calculations with appropriate InsetKernel 94

6.12 Adjusting insets by zero-padding inputs. 95

6.13 Difference program with InsetKernels and BufferKernels 97

6.14 Bayer program with InsetKernels and BufferKernels 98

7.1 Simplified application graph for a parallelized application 100

7.2 Round-robin parallelization of a convolution kernel 104

7.3 Simplified parallelized histogram with data dependency edge 106

7.4 Parallelization of a serial pipeline . 107

7.5 Data replication for parallelization of BufferKernels 108

7.6 Split/Join kernels for KernelBuffer parallelization 110

7.7 Automatic parallelization examples 112

xiii

7.8 Baseline differencing program (“Small/Slow”) 113

7.9 Differencing program with increased input rate (“Small/Fast”) 114

7.10 Differencing program with increased input size (“Big/Slow”) 114

7.11 Differencing program with increased input size and rate (“Big/Fast”) 115

7.12 Simple 5×5 convolution application graph 117

7.13 Automatically buffered and parallelized 5×5 convolution program . . 117

7.14 Data reuse options for a 5× 5 convolution 117

7.15 Näıve buffer parallelization for reuse 118

7.16 Simulation trace of näıvely parallelized buffers 118

7.17 Correctly parallelized buffers for reuse 120

7.18 Simulation trace of correctly parallelized buffers for reuse 120

7.19 Split/Join optimization examples . 122

7.20 Split/Join distribution and time-multiplexing 123

8.1 1:1 kernel-to-processor mapping . 128

8.2 1:1 mapping utilization . 130

8.3 Greedy kernel mapping . 133

8.4 Greedy mapping utilization . 134

8.5 Average utilization for näıve (1:1) and greedy (GM) mappings 135

8.6 More greedy kernel mappings . 136

9.1 Input: Simple program representation 141

9.2 Input: Full parameterized program representation 141

9.3 Step 1: Partial dataflow analysis for inset/buffer insertion 142

9.4 Step 2: Automatic insertion of buffers and insets for correctness . . . 142

9.5 Step 3: Dataflow analysis for automatic parallelization 142

9.6 Step 4: Automatic parallelization to meet real-time constraints 142

9.7 Step 5: Automatic time-multiplexing to increase utilization 143

9.8 Step 6: Simulated application execution 143

A.1 Initial kernel placements for Bayer demosaicing before annealing . . . 147

A.2 Final kernel placements for Bayer demosaicing after annealing 147

xiv

A.3 Initial JPEG kernel placements before annealing 148

A.4 JPEG kernel placements after annealing 148

B.1 Bayer application with output verification 153

B.2 Simulation timeline viewer application 154

B.3 Simulation timeline key . 155

D.1 Thesis writing progress . 162

xv

xvi

Chapter 1

Introduction

The goal of block-parallel programming is to provide a flexible structure for writing

readily analyzable data-parallel applications that can be mapped to future processors

with hundreds or thousands of computation cores. In addition to the traditional

problem of identifying parallel computation within an application, to fully utilize

these architectures the harder problem of mapping and scheduling data movement

across a distributed non-coherent memories needs to be addressed. The block-parallel

programming approach presented here strives to provide a programming approach

that exposes data movement and parallelism such that the compiler tool chain can

easily manipulate the application and intelligently map it to the hardware.

Traditional imperative programming languages have proven very hard to analyze

for automatic parallelization and data movement. The most successful automatically

parallelizing compilers are only able to readily handle affine inner-loops with minimal

control flow dependencies in (reasonably) well-typed languages. Attempts to analyze

typical code in languages that allow arbitrary pointer access constructs, such as C,

have proven enormously less successful.

However, despite many decades of research, even the most capable program analy-

sis and manipulation frameworks run into the fundamental issue that even when they

can analyze a program, it is not at all clear what manipulations should be applied for

optimal performance. The complexity of the code, as evidenced by the number of pos-

sible non-commuting loop transformations, leads to an extremely large search space.

1

2 CHAPTER 1. INTRODUCTION

This search is made even more difficult by the discrete, and often non-monotonic,

performance results from varying the transformations, their parameters, and their

orderings. The result is that most optimizing compilers are extremely conservative,

optimizing only the innermost loop or two of purely affine loop nests or applying

crude blocking to the outermost loops. For architectures with sufficiently low mem-

ory latencies or applications with sufficiently high arithmetic intensity this simplistic

approach is acceptable. Unfortunately this approach has not been motivated by ei-

ther of those artifacts per se, but rather by the difficulty of full-program analysis for

complex architectures and applications. As architectures continue to become more

distributed and less coherent due to scaling difficulties (e.g., they look less and less

like a traditional von Neumann architectures), successful parallelization approaches

will need to be based on more structured inputs to the compiler.

This difficulty of analyzing traditional imperative programming languages moti-

vates the need to provide programming approaches that are easier to analyze. Stream-

based programming in general, and the block-parallel programming presented here, in

particular, attempt to address this issue. These approaches take advantage of the way

programmers tend to naturally think about decomposing algorithms, by structuring

applications as graphs of computation kernels and data streams. This provides the

compiler with a high-level view of the data movement and parallelism present in the

application without the complex analysis required for imperative languages. How-

ever, for this approach to be successful, it must present a simple enough interface to

the programmer to make it productive. Previous stream-based programming systems

have presented programmers with very awkward methods for dealing with control

between kernels and two-dimensional data streams.

The block-parallel application model presented here strives to allow programmers

to intuitively specify applications as a graph of parameterized kernels connected by

two-dimensional data and control streams. In this approach, the kernels and streams

are parameterized to enable analysis by the compilation system for automatic paral-

lelization, data movement, and placement on an array of processors.

3

1.0.1 The 2D Streaming Model

Stream programming systems, such as Brook [6], StreamIt [43], StreamC/KernelC

[35], and a variety of Synchronous Data Flow (sdf) [32] approaches, treat their inputs

as infinite or quasi-inifinite streams of data. The computation kernels that act on these

streams specify the number of stream elements they need to execute, and the number

of iterations of execution is implicitly defined by the length of the stream divided by

the number of unique elements required per execution. The computation kernels are

connected together and to inputs and outputs by channels which act as FIFOs for the

stream data. This programming model maps well to application domains where the

input is generated and processed continuously, and where reuse of the data is largely

local in both time and space. Applications such as media and signal processing are

prime examples of this domain. Thies [43] describes such applications as having six

salient characteristics: 1) large streams of data, 2) independent stream computation

kernels, 3) a stable computation pattern, 4) only occasional modification of stream

structure, 5) only occasional out-of-stream communication, and 6) high performance

expectations.

Input OutputKernel A

Kernel Code

FIFO Kernel BFIFO FIFO

Page 1 of 1

SubtractKernel.java 1/23/08 4:58 PM

package kernelApplication.test.kernels;

import kernelApplication.elements.kernels.Kernel;

public class SubtractKernel extends Kernel {

private double [][] result = new double[1][1];

public void configureKernel() {
/*
 * Create the Inputs and Outputs
 */
createInput("in0", 1,1,1,1);
createInput("in1", 1,1,1,1);
createOutput("out", 1,1);
/*
 * Register the subtract() method, define its resource
 * usage, and assign its Inputs and Outputs.
 */
registerMethod("subtract", 0,0,1,1);
registerMethodInput("subtract", "in0");
registerMethodInput("subtract", "in1");
registerMethodOutput("subtract", "out");

}

public void subtract() {
double [][] in0 = readInputData("in0");
double [][] in1 = readInputData("in1");
result[0][0] = in0[0][0] - in1[0][0];
writeOutputData("out", result);

}

}

package kernelApplication.test.kernels;

import kernelApplication.elements.kernels.Kernel;

public class SubtractKernel extends Kernel {

@Override
public void configureKernel() {

/*
 * Create the Inputs and Outputs
 */
createInput("in0", 1,1,1,1);
createInput("in1", 1,1,1,1);
createOutput("out", 1,1);
/*
 * Register the subtract() method, define its resource
 * usage, and assign its Inputs and Outputs.
 */
registerMethod("subtract", 0,0,1,1);
registerMethodInput("subtract", "in0");
registerMethodInput("subtract", "in1");
registerMethodOutput("subtract", "out");

}

public void subtract() throws InterruptedException {
double [][] in0 = readInputData("in0");
double [][] in1 = readInputData("in1");
double [][] result = new double[1][1];
result[0][0] = in0[0][0] -in1[0][0];
writeOutputData("out", result);

}

}

Page 1 of 1

ConvolutionKernel.java 1/23/08 4:53 PM

package kernelApplication.test.kernels;

import java.util.Arrays;

import kernelApplication.elements.kernels.Kernel;
import kernelApplication.run.GlobalClock;
import kernelApplication.trace.Trace;
import kernelApplication.trace.Trace.EventType;
import kernelApplication.util.Warnings;

/**
 * Implements a width x height convolution.
 * If there is no coeff input then 0s are used.
 * @author davidbbs
 *
 */

public class ConvolutionKernel extends Kernel {

int width;
int height;

public ConvolutionKernel(String name, int width, int height) {
super(name);
this.width = width;
this.height = height;

}

public void configureKernel() {
/*
 * Define the Inputs and Outputs, register the method, and assign
 * resources consumed.
 */
createInput("in", width, height, 1, 1,

Math.floor((double)width/2), Math.floor((double)height/2));
createOutput("out", 1,1);
registerMethod("runConvolve", 0, 3, 10, 10+3*height*width);
registerMethodInput("runConvolve", "in");
registerMethodOutput("runConvolve", "out");

/*
 * Define the Input for coefficient loading, register the
 * method called when the coefficients are present,
 * and mark that input as begin replicated. (I.e., inputs
 * to it should be copied, not parallelized.)
 */
createInput("coeff", width, height, width, height,

Math.floor((double)width/2), Math.floor((double)height/2));
registerMethod("loadCoeff", 0, 3, 10, 10+2*height*width);
registerMethodInput("loadCoeff", "coeff");

/*
 * When parallelizing, the coefficient input should be replicated,
 * not distributed.
 */
getInputByName("coeff").setReplicateInput(true);

}

private double[][] coeff;
private double[][] result = new double[1][1];

public void runConvolve(){
double[][] in = readInputData("in");
for (int x=0; x<width; x++)

for (int y=0; y<height; y++)
result[0][0] += in[x][y]*coeff[width-x-1][width-y-1];

writeOutputData("out", result);
}

public void loadCoeff() {
coeff = readInputData("coeff");

}

}

Kernel Code

Infinite or quasi-
inifinite data stream

To my daughter Ellen:
There are chickens in the trees,
 there are chickens in the trees.

Won't some body help me please,
count the chickens in the trees?

Figure 1.1: Basic stream program example
The kernel code for each kernel is logically executed on the incoming data whenever
enough data arrives. The kernel then produces output data which is sent downstream
via the FIFOs between kernels.

The execution flow of a stream program is defined by connecting multiple kernels

together in a directed graph that represents the desired flow of data through the

4 CHAPTER 1. INTRODUCTION

computation kernels. To apply kernel “A” to an input stream, the stream would be

connected to the input on kernel “A”. To then apply kernel “B” to the result, the

output of kernel “A” would then be connected to the input of kernel “B”. Such a toy

application is illustrated in Figure 1.1. This programming style closely matches signal

and image processing problems where algorithms tend to be designed by applying

reusable computation kernels to data streams.

Most streaming systems define their data streams as one-dimensional series of

data, although there have been multiple proposals for multi-dimensional streaming

[32, 26, 3] and blocking [14] languages. Despite this one-dimensional limitation, they

can handle higher dimensional data by appropriately (and usually manually) index-

ing into the single-dimensional streams. This enables image and video processing

within the same framework without explicit two-dimensional data support. However,

this approach complicates the program analysis by hiding the underlying program

structure, and requires that the programmer keep track of the particular data layout

throughout the application. The approach taken in this work is to provide a native

two-dimensional data stream to simplify writing and analyzing programs that ma-

nipulate two-dimensional data. (See Figure 1.2.) Like other streaming systems, the

two-dimensional stream consists conceptually of an infinite number of elements, but

unlike one-dimensional approaches, each element in the stream is a two-dimensional

data frame. While the number of frames is assumed infinite (such as might be found

in a video stream), each frame itself is of a fixed, and statically determined, size. The

data within each input frame is further assumed to stream into the application, in a

left-to-right, top-to-bottom manner. One-dimensional streaming applications can be

readily written by simply defining the streams to be height one.

To take advantage of the two-dimensional input streams, the computation kernels

that operate on them are also defined with two-dimensional inputs and outputs. This

parameterization greatly simplifies the programming system’s job of analyzing how

the data is used and reused for applications that map nicely to one- or two-dimensional

inputs. For one-dimensional streaming systems, this two-dimensional information

must be inferred from the use of the streams within the kernels, and can only be

utilized if the inferences can be proven to hold throughout the application. The

5

Input OutputKernel

Input Stream
(frame size 6x6 @ 100Hz)

Output Stream
(frame size 3x3 @ 100Hz)

Kernel Input
per Iteration

(size 2x2)

Kernel Output
per Iteration

(size 1x1)

1 2
4 5
7 8

3
6
9

Kernel Iterations
(3x3 @ 100Hz = 900Hz)

Current
Frame

Execution within a frame
occurs in left-to-right,
top-to-bottom order.

Figure 1.2: 2D streaming application model example
The input stream is depicted on the left. The stream consists of frames of size 6× 6
which are processed through the kernel shown in the middle. The kernel’s input is
2× 2, which tiles the input frame size 3× 3 times, producing an output of size 3× 3,
which defines the output stream.

manipulations enabled by explicit two-dimensional parameterization include reuse

calculation, buffer sizing and partitioning, and application consistency analysis. With

this enhanced knowledge of the data usage patterns of the application, it is readily

possible to parallelize and map the application to an array of processors to meet a

specified data rate without heroic compiler analysis.

1.0.2 Block Programming Example

To motivate this programming approach, consider applying a median filter (Figure

1.3) to an input image. The goal is to provide an automatic system for parallelizing

this filter to meet the real-time constraint imposed by the input image’s size and rate.

A median filter processes the input image in overlapping windows, sorting the pixel

values in each window, and outputting the median value for the window at each pixel

6 CHAPTER 1. INTRODUCTION

Iteration (x,y)

Output HaloIteration (x+2,y)

Input Image Median Filtered Result

Figure 1.3: Example median filter

The application of a median filter to an input image is shown. The input windows
and output pixels for two iterations of the filter are shown in red and blue. The input
windows overlap as can be seen from the alignment of the two filter input windows
shown in the middle. The output image is surrounded by a halo of invalid data that
must be either removed or generated by zero-padding the original input image.

location. The straight-line imperative code for the median filter, as shown in Figure

1.4, is quite straightforward. It consists of four sets of nested loops: two outer loops

for walking over the image to choose the window, and two inner loops for walking over

the window to calculate the median value. For a compiler to automatically analyze

and parallelize this code to meet a given data rate, it needs to be able to analyze

this loop nest. However, the code within the inner two loops has data-dependent

behavior. That is, the sorting of the values to calculate the median can not be

statically predicted, and therefore can not be statically analyzed. This limits the

compiler analysis to examining the outer two loops.

The two outer loops in this code are very straightforward, and can be readily

understood and parallelized with a basic affine analysis1. Unfortunately, examining

just the outer two loops is insufficient in this case. The median filter processes data

in windows that overlap between iterations, with the size of these windows and the

overlap being defined by the data access patterns in the inner loops. This means

that any parallelization needs to calculate this overlap by examining the range of

1Note that while this analysis is “understood” in the academic sense, no common compiler is
actually advanced enough to implement it.

7

y

Image
Outer Loop

x

Window
Inner Loop

xx

yy

Outer Loops

Inner Loops

image[width][height];
output[width-halo][height-halo];

for (y=0; y<height-halo; y++)
for (x=0; x<width-halo; x++) {

sortedList.clear();
for (xx=0; xx<halo; xx++) {

for (yy=0; yy<halo; yy++) {
sortedList.insert(image[x+xx][y+yy]);

}
}
output[x][y] = sortedList.getMedian();

}
}

Figure 1.4: Imperative (standard) median filter implementation

The imperative code for a median filter consists of two outer loops for walking over
the input image and two inner loops for walking over the window at each location.
The pixels in the window to be processed are sorted and the result is the median
value of that sorted list.

data accessed in the inner two loops for each execution of the outer two loops, and

duplicate this data accordingly.

This analysis leaves the compiler with the choice of parallelizing along either of

the two outer loops, with the inner loop code being executed for each iteration.

The choice of which to use is driven by an analysis of the data reuse enabled by

each approach when loading the input image from off-chip memory. (See Figure

1.5.) If the parallelization splits along the outermost loop, the result will be poor

data locality as each processor will be accessing data for a separate portion of the

input image simultaneously. Without appropriate banking of the memory system

and careful data layout this will result in poor performance. If the parallelization

splits along the innermost loop, each processor will be reloading the same data its

neighbor requested recently, which will significantly increase the total traffic in the

absence of a higher-level cache. These problems are a result of the interplay of the

parallelization and data access patterns of the underlying code, something which is

poorly exposed through the code analysis, and which is even harder to reason about

even if it is exposed. Unfortunately this is likely to be the performance dominating

feature of the analysis, particularly for many-core architectures where on-chip data

movement must be carefully coordinated due to a paucity of off-chip bandwidth.

8 CHAPTER 1. INTRODUCTION

Outer Loop
Parallelization

Inner Loop
Parallelization

1 2 3 4
Processor

12341234123412341234
Processor

Figure 1.5: Data distribution for inner- and outer-loop parallelization

The portion of the image filtered by each processor is shown alternatingly in red and
green, with shared data is shown in yellow. Outer-loop parallelization divides up the
image into vertical slices which are accessed at the same time by each processor, caus-
ing a stream of non-sequential external memory requests. Inner-loop parallelization
causes each processor to process sequential blocks, which results in each processor
generating memory accesses for the same data that the previous processor requested
on the previous iteration.

To determine the degree of parallelization required, the compiler needs to know

two things: the size and rate of the input image, and the amount of time each iteration

of the filter takes. The processing time per iteration depends on how the compiler

chooses to parallelize the code, but, if we assume for simplicity that the compiler treats

the inner two loops as the unit of computation, the processing time can be reasonably

approximated by a static analysis or with some help from the programmer. The input

rate is specified no where in the code, and must be provided externally or through a

custom pragma to the compiler.

The block-parallel programming approach presented here greatly simplifies this

analysis by parameterizing the application in two ways. The first is that the com-

putation is expressed as a graph of computation kernels with parameterized inputs

and outputs. The second is to define an order of iterating over input data. Taken

together, these eliminate the inner loop analysis (via kernel parameterization) and

outer loop analysis (via an explicit data iteration order) required to manipulate the

9

Input

128x128 @ 100Hz
out

(1x1)
in

(11x11)[1,1] 11x11 Median
out

(1x1)
Output

Kernel Codeimage[halo][halo] = readInput("in");

sortedList.clear();
for (xx=0; xx<halo; xx++) {

for (yy=0; yy<halo; yy++) {
sortedList.insert(image[xx][yy]);

}
}

writeOutput("out", sortedList.getMedian());

Kernel Input
Parameterization

size: 11x11
step: 1,1

Kernel Output
Parameterization

size: 1x1

Application Input
Parameterization

size: 128x128
rate: 100Hz

Figure 1.6: Block-parallel median filter implementation

The block-parallel median filter implementation defines a median filter kernel which
contains the code to execute on each iteration. The kernel also defines the input
window size it requires and the output data size. The program image input size and
rate are specified by the input “Input” on the left.

median filter presented above. The tradeoff is that the programmer must now pro-

vide the data derived by the above analysis, but as the programmer has intimate

knowledge of both the domain and the filter being implemented, this is a relatively

low-cost requirement.

Indeed, the information the programmer must provide actually simplifies the ap-

plication development and encourages code reuse. For the median filter, shown in

Figure 1.6, the programmer needs to specify that the input window size is (width ×
height) and that this window steps through the input in (1,1) steps for each horizontal

and vertical iteration, respectively. Taken together these define how much data the

median filter needs for each iteration, and how much reuse and overlap is present in

the computation. The output is similarly simply defined as being size (1× 1). The

kernel must finally specify the amount of computation required per iteration, which is

just as easily calculated for the kernel implementation as for the straight-code imper-

ative implementation. When the full block-parallel application is written, the input

10 CHAPTER 1. INTRODUCTION

Input

128x128 @ 100Hz
out

(1x1)
in

(1x1)[1,1]

11x11 Median_0 out
(1x1)

11x11 Median_1 out
(1x1)

11x11 Median_2
out

(1x1)

11x11 Median_3
out

(1x1)

in_0
(1x1)[1,1]

in_1
(1x1)[1,1]

in_2
(1x1)[1,1]

in_3
(1x1)[1,1]

in
(11x11)[1,1]

in
(11x11)[1,1]

in
(11x11)[1,1]

in
(11x11)[1,1]

Split

out_0
(11x11)[1,1]

out_1
(11x11)[1,1]

out_2
(11x11)[1,1]

out_3
(11x11)[1,1]

Join
out

(1x1)[1,1]

in
(11x11)[1,1]

out
(1x1)

Output
Buffer

(1x1)[1,1]-->(11x1)[1,1]

out
(11x11)[1,1]

Input Buffer Data Distributor
(Splitter)

Parallelized
Kernels

Data Collector
(Joiner)

Figure 1.7: Automatically parallelized block-parallel median filter implementation

The block-parallel median filter implementation enables the automatic buffer insertion
and parallelization shown here. The median kernel has been replicated four times and
appropriate data distribution and collection (Split/Join) kernels and an input buffer
have been inserted.

size and rate are explicitly defined by the parameterization of the input connected to

the kernel, and therefore no special pragmas are required to pass on this information.

With this information, the compiler can avoid all of the analysis described above.

The addition of a fixed input data ordering (here left-to-right, scanline order), sim-

plifies the compiler’s decision as to how to parallelize the processing, as well. (See

Figure 1.7.) By specifying the input data ordering, the compiler can determine the

parallelization so as to maximize reuse within the input data, thereby minimizing

access to off-chip memory. The result is that the parallelization analysis need merely

determine how many kernels are required (inputRate×inputSize
timePerKernelIteration

) and then send the data

in a round-robin fashion to that many separate instances of the kernel on different

processors. The compiler can insert a buffer to store the incoming data in the known

input order to ensure that the processors obtain maximum reuse and bandwidth to

the off-chip memory.

The downside of this approach is that the compiler is left with less flexibility in

determining the parallelization, and the programmer is forced to make the programs

conform to the kernel/stream programming model. However, with the language fea-

tures discussed in this thesis the difficulty of writing traditionally non-data-parallel

applications in a streaming language can be significantly reduced, and the losses from

a more constrained parallelization program are readily compensated for by the ability

1.1. CONTRIBUTIONS 11

to robustly and efficiently parallelize a general, and useful, class of programs.

1.1 Contributions

This thesis describes a block-parallel streaming programming approach and the asso-

ciated analyses and application transformations required to automatically parallelize

such applications to meet hard real-time constraints. The specific contributions of

this work are as follows:

• A practical two-dimensional “block-parallel” streaming language whose pro-

grams are described as an application graph with data streams connecting

computation kernels. Each kernel supports multiple inputs and outputs and

multiple computation methods.

• A compiler system that can automatically parallelize the block-parallel applica-

tion to meet real-time constraints. The constraints are defined by the size and

rate of the application’s inputs, which are propagated through the application

graph by a dataflow analysis. This analysis enables the compiler to determine

the required computation rates, and hence degree of parallelization, at each

point in the application. The regular streaming structure of the program then

enables automatic parallelization to meet these constraints.

• A cycle-accurate functional simulator for evaluating the performance of the

parallelized applications that uses the same program code as the compiler, but

avoids the need to implement a hardware simulator.

• Analyses to determine the need to inset or zero-pad data to fix inconsistencies

in the intuitive description of two-dimensional streaming applications, thereby

improving the reusability of code.

• A method for describing the distribution of control tokens which is both ana-

lyzable and flexible. By including the control tokens in the application analysis,

the overhead of non-trivial control handling code can be accurately incorporated

in the performance estimation.

12 CHAPTER 1. INTRODUCTION

• The use of multiple methods per kernel which can be independently triggered

by incoming data or control to simplify application structure and data shar-

ing. Combined with the flexibility of the control tokens, this allows powerful

multiplexing of control and data over a single logical input to a kernel.

• The use of data dependency edges in the application graph to intuitively and

flexibly limit the degree of parallelism allowed for certain computations.

• Automatic sizing and insertion of two-dimensional circular buffers between ker-

nels.

1.2 Thesis Overview

This thesis describes a block-parallel programing and compilation system and pro-

vides examples of the transformations and analyses needed to map applications to

many-core architectures. The thesis begins with an overview of relevant background

material in Chapter 2. This includes an introduction to Synchronous Data Flow (sdf)

application descriptions and current streaming hardware architectures. sdf is impor-

tant as it has formed much of the basis for stream-kernel programming, and is the

only approach that has produced a decent mathematical formulation for analyzing

the application structure.

Next an overview of related work is presented in Chapter 3, with a focus on a vari-

ety of relevant streaming languages, including StreamIt (Section 3.1), StreamC/ Ker-

nelC (Section 3.2), Brook (Section 3.3), Sequoia (Section 3.4), and multi-dimensional

sdf (Section 3.5). Particular detail is paid to the StreamIt language as it is one of

the most developed implementations.

With this background, the programming model for the block-parallel programming

system is presented in Chapter 4. The Application Graph used to describe the overall

application and data flow is introduced in Section 4.1. The details of the Data Model,

including data streams, data transport, and control are described in Section 4.2. This

is followed by a description of the Computation Model in Section 4.3, and several

1.2. THESIS OVERVIEW 13

examples in Section 4.4. The chapter concludes with a discussion comparing the

model presented here with the other languages discussed in Chapter 3.

After having established the basic application description framework in Chapter

4, Chapter 5 describes the analysis required to determine the computation rates of

the various kernels in the application. The salient values, frame size, frame rate, and

iteration size, are introduced and defined in Section 5.1, and the data flow analysis

required to calculate them is described in Section 5.2. The chapter concludes with a

brief discussion of feedback (Section 5.2.1) and an example detailing the application

of the described data flow analysis (Section 5.3). The example reveals two types of

application inconsistencies in the sample application which are to be addressed in

Chapter 6.

Chapter 6 starts where Chapter 5 ends by addressing the aforementioned appli-

cation inconsistencies. Their causes are explained, and the need to insert buffers and

insets to correct them is discussed. Section 6.1 describes the two-dimensional circular

buffers required for buffering a two-dimensional streaming application, and derives the

sizing needed for minimal and double-buffering, with particular care paid to buffering

between input frames. The implementation of the buffers as BufferKernels is pre-

sented in Section 6.1.2. Insets, the extended data flow analysis required to calculate

them, and their implementation as InsetKernels are presented in Section 6.2. Two

detailed examples are also provided to demonstrate the analysis. An alternative to

inset insertion, zero padding, is discussed in in Section 6.2.2. The chapter concludes

with a description of the automated insertion of buffers and insets to create complete

and consistent applications.

Chapter 7 takes the complete and consistent applications from the automatic anal-

ysis in Chatper 6 and adds automatic parallelization to meet the required data rates

of the application’s inputs. To implement the parallelization, Section 7.1 introduces

Split and Join kernels to allow flexible data distribution to parallelized kernels. The

remainder of the chapter discusses the issues involved with parallelizing purely data-

parallel kernels (Section 7.2), kernels with limited parallelism (Section 7.3) and finally

BufferKernels (Section 7.4), whose parallelism is defined by the order in which data

14 CHAPTER 1. INTRODUCTION

must be written into them. Examples of parallelized applications showing the auto-

matic analysis and adjustment for both application data input rates and processor ca-

pabilities are shown in Section 7.5, and the chapter concludes with discussions of data

reuse from parallelized buffer kernels (Section 7.6.1), the inefficiencies of Split/Join

kernels (Section 7.6.2), and a comparison to related work.

The automatic parallelization of Chapter 7 implies a näıve 1:1 mapping of kernels

to processors, which results in a low overall utilization. Chapter 8 addresses this by

first analyzing the utilization of the 1:1 mapping (Section 8.1) and then proposing a

simple greedy merging algorithm for time-multiplexing the kernels to achieve better

utilization (Section 8.2). The greedy merge algorithm is implemented and the final

full analysis, buffering, parallelization, and time-multiplexing is evaluated across a

range of programs (Section 8.3).

The thesis concludes in Chapter 9 by discussing the overall merits of the proposed

block-parallel programming system and the analyses discussed herein. Three appen-

dices briefly touch upon using simulated annealing for kernel placement on an array

of processors (Appendix A), the simulator implementation developed for this analysis

(Appendix B), and future directions of interest for this system (Appendix C).

Chapter 2

Background

This background section provides background information on two topics related to

programmable embedded systems: a formal framework for describing and analyz-

ing kernel-based applications known as Synchronous Data Flow, and an overview of

current streaming processor hardware implementations.

2.1 Synchronous Data Flow

The concept of data flow programming has been elegantly codified into the Syn-

chronous Data Flow (sdf) application descriptions [33]. sdf originated from the

desire to map signal processing algorithms to dsps efficiently, and as such focuses on

the static scheduling of computation kernels (actors) operating on streams of data

(tokens). The sdf description builds an application from a graph of actors with stat-

ically determined token consumption and production rates. The actors are connected

by a directed graph edges, or FIFOs, which can optionally specify delays. By insisting

on static data rates, the application can be analyzed to determine the optimal sched-

ule for firing (executing) the actors to minimize buffering and scheduling overhead,

while avoiding deadlock. The application definition is quite general, allowing multiple

inputs and outputs to actors and feedback loops within the application.

sdf applications can be analyzed by putting the static production and consump-

tion rates of each actor on each edge into a topology matrix. The topology matrix can

15

16 CHAPTER 2. BACKGROUND

then be manipulated to determine a static Periodic Admissible Serial Schedule (pass)

for the application. Such a schedule defines a repeating firing pattern for all the ac-

tors in the graph that guarantees that the size of the buffers between each actor does

not increase between iterations. The pass thereby defines the maximum buffer sizes

required along each edge within the graph. The derivation and proof of such a sched-

ule reveal several nice properties of this description of the application including proof

of the existence of such a schedule and the requirements for a consistent application

description. The initial work on sdf also introduced a reasonable methodology for

generating parallel schedules and acknowledged the possibility of trading off schedule

length for buffer size. The limitations of the sdf model are in its static nature. By

itself it can not handle state changes or data dependencies in the structure of the

application.

To enable applications with state dependencies, sdf has been extended to encom-

pass a Cyclo-static Dataflow (csdf) approach [13]. This approach allows each actor

in the graph to have a cyclical sequence of statically defined production and consump-

tion rates. The application can then be analyzed much like a regular sdf application

by expanding the topology matrix to contain vectors representing the possible firing

states for each actor. The resulting static schedules are necessarily much longer than

the regular sdf ones as they must encompass the correct number of internal cycles

for each of the actors.

csdf applications can also be translated into sdf form [39]. Such a translation has

the advantage of allowing the use of methods for scheduling and analyzing the simpler

sdf graphs, but has the potential cost of exponential schedule growth. If the csdf

model is explicit as to which actors have internal state, the transformation to sdf

can expose additional parallelism that would not have been present in a purely csdf

representation. The overall increase in flexibility provided by allowing each actor

to have an internal cyclical consumption/production pattern makes sdf significantly

more general, but greatly (indeed, sometimes exponentially) increases the complexity

of scheduling and analysis.

Subsequent work on generating schedules for sdf applications focused on min-

imizing the memory resident sizes of the resulting applications, as reviewed in [5].

2.2. STREAMING ARCHITECTURES 17

Across a range of applications targeted at dsps, the size of the code for the com-

piled sdf applications was found to dominate over the required buffering between

the actors due to the need to inline the actor code to avoid the historic overhead of

function calls. This led to several approaches to generate minimum sized schedules by

focusing on obtaining Single Appearance Schedules (sass) wherein each actor’s code

need only be inlined once. sas schedules exist in general only when each strongly

connected component of a sdf graph itself has a valid sas schedule. This leads to

algorithms which partition graphs into strongly connected (tightly interdependent)

components, for which an sas schedule can not necessarily be found, and “subinde-

pendent” components for which one can. To obtain decent schedules for the tightly

interdependent components, the sdf graph must be ordered in such a way that each

actor can be fired the correct number of times in a row without stalling, if possible.

Two heuristics for finding such an ordering are Acyclical Pairwise Grouping of Adja-

cent Nodes (apgan) and Recursive Partitioning by Minimum Cuts (rpmc). These

two approaches complement each other in that they work well on different types of

graphs, and generally construct sas schedules for acyclic sdf graphs that minimize

the buffer sizes required, and have been extended to cyclic graphs.

While sas schedules produce the smallest inlined code for sdf applications, the

justification such code-size reduction efforts has diminished over time. The drive for

sas schedules was based on the need to inline all actor code to avoid the overhead of

function calls and dynamic dispatch. As caches have become larger and ubiquitous on

even the smallest dsps, and as many-core processors lead to communications being

the dominant performance concern, dynamic scheduling and dispatch of actors is

rapidly becoming a small, or even negligible, overhead [48]. As much of the work in

sdf in general has focused on obtaining optimal static schedules for dsps, it is not

clear how valuable this model will be moving forward.

2.2 Streaming architectures

Streaming architectures have arisen in response to the growing disconnect between the

amount of computational resources that can fit onto a chip and the amount of off-chip

18 CHAPTER 2. BACKGROUND

bandwidth available to feed them. At the same time, a push towards multi-core archi-

tectures has been seen due to the increasing power cost and decreasing performance

benefits of trying to extract dynamic parallelism from a single instruction stream.

Combined, these two trends lead to a range of architectures that feature multiple

software-controlled processing units and explicit software-controlled data movement.

The most relevant academic projects in this regard are MIT’s Raw [45] and Stan-

ford’s Imagine [40] architectures. In industry, the IBM-Sony-Toshiba Cell processor

[21], Stream Processor’s Storm-1 [28], a broad range of graphics processors, and a

healthy collection of special-purpose embedded architectures are making commercial

stream processing a reality.

2.2.1 MIT’s Raw

The Raw microprocessor architecture [45, 42] was designed to implement the mini-

mum set of features in hardware to expose the hardware resources to the compiler.

The driving motivation was that as devices become smaller wire delays become more

expensive and the opportunities for parallelism and specialization increase. This led

to a tiled architecture that exposed the logic (functional units in each tile), wires

(on-chip networks), and I/O pins (via the chip edge network ports) at the ISA level

to allow the compilation system to make best use of the resources. By exposing this

level of architectural detail to the compiler, the Raw project aimed to enable a broad

range of applications to execute efficiently and scale well.

The Raw implementation consists of an array of identical tiles, each containing a

MIPS-like 8-stage, in-order, single-issue pipelined processor and a network interface.

The network interface supports four networks: two static and two dynamic. To

encourage the use of multiple tiles to exploit ILP, the networks are mapped directly

into the register files in the processors. This enables a static route to communicate

register values between functional units in adjacent processors in only 3 cycles. The

dynamic networks are divided into a privileged network for cache, DMA, and I/O

access, and a general purpose network. The processors contain simple floating point

2.2. STREAMING ARCHITECTURES 19

units, 32kB of data cache, and 32kB of software-managed instruction memory,1 while

the network interfaces contains 64kB of instruction memory, thereby enabling great

flexibility in the scheduling of the static networks.2 To enable software control of

the I/O resources, the on-chip networks are simply routed to the I/O pins, and can

thereby be accessed with regular network commands.

2.2.2 Stanford’s Imagine

The Imagine streaming architecture [40] was designed to execute media processing

kernels with high arithmetic intensity efficiently [27]. The focus was on providing a

good hardware match for both the instruction- and data-level parallelism present in

1It appears that not including an instruction cache was a significant issue for development as
almost all reported results are run on a simulator with an instruction cache.

2Unfortunately, this flexibility in the network router resulted in them being roughly as large as
the processor itself.

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Processor
Tile

Network
Interface

D
Cache

I
Mem

Off-chip
I/O

Off-chip
I/O

Off-chip
I/O

Off-chip
I/O

Off-chip
I/O

Off-chip
I/O

Off-chip
I/O

Off-chip
I/O

Off-chip I/O Off-chip I/O Off-chip I/O Off-chip I/O

Off-chip I/O Off-chip I/O Off-chip I/O Off-chip I/O

Figure 2.1: Raw architecture
The Raw architecture consists of an array of 16 tiles, each with a RISC processor and
network interface. The processors have data caches and software-controlled instruc-
tion/scratchpad memories. The network interfaces terminate in I/Os at the edge of
the chip.

20 CHAPTER 2. BACKGROUND

media applications, while improving memory system efficiency by restricting access

semantics to regularly indexed streams. For applications that map to this architec-

ture, it was able to achieve very high utilization and efficiency.

Imagine Processor

Stream Register File (SRF)

Microcontroller

Host Interface

Streaming Memory System

ALU
Cluster

ALU
Cluster

ALU
Cluster

ALU
Cluster

ALU
Cluster

ALU
Cluster

ALU
Cluster

ALU
Cluster

Host
Processor

Off-chip
DRAM

Off-chip
DRAM

Off-chip
DRAM

Off-chip
DRAM

Figure 2.2: Imagine architecture
The streaming register file (srf) provides a data staging area and bandwidth multi-
plication between the off-chip memory and the VLIW processing lanes. Figure after
from [40], Figure 3.

Imagine executes SIMD-style across 8 VLIW computation “lanes”. Each VLIW

lane is designed to take advantage of the ILP present in the kernel. Data-level par-

allelism is exploited by having 8 lanes operate together in a SIMD-manner. The

architecture functions as a streaming co-procesor and relies on a host cpu to load

stream memory instructions and kernels to a small hardware scoreboard. Imagine

then issues the memory instructions and kernels when their scoreboard dependencies

have been satisfied, executing up to two stream memory instructions and one kernel

instruction at a time.

Streams are loaded from off-chip memory into an on-chip streaming register file

(srf) which provides high-bandwidth regular data access to the computation units.

The computation kernels are executed by an on-board micro-controller that issues

2.2. STREAMING ARCHITECTURES 21

instructions across the 8 VLIW lanes in a SIMD fashion with each lane receiving the

n-th data element from the data stream(s) and writing out the n-th result. The srf

is the only global memory structure accessible by the computation kernels, and it can

only be accessed in either strided or indexed fashion. This access-pattern restriction

enables the memory sub-system to efficiently use its bandwidth by pre-fetching data

for the processing lanes. In addition to accessing the srf, each lane can read and

write scalar control variables to the micro-controller. Inter-lane communications is

provided by an exchange instruction which allows the lanes to rotate data in an

arbitrary, but static fashion. As Imagine only executes one kernel at a time, the only

task-level parallelism that can be utilized is that of pre-loading streams to the srf.

2.2.3 Others Streaming Architectures

Mainstream and Server Processors

As the performance return for more aggressive single-core processor design has di-

minished at the cost of greatly increased power consumption, all major processor

designers have shifted to placing multiple processor cores on a die to achieve higher

performance and better market penetration. This trend is rapidly moving commodity

computing to the point where CMP platforms dominate the desktop, starting at first

with dual-core, and moving rapidly towards quad-core, and beyond.

In addition to mainstream architectures, server manufacturers are also moving

towards many-cored processors. Sun’s Niagara [31] is an 8-core hardware multi-

threaded UltraSparc processor optimized for transaction processing. It competes

with Azlu’s Vega 2 [12], a 48-core RISC-style processor designed for running virtual

machines and transactional code. Even non-procssor companies such as Cisco have

moved in this direction. Their CRS-1 [47] contains 192 Tensilica Xtensa cores and is

designed for network packet processing.

While none of these processors are designed for streaming per se, [19] has shown

that they can benefit from the data pre-fetching enabled by streaming applications,

and that it would only take a small amount of hardware to fully enable streaming

22 CHAPTER 2. BACKGROUND

processing within their architectures [18]. As the number of cores increase, data-

parallel applications will require extensive analysis to ensure that the memory system

can keep the cores busy, thereby making stream-enabling hardware enhancements all

the more appealing.

Commercial Streaming Architectures

Commercial streaming architectures first appeared with the Sony-IBM-Toshiba Cell

processor [21]. This processor provided 8 streaming processors with SIMD execution

and software-managed shared instruction and data memories, along with a single

dual-threaded RISC control core. The individual stream processors, referred to as

Synergistic Processing Units for obscure reasons, communicate over a ring network

in a non-coherent fashion. ClearSpeed’s CSX600 [20] is a 96 processor floating point

accelerator with 1TB/s internal network bandwidth. The picoArray PC102 from Pic-

oChip [11] contains a heterogeneous array of 322 processors. The PC102 includes

3-way VLIW Harvard architecture units, control processors, and memory tiles, all

connected by a statically programmed network of 32-bit busses. The Tilera Tile64

[46] is a commercial realization of the MIT Raw [45] architecture. Its initial im-

plementation contains 64 VLIW cores with 5-on chip networks supporting user and

system static and dynamic access. The Tile64 provides coherent shared-memory and

keeps Raw’s register-mapped network support, but adds hardware support for net-

work endpoint buffers and more industry-oriented I/O. Similarly, the Storm-1 from

Streaming Processors Incorporated [28], is a commercial fixed-point implementation

of Stanford’s Imagine [40] streaming processor. The Storm-1 doubles Imagine’s 8

VLIW processing lanes to 16, and adds extensive support for full system integration

and industry-standard I/O.

Intel has also disclosed two prototype streaming processor designs. The first,

the Teraflop Research Chip [22], is an 80-core floating point processor with a sim-

ple on-chip mesh network and no memory coherence. In addition to exploring the

construction of on-chip networks, the chip serves to test techniques for 3D integra-

tion by stacking SRAM dies on top of the processor die. More interestingly, Intel’s

2.2. STREAMING ARCHITECTURES 23

Larabee project [7] presents a 16-core x86 architecture designed to be performance-

competetive with the special-purpose hardware of contemporary graphics processors.

The initial design calls for multiple hardware threads per core, high-performance

short-vector units, a large coherent, but distributed, cache, and specialized hardware

texture fetches.

Graphics Processors

Graphics Processing Units (gpus), such as NVIDIA’s G80 and ATI/AMD’s R600

architectures, are effectively stream processors. Historically, gpus have been special-

purpose processors with fixed-function hardware to implement the graphics processing

pipeline required to render real-time 3D images. However, as the rendering require-

ments have evolved (e.g., with the addition of programmable shaders and geometry

manipulation), the hardware architectures have evolved to be more and more generic.

The G80 and R600 generations have both moved to a generic set of multi-threaded

processing units on which the stages of the graphics pipeline are dynamically sched-

uled and executed. For example, the G80 contains 16 processors with 8 cores each,

and each core being time multiplexed across several threads [38]. The cores support

16KB of local shared memory and the system has direct access to high-speed graphics

memory, and much slower access to the system’s main memory. The R600 contains

4 SIMD arrays of 16 stream processing units each. The processors are 5-way scalar

VLIW processors with support for 32-bit floating point multiplication [9].

While the individual processing cores, instruction dispatch, and data memories are

still optimized for graphics rendering, these architectures have been successfully used

for streaming computations. Indeed, by exposing producer-consumer locality and

data parallelism, streaming models map very nicely to the gpu processing model [6].

The manufacturers have recognized this and begun to supply generic programming

environments for accessing these resources for non-graphics tasks [34].

Chapter 3

Related Work

The concept of computing on streams of data, or stream computing, has been around

for quite a while. Stephens [41] traces it back to P J Landin and his work in the 1960s

on ALGO 60, and follows it as an active research and development topic up through

the late 1990s. More recent developments are sumarized in [16, 15]. This section

focuses on several particularly relevant contemporary streaming languages for media

processing (StreamIt, StreamC/KernelC, Brook, and Sequoia) and the generalization

of Synchronous Data Flow to multiple dimensions. Particular emphasis is placed on

the StreamIt language and its implementation for the Raw hardware back-end as

it closely resembles the target hardware described in this thesis. For an in-depth

review of previous work in streaming programming languages, please refer to the two

aforementioned references.

3.1 StreamIt

One of the most well-explored example of a streaming programming language is

StreamIt. The authors summarize the distinctive features of the language as follows:

“StreamIt differs from other stream languages in the single-input, single-

output hierarchical structure that it imposes on streams. This structure

aims to help the programmer by defining clean, composable modules that

admit a linear textual representation.”[43, 23]

24

3.1. STREAMIT 25

StreamIt has been targeted to many-core architectures [16], clusters [44], and portable

streaming frameworks [48]. In addition, multiple generations of the compiler have

explored a broad range of optimizations across many large benchmarks [23, 16, 15].

StreamIt represents applications as a hierarchical series of filters (e.g., compu-

tation kernels). The hierarchy comes from encapsulating multiple related filters in

Pipeline, SplitJoin, and FeedbackLoop connecting filters. (See Figure 3.1 reproduced

from [16], Figure 3.) Pipelines define a series of filters where the first sub-filter’s

output feeds the input of the next filter, and so on. SplitJoins are parameterized

round-robin filters that duplicate or distribute the input data amongst multiple fil-

ters and collect the result. FeedbackLoops contain explicit “body” and “loop” filters

and the description of what data is fed-back. The authors claim strongly [43, 16]

that by enforcing this specific notion of hierarchy, instead of allowing the “flat and

arbitrary network of filters” used by other streaming languages, applications written

in StreamIt are both easier to write and easier to compile.

stream

stream

stream

Pipeline

splitter

stream stream

joiner

Splitjoin

joiner

stream

splitter

splitter

Feedbackloop

Figure 3.1: StreamIt supported hierarchical structures
Figure reproduced from [16], Figure 3. The “streams” can be other hierarchical
structures or filters.

Filters are defined in terms of the number of input values they use and the number

of output values they generate per iteration. As the StreamIt inputs and outputs are

one-dimensional streams, and each filter has only one input and output, data access

is defined in terms of the number of input values the filter pops, peeks, and pushes on

26 CHAPTER 3. RELATED WORK

each iteration. Data that is popped is consumed on the current iteration, and pushed

data is generated to be sent downstream to the next filter via the output. The amount

of peeking required specifies how much data a filter reuses between iterations, as this

data will still be available on the next iteration. StreamIt can handle two-dimensional

data, but to do so the filters all need to know how to index into the one-dimensional

stream to treat it as a two-dimensional array. This complexity limits the utility of

peek for expressing reuse to the compiler in image processing applications. This

limitation is incurred because the reuse must be specified in the one-dimensional

mapping of the two-dimensional image, which may not accurately reflect the actual

two-dimensonal reuse patterns.

Each filter in a StreamIt program contains three main methods: init(), prework(),

and work() [43, 16] (see Figure 3.2). The init() method is called when the appli-

cation is built and configures the filter. For example, the Pipeline connecting filter’s

init() function instantiates the filters to be included in the pipeline and connects

them up as needed. The main execution of the filter occurs in work(), which is ex-

ecuted whenever the kernel is scheduled to be run. The prework() method is called

before the first execution of work() to allow filters to generate sufficient outputs to fill

the initial peek range required for downstream filters. Although undiscussed, it ap-

pears that the programmer must manually determine how many outputs to generate

in the prework() method to satisfy downstream filters.

StreamIt provides a portal -based method for communicating control information

out-of-band from the data streams. By separating this from the data-stream, the

authors claim the application code is simplified as it keeps control and processing

separate. The initial portal implementation allowed the programmer to manually de-

fine the latency range for the delivery of messages and send them via simple function

calls. Later work on “teleport” messaging [44] enhanced this approach by applying

analysis from the Cyclo-static Synchronous Data Flow (csdf) domain [13] to improve

the latency guarantees and reduce the overhead. Through these portals, StreamIt ap-

plications can accomplish one-to-many communications and provide multiple control

outputs from a single filter. Except for enforcing the required delivery latency, the

authors argue that these communications can be ignored in terms of their impact on

3.1. STREAMIT 27

Page 1 of 1

streamit fir filter example.java 1/30/08 2:57 PM

float->float filter FIRFilter (float sampleRate, int N) {
float[N] weights;

init {
weights = calcImpulseResponse(sampleRate, N);

}

prework push N-1 pop 0 peek N {
for (int i=1; i<N; i++) {

push(doFIR(i));
}

}

work push 1 pop 1 peek N {
push(doFIR(N));
pop();

}

float doFIR(int k) {
float val = 0;
for (int i=0; i<k; i++) {

val += weights[i] * peek(k-i-1);
}
return val;

}
}

Figure 3.2: StreamIt FIR filter example
Figure reproduced from [16], Figure 1. The init(), prework(), and work() functions
are shown along with their definitions in terms of how many items the filter peeks,
pops, and pushes.

the data processing schedule, although the language enforces no requirement that the

message handlers execute quickly nor occur at a negligible rate.

In addition to fixed push, pop, and peek sizes for the filters, StreamIt applications

have static rates that are known at compilation, with each filter’s computation time

being estimated by a static analysis of its code. This allows the compiler to treat

the application as a quasi-Synchronous Data Flow problem [23], thereby allowing the

use of a wide range of sdf scheduling techniques [5].1 The initial motivation for

generating static schedules for StreamIt applications appears to come from the need

to statically schedule one of the two communications networks on the targeted Raw

hardware [45, 16]. Historically, sdf applications have been statically scheduled to

eliminate the overhead of dynamically determining the appropriate kernel to execute

1Gordon [16] notes that the irregular round-robin nodes in StreamIt require that sdf-type analysis
be applied in the context of the more general, but much more complex, csdf framework.

28 CHAPTER 3. RELATED WORK

on a single dsp or processor, but this has become much less of an issue with many-

core processors [48]. As later compilers appear to have moved to entirely off-chip

buffering for Raw [15]2, thereby reducing the dependency on the on-chip network, it

is not clear why so much emphasis is put on obtaining a static schedule.

The StreamIt compiler [16, 15] implements a variety of application transformations

to try and achieve maximum performance across different benchmarks. The compiler

tries explicitly to achieve the right balance of task-, data-, and pipeline-parallelism to

maximize the utilization of the 16 processors in the Raw architecture while minimizing

the overhead introduced due to synchronization and communications. The transfor-

mations are necessary, because although the StreamIt representation itself contains

much parallelism, it may not map well or be well balanced. For example, the task par-

allelism exhibited by filters on different branches in the application requires significant

synchronization if mapped directly to individual processors, and is unlikely to pro-

vide sufficient parallelism for the target architecture. If the data parallelism present in

stateless filters is exploited for filters with low computation-to-communications ratios,

the result will increase communications overhead and buffering. Similarly, pipeline

parallelism from chains of producers and consumers may be plentiful, but is likely to

exhibit poor load-balancing.

To alleviate these issues, the StreamIt compiler [15] utilizes two broad transforma-

tions. The first is to increase the granularity of the parallelism of data-parallel filters

by fusing them with their producers and consumers. This increases the computation-

to-communication ration for the fused filter. However, to avoid introducing “inter-

nal state” in the form of inter-kernel buffering, data-parallel filters are only fused

when their peek ranges are small enough. This limitation is due to the buffers being

integrated within the kernel implementation, and therefore hiding data that other

instances might need. Once fused, these data-parallel kernel chains can then be split

to generate the required parallelism to fill the available processors, while maintaining

the increased computation-to-communication ratio. To avoid eliminating task-level

parallelism from the application, the original task-level parallelism is maintained in

2This does not appear to have been motivated by resource constraints as the buffers were noted
to be small enough to fit on chip, but rather due to the complexity of implementing them for the
Raw architecture.

3.2. STREAMC AND KERNELC 29

this process and the data-parallel filters are split only sufficiently to fill the remain-

ing processors. For good results, a the compiler attempts to balance the level of

data-parallelism and task-level parallelism in the application to ensure that each final

filter (whether originally a task-parallel portion of the application or as a result of

a fused and then parallelized data-parallel chain) represents approximately 1
n

of the

total work, for n processors.

The second transformation is applying a coarse-grained software pipelining to the

application. Pipeline parallelism is needed to allow filters with data dependencies to

execute in parallel by having them operate on different iterations together. StreamIt

eschews simply mapping filters to processors and executing them dynamically as

data is available because of the potential overhead of the dynamic dispatch, and the

inability to use the Raw architecture’s static communications network for the required

dynamic data transfers. Instead the StreamIt compiler builds a static coarse-grained

software pipelined schedule whereby the steady-state kernel executions access input

and output buffers, followed by a separate communications stage. This approach

allows the steady-state kernel executions to be scheduled completely independently,

which potentially enables better load balancing. Unfortunately, static scheduling was

not compared to a dynamic dispatch, so the true overhead is unknown.

3.2 StreamC and KernelC

The streaming language developed for the Imagine streaming media processor [40]

divided applications into two levels of hierarchy. Computation kernels were described

in KernelC and the application connectivity and data movement in StreamC [35]. This

explicit separation of languages allowed the compiler efforts to concentrate more-or-

less independently on efficiently compiling each language.3 KernelC was targeted to

Imagine’s SIMD streaming architecture, which requiring efficient exploitation of ILP

through deep unrolling and sophisticated resource allocation, but only in the context

of a single kernel [36]. Compilation of StreamC focused on efficient scheduling of data

3Unfortunately, accurate data scheduling is closely intertwined with the performance optimiza-
tions applied to the kernels, making this separation only true to a first approximation.

30 CHAPTER 3. RELATED WORK

movement through Imagine’s large single streaming register file (srf), to hide latency

while the computation kernels executed [8]. The separation of these two tasks into

separate languages handled by separate compilers recognizes the hierarchical nature

of the problem, and is similar to the high-level partitioning and placement done for

StreamIt, while the low-level kernels are compiled by a reasonably standard MIPS

backend [15].

The StreamC/KernelC programming system dealt with data as either scalar con-

figuration values or streams of records [35]. At its most basic, a record is simply the

size of the data a given kernel reads from an input or writes to an output. How-

ever, by allowing new streams to be derived from existing streams, the definition

of a record enabled flexible data access within the streams, while still providing the

compiler with a high-level knowledge of how the streams were manipulated. For ex-

ample, by defining a derived stream to have a stride equal to the width of an image,

a two-dimensional image encoded in a one-dimensional stream could be more readily

accessed by a kernel as it would read in a line at a time. KernelC additionally allowed

the definition of kernels with multiple inputs and outputs, but each execution of the

kernel could only access one iteration of the input at a time.

To obtain high throughput on the Imagine architecture, the essential optimization

was to hide the latency of loading streams (or portions of streams) into the stream-

ing register file by scheduling execution to overlap the kernel computation with the

loading of the next set of inputs [8]. This problem boils down to an NP-hard dy-

namic storage allocation problem for the time-space usage of the srf. The problem

is particularly challenging because the srf allocation is directly coupled to the pro-

gram execution. This implies that limits on the capacity of the srf feedback into the

details of the kernel scheduling, which may result in further changes in the original

srf usage. The stream scheduler attempts to minimize execution time by improv-

ing concurrency between stream operations (loads and stores) without introducing

unnecessary spills to the off-chip memory. In order to implement this scheduling,

however, the runtimes and sizes of the streams and kernels must be statically known.

This is determined by a static analysis of stream sizes and a combination of static

and profiled kernel runtime analysis, made possible by the limited control structures

3.3. BROOK 31

allowed in the KernelC kernels.

Unfortunately the size of the srf is often small compared to the declared size

of the streams. This requires that the streams be double-buffered, which limits the

effective bandwidth to that of the off-chip interface. To overcome this limitation,

stream programs can be strip-mined, whereby the larger streams are broken into

strips and all execution for one portion of the input strip is executed at once. This

can reduce the working set size sufficiently to allow the inputs and intermediate results

to fit into the srf, thereby boosting the effective bandwidth to that of the on-chip

srf. In the StreamC stream compiler this is implemented by having the programmer

manually place a looping construct around each large stream usage, but the size of

the strip is determined by the compiler.

3.3 Brook

The Brook language [6] has enabled stream programming of graphics hardware. Its

managed to largely abstract the details of the rather primitive level of programma-

bility provided by the fragment shader engines at that time. The language extends C

to provide data-parallel constructs and the concept of streams, kernels, and parallel

reduction operators. Applications in Brook are written as a collection of kernels with

input and output streams. The streams may have multiple dimensions and may con-

sist of user data types. Kernels are allowed to access streams in strided patterns or

indirect patterns, but all other inputs are read-only constants. Brook does not allow

kernels to have input and output sizes that do not match. When this is encountered

the input stream is either replicated or decimated to ensure the sizes match.

The Brook compiler and runtime system handle transferring streams as textures

to the gpu and executing kernels on those textures. Brook includes back-ends

and runtimes for targeting both gpus and cpus. Unlike the stream scheduling for

StreamC/KernelC, however, Brook does not attempt to modify stream loads and

kernel execution order to improve performance. With Brook as an intermediary, the

gpu can be viewed as a streaming processor, thereby making it possible to implement

similar transformations.

32 CHAPTER 3. RELATED WORK

Brook’s attempt to make a generally programmable interface to gpus revealed

several areas in which the hardware could be extended to ease programmability. As

discussed in Section 2.2.3, gpus have increased in their generality, and the vendors

are beginning to provide their own languages and compilation systems for accessing

their processing power. For example, NVIDIA’s Complete Unified Driver Architec-

ture (cuda) [34] language provides programmers with direct access to each of the

thousands of threads running on the gpu, but does not provide any high-level pro-

gram transformations for staging and managing data and computation.

3.4 Sequoia

Although not technically a streaming language due to the explicit nature of its mem-

ory address calculations, the Sequoia programming language [30, 14] has many of

the same goals. Sequoia achieves high performance on a variety of parallel process-

ing platforms (clusters, smps, cmps, Cell) by analyzing application data movement

and proactively moving data to ensure that dynamic data access does not slow down

computation. This approach is essential for architectures with software-managed

memories, and can produce significant speedups on cache-based systems by providing

more intelligent prefetching than hardware alone.

To enable this level of compiler analysis, Sequoia requires that programmers explic-

itly divide programs into data movement and computation steps. Data distribution

is described with parameterized n-dimensional bulk operations which can partition

and copy data in a variety of compiler-analyzeable manners. The computation is de-

scribed as acting on some parameterized subset of the data. The program is mapped

to the target hardware by building a tree of nodes where the leaf nodes execute the

actual computation on the processors, and the remaining nodes handle distributing

the data down to the leafs, with each level in the tree corresponding to a level of

memory in the architecture. The user must parameterize how much data is kept at

each node, but the analysis and code generation to implement it are automatic.

Sequoia’s biggest limitation is its fundamental assumption that memories exist in

vertical hierarchies. The only way data can be shared or moved between processors

3.4. SEQUOIA 33

Processor
(Leaf Node)

L1

L2

Main Memory

Processor
(Leaf Node)

L1

Processor
(Leaf Node)

L1

L2

Processor
(Leaf Node)

L1

Processor
(Leaf Node)

L1

L2

Processor
(Leaf Node)

L1

Processor
(Leaf Node)

L1

L2

Processor
(Leaf Node)

L1

Disk

Figure 3.3: Sequoia hierarchical memory model

The hierarchical memory model supported by Sequoia is shown for an 8-way smp
machine with two levels of cache. Processors run the actual computation tasks,
while data movement tasks execute logically at the different levels of the memory
hierarchy, although they may be implemented as threads running on the processors
depending on the capabilities of the architecture. Data sharing between processors is
indicated by the red dashed lines, showing how the memory hierarchy must be used
for communication, regardless of the presence of any direct inter-processor links.

in Sequoia is via a memory node which is a parent to both of the child processors,

as illustrated in Figure 3.3. This maps well to traditional systems where a large

disk backs a smaller memory, which in turn is backing for more and more smaller

and smaller levels of cache, but it breaks down when direct processor-to-processor

transfers become important. The addition of “virtual levels” in the Sequoia memory

hierarchy helps to alleviate this problem, but does not enable general analysis of direct

processor-to-processor communication. For many-core architectures, this approach

ignores the high bandwidth and efficiency that can be achieved from direct processor-

to-processor communications.

34 CHAPTER 3. RELATED WORK

3.5 Multi-dimensional Synchronous Data Flow

It has long been recognized [32] that extending the sdf framework (See Section 2.1)

from one-dimensional inputs to a more general multi-dimensional processing would be

of great value to signal processing, and image processing in particular. The “Gener-

alized Multidimensional Synchronous Data Flow” gmdsdf of [37] was an extremely

complex attempt to attain this generality. The focus was on extending sdf to n-

dimensional inputs and outputs and allowing non-rectangular sampling grids. In

particular, gmdsdf provided transforms to warp, resample, and adjust the dimen-

sionality of the inputs and outputs. This generality was motivated by the desire

to represent 3D matrix multiplication and video format conversion using language

constructs to implicitly express the data access patterns. To attain this flexibility,

however, the approach relied on defining a “fundamental parallelepiped” which de-

fined the iteration direction and size with which the kernel uses data from its input.

The awkwardness of this generality was not lost on the authors who commented that,

“it is not clear at this point whether these principles will be easy to use in a pro-

gramming environment.”[37]. Indeed, mapping this onto the sdf framework resulted

in Cyclostatic Syncrhonous Data Flow (csdf), which is significantly harder to work

with. A subsequent attempt to implement the gmdsdf ideas in the Ptolemy devel-

opment environment appears to have been fraught with the difficulties of actually

implementing the complex transformations required to support the generality.

Windowed Synchronous Data Flow

Significantly more success was had adapting sdf to fixed rectangular sampling grids.

The “windowed” sdf (wsdf) of [26, 24] allows n-dimensional data use and reuse to be

represented in a sdf framework. The representation allows the specification of border

extensions or contractions to match data sizes, but does not do so automatically. To

achieve this, the authors define “virtual tokens” which can be built up of output

tokens from a source actor to produce the required input size for a sink actor. This

allows the actor to determine when it can fire at a finer granularity than sdf, which

has the potential to result in significantly smaller buffer requirements.

3.5. MULTI-DIMENSIONAL SYNCHRONOUS DATA FLOW 35

Using wsdf it is possible to calculate the minimum required buffer sizes for ap-

plications [25]. As sdf applications do not specify the order of the firing of the

individual actors, and the sizes of the buffers between actors for wsdf applications

depends heavily on the firing order, the approach taken was to simulate the applica-

tion for various firing orders and count the maximum required buffer sizes for each

application repetition. By using a firing order that only fires a source actor when its

sink is stalled waiting for input, they claim they can find the minimum required buffer

sizes. However, the execution time for this simulation-based approach is significant

even for simple kernel pairs, and is likely to scale very poorly for larger applications

where choices are interdependent. The difficulty of analyzing data movement between

kernels in wsdf is due largely to the generality of its data access descriptions and the

lack of a specified data access ordering. Combined these present a very large design

space for possible implementations for even the smallest applications.

Array Oriented Language

A non-sdf based approach to describing similar multi-dimensional signal processing

applications was taken with the Array Oriented Language (Array-OL) originally de-

veloped for multidimensional sonar processing[3, 4]. Array-OL describes the data

dependencies of the application but does not specify the execution order of the appli-

cation. In this sense it is not explicitly a dataflow description, and the implementation

must choose an appropriate (and hopefully optimal) ordering for execution. Indeed

this approach taken to an extreme wherein time is an explicit infinite-length dimen-

sion in the input matrices to the application. While this complicates analysis, as this

single infinite-length dimension must be handled, it results in an elegant data model

where time can be treated as just another dimension rather than a special concept.

Applications in Array-OL are described hierarchically. Global levels consist of

kernels connected via data streams, where the streams consist of toroidal arrays of

data. (e.g., the arrays are assumed to wrap around at the borders.) The data is

processed at the local level by the kernels in “patterns”, which are defined in by a

series of matrices which specify their origin, shape, paving, and fitting (see Figure

3.4). Patterns are then “paved” to fill an output array. This pattern definition allows

36 CHAPTER 3. RELATED WORK

x

y

1A

2A

1B

3A

2B

3B

A - First repetition
B - Second repetition

x

y

Ref 4

2

3

5

6

3.2. MULTI-DIMENSIONAL SYNCHRONOUS DATA FLOW 29

Figure 3.4: Pavings in Array-OL
Examples of pavings for mapping patterns in Array-OL to arrays. The P and O
matrices define the paving and origin, respectively, for the paving. Note that example
5 has a non-zero origin and so the data wraps around the edge of the matrix. Figure
reproduced from Figure 3 in [5].

F =

 0 3

2 0



D =

 3

2



F =

 1 1

0 1



P =

 2

0



3.2. MULTI-DIMENSIONAL SYNCHRONOUS DATA FLOW 29

Figure 3.4: Pavings in Array-OL
Examples of pavings for mapping patterns in Array-OL to arrays. The P and O
matrices define the paving and origin, respectively, for the paving. Note that example
5 has a non-zero origin and so the data wraps around the edge of the matrix. Figure
reproduced from Figure 3 in [5].

D =

 2

3



F =

 1 1

0 1



P =

 2

0



Paving Example Pattern Example

Figure 3.4: Pavings in Array-OL
Examples of complex paving and patterns for mapping data in Array-OL to arrays.
The D and F matrices define the shape and fitting, respectively, of the data access.
The P matrix defines the paving. Combined, these matrices define the order in which
data is read in by a kernel from a two-dimensional input array or written out to a
two-dimensional array. For a detailed description of how these matrices are used,
please see [4]. Figure after Figures 1 and 3 in [4].

for very complex data access patterns within the kernels, including decimation in

arbitrary orders, reuse, windowing, and dimensional transformations. The flexibility

is significantly greater than that provided by wsdf, but much less complex than that

of gmdsdf. However, the flexibility of this definition makes certain operations on

Array-OL applications, such as merging kernels very complex in the general case.

Array-OL application descriptions can be mapped to distributed process networks

for execution with only a few transformations. These include dividing up the incoming

data’s infinite dimension to fit in a finite memory, and inserting kernels to manage

transforming the array sizes between kernels. While these portions of the application

transformation are relatively straightforward, the application description provides no

hints as to how to partition and distribute the kernels amongst multiple processors.

As the processing order is also not defined, the space of possible implementations is

enormous, and highly architecture dependent.

3.6. SUMMARY 37

3.6 Summary

The related work presented here covers a broad range of stream programming systems.

The most well-understood, from a theoretical point of view, are the sdf systems.

However, sdf suffers from the historic drive to obtain an optimal static schedule and

a lack of practical implementations for handling multi-dimensional data. The work

on StreamIt has provided a sdf-like system with significant advances in compilation

for multi-core architectures. Unfortunately, StreamIt’s choice to limit filters to a sin-

gle input and output and one-dimensional data make implementing and analyzing

many applications, in particular image processing, difficult. StreamC/KernelC and

Brook broke away from this purely sdf background, but did so in different directions.

StreamC/KernelC applied a SIMD model to the computation while Brook exposed

data-parallelism through explicitly multi-dimensional data. Sequoia stands out from

this group of applications as it is not technically a streaming language, but instead

manages a more traditional memory hierarchy to try and obtain similar efficiency.

While Sequoia handles multi-dimensional data well, its reliance on a vertical mem-

ory hierarchy for communications and sharing limits its applicability to streaming

processors and mutli-core architectures.

38 CHAPTER 3. RELATED WORK

Data
 D

im
en

sio
ns

Sin
gle

In
put/

Outp
ut

Sta
tic

 R
ate

s

Hier
arc

hica
l M

em
ory

Complex
 D

ata
 M

ovem
en

t

Sin
gle

Kern
el

Exe
cu

tio
n

Applic
ati

on grap
h

Im
plic

it m
em

ory
 ac

ce
ss

Theo
ret

ica
l F

ram
ew

ork

Out-o
f-b

an
d co

ntro
l

Rea
l-t

im
e c

onstr
ain

ts

Data
 Para

lle
lis

m

Pipeli
ne P

ara
lle

lis
m

Ta
sk

 Para
lle

lis
m

StreamIt 1 ! ! " " # " " " "

StreamC/KernelC 1 ! " " " "

SDF 1 ! " " " " "

MDSDF n ! ! " " " " " "

ArrayOL n ! ! " " # " " "

Brook n ! " "

Sequoia n ! ! ! "

Block-parallel 2 ! " " # " " " " "

Limitations Features Parallelism

Figure 3.5: Comparison of Related Work
Red triangles indicate limitations in the language; solid green circles are features.
The orange circles indicate partial features. In the case of StreamIt, the language
conforms to a csdf framework, but is not analyzed as such. Array-OL is also close to
csdf but is analyzed differently. The block-parallel framework presented here could
conform to csdf, but the regular data movement enables much simpler analysis.

Chapter 4

Application Model

The block-parallel programming model provides an easy-to-use kernel/stream based

application description that is readily amenable to compiler analysis. The description

incorporates sufficient information in the application description to allow automatic

compiler analysis and manipulation at a high-level. However, it does so without

impinging the low-level flexibility of the programmer, nor overly-burdening him with

the need for detailed knowledge of either the hardware or the data and computation

rates.

Applications are built from a collection of computations kernels connected together

by data streams to form an application graph, as shown in Figure 1.2. The descrip-

tion statically specifies the data sizes, rates, and resource requirements for each of

the computation kernels. The data streams consist of natively two-dimensional data,

Input hDCT DiffvDCT quant zigZag

AC Encode

Ordering

merge

DC Encode

Output

Figure 4.1: Simplified application graph for JPEG compression
The JPEG application shown here includes explicit data dependency edges (blue
dotted lines) that express the limited parallelism of encoding the DC components.

39

40 CHAPTER 4. APPLICATION MODEL

as two-dimensions significantly simplifies the writing and analysis of image process-

ing applications, without incurring the full complexity of general n-dimensional data

support. An example application graph for a JPEG compression program is shown

in Figure 4.1. The block-parallel approach presented here provides a number of en-

hancements over previous streaming languages to improve the application description

in both expressibility (usability for the programmer) and analyzability (usability for

the compiler writer). The overall result is to provide a kernel-based programming

system that facilitates high-level automated analysis while improving programmer

productivity.

Enhancements to the basic stream/kernel model include:

• A data movement model that natively incorporates both one- and two-dimensional

data, thereby significantly increases analyzability for image-processing applica-

tion and simultaneously easing programmability.

• Flexible ControlTokens which can be sent over both data streams and separate

control streams, thereby enabling simple and concise inter-kernel synchroniza-

tion. (Section 4.2.2)

• Data dependency edges that allow programmers to specify the level of par-

allelism permitted for kernels relative to the rest of the application, thereby

permitting data-parallel and serial operations to be efficiently described and

handled together. (Section 7.3)

• A computation model that allows kernels to define multiple execution meth-

ods per kernel, thereby simplifying initialization and enabling different com-

putations to share data effortlessly, while still encapsulating computation and

related data within a kernel structure. (Section 4.3)

4.1 The Application Graph

As in StreamC/KernelC [35], applications are divided into two portions: the appli-

cation graph, which defines the connectivity between kernels, and the computation

4.1. THE APPLICATION GRAPH 41

kernels, which define the methods executed on each iteration of the input data. The

application graph describes the data flow for the application by connecting computa-

tion kernels to data sources and sinks via data streams. This approach fits naturally

to data-parallel applications such as image- and signal-processing where multiple fil-

ters (or kernels) are applied to an input stream of images or signals. In addition,

by adding data dependency edges between kernels, to explicitly define the allowable

parallelism, and allowing control tokens to be sent over data streams, to communicate

state, the kernel-stream model is extended to naturally encompass a broader range

of applications.

4.1.1 Simplified Application Graph

In a simplified form, the application graph is a directed acyclical graph (dag) of

Application Elements.1 These consist of DataInputs, Kernels, and DataOutputs. The

hierarchy of application elements is shown in Figure 4.4, and an example of a simplified

application graph is given in Figure 4.1. The DataInputs and DataOutputs are the

inputs and outputs from the application as a whole, while the Kernels contain the

actual computation methods executed by the application.

DataInputs statically specify the size of each frame of input data and the rate

at which those frames are generated. They are arbitrarily, but uniformly, assumed

to generate data in a left-to-right, top-to-bottom order. (E.g., one row at a time.)

One-dimensional applications, such as traditional signal processing, would simply

have DataInputs with a height of one. DataOutputs act as sinks for the data they

receive, and therefore are not parameterized by size or rate. The Kernels themselves

specify the amount of memory they consume and the number of operations they

require per execution. This simplified view of the application graph is useful for

visualizing the application and for certain graph traversal algorithms. However, it

contains insufficient information to fully define the application as will be seen in

Section 4.1.2.

1The astute reader will note that the use of a dag prohibits the inclusion of loops, or feedback, in
the application description. This has been done to simplify application analysis. Feedback support
is discussed in Section 5.2.1.

42 CHAPTER 4. APPLICATION MODEL

Input

conv3x3 Output

coeff

Figure 4.2: Simplified application graph for a convolution program

The simplest program possible within this framework is one which applies a single

kernel to a single input generating a single output. An example is applying a convo-

lution kernel to an input image stream. Such a program has two DataInputs (one for

the convolution coefficients and one for the input data), one Kernel (the convolution),

and one DataOutput. The simplified application graph for such a program is shown

in figure 4.2.

An example of a more complex program is shown in Figure 4.3. This program

processes an input through two differently-sized convolution kernels, subtracts the

result of the first from the second, and then downsamples the result of the subtraction.

This “differencing” program contains four kernels along with the DataInputs and

a DataOutput. An implementation of the JPEG compression algorithm is shown

in Figure 4.1. It contains multiple processing kernels and data dependency edges

(dashed blue lines) to limit the parallelism of the serial components of the algorithm.

For example, in each image processed by JPEG, the DC components of each 8×8

block are serially subtracted from one another in order. This subtraction step can

not be parallelized, as each block depends on the previous one. For the example

in Figure 4.1, this is expressed as a data dependency edge from the Input to the

DC differencing kernel (“Diff”), indicating that the degree of parallelism allowed for

the kernel must be no greater than that of the Input. For JPEG, the DC difference

operation is serial across each input frame, so this correctly expresses the serial nature

of the computation done by the “Diff” kernel. For this example, the variable length

output of the Huffman encoders is accommodated by assuming the worst case.

4.1. THE APPLICATION GRAPH 43

Input

conv3x3

conv5x5

subtract down2x2 Output

3x3 coeff

5x5 coeff

Figure 4.3: Simplified application graph for a differencing program

4.1.2 Full Application Graph

The simplified application graphs discussed in Section 4.1.1 provide an overview of

the application, but they do not specify the program completely. The full application

graph must additionally contain explicit Inputs and Outputs between each element.

The Inputs and Outputs specify the block size in which the data is consumed or

produced, and the step size with which the kernel moves through the input data

frame. For example, a 3×3 convolution kernel requires an input size of 3×3 for each

execution, but between executions it moves over only one column in the x-direction

and one column in the y-direction for each new row. The step size for the convolution

input is then (1,1). From the input size and step size the reuse and output halo of

the kernel can be calculated. Calculations of reuse and halos are discussed in Section

4.2.1 and Chapter 5.

In addition to defining data sizes, Inputs and Outputs are added explicitly to the

application graph to provide a level of indirection to support distinguishing multiple

independent Inputs to a kernel and multiple Inputs driven by a single Output. Al-

lowing multiple Inputs to a kernel is essential for such basic operations as defining

filter coefficients (the separate coefficient and data inputs to the convolution kernel

in Figure 4.5(a)) and operating on multiple data streams (the subtraction kernel in

Figure 4.5(b)). Driving multiple Inputs from a single Output is also a common oper-

ation. Both of these topologies are cleanly addressed by explicitly adding the Input

and Outputs as nodes to the application graph.

The full application graphs for the sample programs from Section 4.1.1 are shown

44 CHAPTER 4. APPLICATION MODEL

Computation Kernels

Application Element

DataSourceSink InputOutput

Kernel DataInputOutput Input Output

Inset Kernel Buffer Kernel Split/Join Kernel DataInput DataOutput

Figure 4.4: Application element hierarchy
The full class hierarchy is shown with the abstract class types indicated with dashed
lines. Computation Kernels are constructed by sub-classing from the “Kernel” class.
Inputs and Outputs are discussed in Section 4.2.1. Buffer and Inset kernels are
discussed in Chapter 6 and Split/Join kernels are discussed in Chapter 7. Pink color
indicates kernels that have been automatically inserted into an application.

in Figures 4.5(a), 4.5(b), and 4.5(c). While these graphs are significantly more com-

plex than the simplified ones, the addition of the explicit Inputs and Outputs provide

a complete description of the application.

4.1.3 Building Applications

Applications are built by instantiating kernels, adding them to the application graph,

and then connecting their Inputs and Outputs to form the desired topology. The code

for building the convolution program is shown in Figure 4.6. The code builds the

application graph by first instantiating the DataInputs for the input data (“input”)

and the convolution coefficients (“coeffLoader”), then instantiating the convolution

kernel (“conv”), and finally the DataOutput (”out”). If the kernels are parameterized,

as is the size of the convolution kernel in this example, their parameters are set when

they are instantiated. Once the application elements have been instantiated, they are

added to the graph. When a kernel is added to the application graph, its Inputs and

Outputs are automatically built, added to the graph, and connected to the kernel. The

4.1. THE APPLICATION GRAPH 45

In
pu
t

ou
t

(1
x1
)[1
,1
]

in
(3
x3
)[1
,1
]

co
nv
3x
3

ou
t

(1
x1
)[1
,1
]

co
ef
f

(3
x3
)[3
,3
]

in
(1
x1
)[1
,1
]

O
ut
pu
t

co
ef
f

ou
t

(3
x3
)[3
,3
] (a

)
Fu

ll
ap

pl
ic

at
io

n
gr

ap
h

fo
r

a
co

nv
ol

ut
io

n
pr

og
ra

m

In
pu

t
ou

t
(1

x1
)[1

,1
]

in
(3

x3
)[1

,1
]

in
(5

x5
)[1

,1
]

co
nv

3x
3

ou
t

(1
x1

)[1
,1

]

co
ef

f
(3

x3
)[3

,3
]

in
0

(1
x1

)[1
,1

]

co
nv

5x
5

ou
t

(1
x1

)[1
,1

]

co
ef

f
(5

x5
)[5

,5
]

in
1

(1
x1

)[1
,1

]

su
bt

ra
ct

ou
t

(1
x1

)[1
,1

]
in

(2
x2

)[2
,2

]
do

w
n2

x2
ou

t
(1

x1
)[1

,1
]

in
(1

x1
)[1

,1
]

O
ut

pu
t

3x
3

co
ef

f
ou

t
(3

x3
)[3

,3
]

5x
5

co
ef

f
ou

t
(5

x5
)[5

,5
]

(b
)

Fu
ll

ap
pl

ic
at

io
n

gr
ap

h
fo

r
a

di
ffe

re
nc

in
g

pr
og

ra
m

In
p
u
t

o
u

t
(1

x
1

)[
1

,1
]

D
if

f

in
(8

x
8

)[
8

,8
]

[0
.0

,0
.0

]
h
D

C
T

o
u

t
(8

x
8

)[
8

,8
]

in
(8

x
8

)[
8

,8
]

[0
.0

,0
.0

]
v
D

C
T

o
u

t
(8

x
8

)[
8

,8
]

in
(8

x
8

)[
8

,8
]

[0
.0

,0
.0

]
q
u
an

t
o

u
t

(8
x

8
)[

8
,8

]

in
(8

x
8

)[
8

,8
]

[0
.0

,0
.0

]

zi
g
Z

ag
D

C
o

u
t

(1
x

1
)[

1
,1

]

A
C

o
u

t
(6

3
x

1
)[

6
3

,1
]

in
(1

6
x

1
6

)[
1

6
,1

6
]

[0
.0

,0
.0

]

in
(6

3
x

1
)[

6
3

,1
]

[0
.0

,0
.0

]
A

C
 E

n
co

d
e

o
u

t
(1

0
x

1
)[

1
0

,1
]

m
er

g
e

A
C

in
(1

x
1

)[
1

,1
]

[0
.0

,0
.0

]

O
rd

er
in

g
o

u
t

(2
5

6
x

1
)[

2
5

6
,1

]
in

(2
x

1
)[

1
,1

]
[0

.0
,0

.0
]

D
C

 E
n
co

d
e

o
u

t
(1

0
x

1
)[

1
0

,1
]

in
(6

3
x

1
)[

6
3

,1
]

[0
.0

,0
.0

]

D
C

in
(1

x
1

)[
1

,1
]

[0
.0

,0
.0

]

o
u

t
(1

x
1

)[
1

,1
]

o
u

t
(1

0
0

x
1

)[
1

0
0

,1
]

in
(1

0
x

1
0

)[
1

0
,1

0
]

[0
.0

,0
.0

]
O

u
tp

u
t

(c
)

Fu
ll

ap
pl

ic
at

io
n

gr
ap

h
fo

r
JP

E
G

co
m

pr
es

si
on

F
ig

u
re

4.
5:

F
u
ll

A
p
p
li
ca

ti
on

G
ra

p
h

E
x
am

p
le

s
D

as
h
ed

ed
ge

s
in

d
ic

at
e

In
p
u
ts

th
at

ar
e

n
ot

d
at

a
p
ar

al
le

l.
(S

ee
S
ec

ti
on

4.
2.

1.
)

T
h
e

p
ar

am
et

er
iz

at
io

n
fo

r
th

e
In

p
u
ts

an
d

O
u
tp

u
ts

in
F

ig
u
re

4.
5(

c)
in

cl
u
d
e

th
e

In
p
u
t

an
d

O
u
tp

u
t

off
se

ts
,

w
h
ic

h
ar

e
d
is

cu
ss

ed
in

S
ec

ti
on

6.
2.

46 CHAPTER 4. APPLICATION MODEL

P age 1 o f 1

A pp lic a t ion Code. jav a 1 /15 /08 1 :54 P M

public class Tests {

public static Application buildConvolutionApplication() {

Application a = new Application("3x3 Convolution");

/*
 * Define the Inputs.
 * For the simulation it will read input from the file "inA.txt"
 * and coefficients form "kern33.txt".
 */
DataInput input =

new FileDataInput("Input", "inA.txt", 2, 2, 1);
FileDataInput coeffLoader =

new FileDataInputInitializer("coeff load", "kern33.txt");

ConvolutionKernel conv =
new ConvolutionKernel("conv3x3", 3,3);

DataOutput out =
new DataOutputVerifyier("Output");

/*
 * Add the DataInputs and Kernels to the Application Graph.
 */
a.add(input);
a.add(coeffLoader);
a.add(conv);
a.add(out);

/*
 * Connect up the Kernels and DataInputs.
 */

 a.connect(coeffLoader, "out", conv, "coeff");
a.connect(input, "out", conv, "in");
a.connect(conv, "out", out, "in");

return a;

}

public static Application buildConvolveSubDownsampleTestVerified() {
Application a = new Application("ConvolveSubDownsampleTest");
int debuglevel = 1;
DataInput input =

new FileDataInput("input", "matlab/ConvolveSubDownsampleTest/inA.txt", 1, 1, 1);
input.setRateByCycles(10,0);

// input.setMaxFrames(3);
input.DEBUG =debuglevel;
a.add(input);
ConvolutionKernel conv3x3 = new ConvolutionKernel("conv3x3", 3, 3);
conv3x3.DEBUG = debuglevel;
a.add(conv3x3);
ConvolutionKernel conv5x5 = new ConvolutionKernel("conv5x5", 5,5);
a.add(conv5x5);
SubtractKernel sub = new SubtractKernel("subtract");
sub.DEBUG = debuglevel;
a.add(sub);
DownsampleKernel down2x2 = new DownsampleKernel("down2x2", 2,2);
a.add(down2x2);
DataOutput out = new DataOutputVerifyier("result", "matlab/ConvolveSubDownsampleTest/

result.txt",1,1);
out.DEBUG = 2;
a.add(out);

a.connect(input, "out", conv3x3, "in");
a.connect(input, "out", conv5x5, "in");
a.connect(conv3x3, "out", sub, "in0");
a.connect(conv5x5, "out", sub, "in1");
a.connect(sub, "out", down2x2, "in");
a.connect(down2x2, "out", out, "in");

Figure 4.6: Application graph code for a convolution program
The 3,3 in the convolution kernel instantiation code builds a convolution kernel for
a (3× 3) Input. The 2, 2, 1 in the DataInput instantiation code defines the Input
size and rate for the input.

application’s connectivity is then defined by connecting Outputs from one element to

Inputs on another.

4.2 Data Model

The data movement through the application is determined by the data stream con-

nections (edges) between kernels in the application graph. The data moves over these

edges as Tokens, which can contain either data or control information. The size of

the data consumed and produced by a kernel, and the reuse, if any, of the consumed

data, is defined by the kernel’s Inputs and Outputs. This data model allows for in-

tuitive and flexible data- and control-driven execution of kernels, within the confines

4.2. DATA MODEL 47

of a static rate system. This flexibility allows applications to be written in a more

straightforward manner than previous streaming systems.

4.2.1 Inputs and Outputs

As discussed in Section 4.1.2, data moves through the application following the edges

in the application graph, from an Output to an Input. Inputs and Outputs define the

input size (inX×inY) of the data consumed or produced on each execution of a kernel.

To express data reuse between iterations, Inputs further specify the step size (SX , SY)

of the input. If the step size is less than the input size, then some of the data is reused

between iterations. Conversely, if the step size is greater than the input size, some

input is skipped on each iteration. This description of data reuse is essential to allow

filters that operate on sliding windows to be implemented without internal state,

which is important for automatic parallelization [15]. The input data reuse in the x-

and y-direction can be calculated as:

reuseX = (inX − SX)× inY (4.1)

reuseY = (inY − SY)× inX (4.2)

The output halo (HX , HY), or amount of input data that does not have a correspond-

ing output (See Figure 5.2), is similarly:

(HX , HY) = (inX − SX , inY − SY) (4.3)

And the total new data required for each iteration of the kernel in the steady state

is then (SX × SY).

These properties are illustrated in Figure 4.7 for a 3×3 convolution kernel. The

ease with which the reuse can be calculated and analyzed indicates that this parame-

terization is a good match for one- and two-dimensional sliding window kernels, where

maximizing reuse is critical for achieving good efficiency.

By default, Inputs are assumed to have the same degree of parallelism as the

kernel to which they belong. This is in general the case for data-parallel kernels:

48 CHAPTER 4. APPLICATION MODEL

if a kernel is replicated n times, the Input should be split up so that each kernel’s

Input receives 1
n

of the data. However, for some Inputs, such as the coefficient Input

to the convolution kernel in Figure 4.5(a), each of the n parallelized kernels should

receive replicated versions of the single original Input to ensure they all have the

same coefficients. This can be specified by the programmer in the kernel by setting

the Input to be a Replicated Input, as is shown in the code for the convolution kernel in

Figure 4.10. Replicated Inputs are indicated with dashed lines in application graphs.

In addition to defining the size and reuse of data, Inputs and Outputs also serve

to represent single buffers in the application implementation. The data movement

model assumes that when output data is generated by a kernel it is written into

the appropriate Output and held there until the receiving Input(s) are all ready. At

that point the data is transfered from the original Output to the receiving Input(s).

Similarly, when a kernel reads an Input, the data is received from a buffer within the

Input itself. This model provides double-buffering between producers and consumers,

which serves to smooth transient bursts of data in the steady-state behavior of the

application. In addition, this buffering models the effect of a hardware DMA engine

which transfers data into a waiting Input buffer without the kernel’s interaction and

then allows the kernel to read the data when it is present. This type of DMA engine

is present on the Tilera Tile64 processor [46] to make this type of data movement

efficient.

4.2.2 Tokens

Kernels communicate within the application by sending Tokens between Outputs

and Inputs. The majority of the communication consists of DataTokens which are

two-dimensional arrays of data values. Unlike one-dimensional streaming languages,

the native use of two-dimensional streams enables writing applications with two-

dimensional inputs without having to contort two-dimensional inputs into one-dimen-

sional streams, as demonstrated in Figure 4.8. This eliminates the need for the

4.2. DATA MODEL 49

Input Data Output Data

Startup

1st Iteration

(0,0)

Reuse: 0

New: 9

First Row

2nd Iteration

(1,0)

Reuse: 6

New: 3

First Row

3nd Iteration

(3,0)

Reuse: 6

New: 3

(9 more iterations)

First Row

12th Iteration

(12,0)

Reuse: 6

New: 3

Second Row

13th Iteration

(0,1)

Reuse: 6

New: 3

Steady State

14th Iteration

(0,2)

Reuse: 8

New: 1

Kernel support area New data for this iteration Data with possible reuse Outputdata

Current output location Input data Output halo

Figure 4.7: Input data usage and reuse for a 3×3 convolution kernel
The kernel input size is (3×3) with a step size of (1, 1). This results in an output halo
of (2×2), which can be seen in the right-hand column of the figure. (The 14×5 input
results in a 12 × 3 output, as is discussed further in Section 5.1.) The kernel begins
at the upper-left of the image and processes the data left-to-right, top-to-bottom.
Data that can be reused is marked behind the kernel in light green and the new data
required for each iteration is indicated with a dark border. By the second entry of
the second line of processing, the kernel has reached its steady-state reuse pattern of
needing only one new input per iteration, as the previous two lines of data can be
fully reused as well as the previous two entries on the last line.

50 CHAPTER 4. APPLICATION MODEL

Page 1 of 1

vDCT.java 1/24/08 3:24 PM

/*
 * 2D Streaming code for reading a vertical input column.
 */
public void runVDCT() {

double[][] column = readInput("in");
...

}

/*
 * 1D StreamIt code for re-ordering input to form a vertical
 * input column from a size*size block that has been flattened
 * into a 1D stream.
 */

 work pop size*size push size*size {
 for (int c = 0; c < size; c++) {
 int x0 = peek(c + size * 0);
 int x1 = peek(c + size * 4) << 8;
 int x2 = peek(c + size * 6);
 int x3 = peek(c + size * 2);
 int x4 = peek(c + size * 1);
 int x5 = peek(c + size * 7);
 int x6 = peek(c + size * 5);
 int x7 = peek(c + size * 3);

...
}

}

package kernelApplication.test.kernels.JPEG;

import kernelApplication.elements.kernels.Kernel;

public class vDCT extends Kernel {

public vDCT(String name) {
super(name);

}

@Override
public void configureKernel() {

createInput("in", 8,8, 8,8);
createOutput("out", 8,8);
registerMethod("runVDCT", 8*8, 4, 3+8+8+4+13+5+8, 51*8);
registerMethodInput("runVDCT", "in");
registerMethodOutput("runVDCT", "out");

}

public void runVDCT() throws InterruptedException {
double[][] blockIn = readInputData("in");
double[][] blockOut = new double[8][8];
double[] col = new double[8];
double[] result;
for (int x=0; x<8; x++) {

for (int y=0; y<8; y++)
col[y] = blockIn[x][y];

result = do8x1dct(col);
for (int y=0; y<8; y++)

blockOut[x][y] = result[x];
}
writeOutputData("out", blockOut);

}

final double FIX_0_382683433 = 0.382683433; /* FIX(0.382683433) */
final double FIX_0_541196100 = 0.541196100; /* FIX(0.541196100) */
final double FIX_0_707106781 = 0.707106781; /* FIX(0.707106781) */
final double FIX_1_306562965 = 1.306562965; /* FIX(1.306562965) */

private double[] do8x1dct(double[] row) {

Figure 4.8: Comparison of native 2D stream access with 1D
The data access from the vertical DCT kernel in the StreamIt MPEG-2 implemen-
tation [10] (bottom) is compared with a vertical DCT kernel implemented for the
block-parallel programming system presented here (top). Extracting 2D data from
the 1D streams in StreamIt requires intimate programmer knowledge of the data lay-
out and explicit calculation of the location of the desired data within the stream.
This significantly complicates the application and complicates compiler analysis.

programmer to manually calculate how the two-dimensional inputs map to the one-

dimensional stream.2 Furthermore, native two-dimensional streams allow for more

intuitive analysis of the program as the two-dimensional nature of a particular stream

does not have to be inferred for optimal analysis as it would in a one-dimensional

streaming system.

2While two-dimensional streams handle the majority of the cases required for image processing,
there are instances where higher dimensional streams would be desired. In these cases the pro-
grammer will have to manually calculate indices into the two dimensional stream or add streams
for extra dimensions. E.g., RGB data might be stored as either three two-dimensional streams or
one stream with a width three times as wide where the RGB values must be manually extracted.
Providing complete flexibility in the dimensions of the streams has to date significantly increased
the complexity of buffer management [3, 25].

4.2. DATA MODEL 51

In addition to sending and receiving data, kernels can generate and consume

ControlTokens. These tokens allow kernels to generate and receive state information.

As with DataTokens, ControlTokens have statically determined rates. This property

allows the compilation system to account for the communications and computation

incurred by ControlTokens in the same manner as it does for DataTokens. (See

Chapter 5 for a discussion of propagating data rates.) ControlTokens can be sent

along regular data streams (synchronously), in which case they are kept in order

with the data. Alternatively, separate Outputs, Inputs and edges can be added to

the application graph to enable out-of-band (asynchronous) communications. Indeed,

ControlTokens largely provide a convenience to the programmer by allowing kernels

to execute different code at different rates, depending on the type of received Token,

and exposing this to the compilation system to enable accurate analysis.

There are two intrinsic types of ControlTokens generated in all applications: End-

of-line Tokens and End-of-frame Tokens. These tokens are intrinsic in the sense that

they are automatically generated by DataInputs when the input generates the last

value for a given line and the last value for a given frame, respectively. Kernels are

free to generate their own tokens as well, and may act upon or ignore any incoming

tokens. By default, any received tokens that are not handled by a kernel are copied

to the output in order with the received data so that kernels downstream can receive

them.

4.2.3 Implementation

Kernels define their Inputs and Outputs in the configureKernel() method which

is called when a kernel is added to an application. (See Figure 4.9.) The definition

specifies the width and height (inX × inY) and the step in X and Y (SX , SY) of

each Input, and the width and height (outX , outY) of each Output. The kernel also

registers the methods that should be called when the inputs are ready, and specifies

the Outputs generated by each method. When a kernel is executed, it accesses its

inputs by calling readInputData() specifying the Input to read. This returns the

data stored in the Input buffer and clears the buffer. Once the kernel has calculated its

52 CHAPTER 4. APPLICATION MODEL

output data, it writes it to the specified Output by calling writeOutputData(). If the

Output is full (e.g., the previous output has not been read by its consuming Input(s)),

the kernel’s execution blocks on this call until the buffer empties. Kernels similarly

read and write DataTokens with the readInputToken() and writeOutputToken()

methods. These methods provide runtime checks that the kernel is indeed reading the

correct Token and simplify type-checking for the implementation. Both the data and

control variants of the read and write methods access the same buffers for the kernel.

For simulation, the Input and Output access functions are implemented as function

calls with runtime lookups of the specific buffers. For performance, a compiled version

would want to inline these calls and replace the runtime lookups with static buffer

placements.

4.2.4 Potential Optimizations

Unfortunately, the functional model presented here of moving data between kernels

via Output/Input buffers can be inefficient. For kernels placed on separate processors,

the cost of this additional buffering and data movement is small compared to actually

moving the data between the processors. For kernels that may be time-multiplexed

on the same processor, however, copying the data from an Output buffer to an Input

buffer in the same memory is inefficient. For such kernels the buffer copy should be

replaced with a pointer exchange which allows the Output and Input to share the

same buffers efficiently, without changing the semantics of the underlying operation.

Sending ControlTokens throughout the application can also be inefficient as it

requires that the Output/Input buffers hold the token instead of double-buffering

data. As it is very likely that the control token are much smaller than the data, this

would waste storage. This problem, too, is amenable to optimization enabled by the

application definition: portions of the application that ignore certain tokens can be

set to not propagate them at all, thereby avoiding wasting their local buffer space.

Additionally, if a ControlToken’s schedule can be statically determined, as would be

the case for end-of-frame and end-of-line Tokens, it would possible to replace the

Token’s movement with local state machines that generate them directly. However,

4.3. COMPUTATION MODEL 53

while ControlTokens have a defined rate, which allows the compiler to schedule ap-

propriate resources to handle them, the specific timing of their generation may not

be perfectly regular, and therefore could not be predicted statically.

4.3 Computation Model

Traditional stream programming assumes one block of executable code per kernel.

This single method is executed each time sufficient new data arrives. Typically such

languages must also provide some method to initialize the kernel before it begins

execution, as the model does not inherently support a separate initialization method.

The kernels defined here are similar in that they execute when their Inputs are ready,

however, unlike most other stream programming languages, each kernel may have

multiple methods triggered by disjoint sets of Inputs.3 Each method can in turn

generate zero or more Outputs upon execution, although this number must be stat-

ically defined. Within a kernel, all methods share the same memory space. This

makes initialization very easy as all it requires is that a special init() method be

executed when the application starts.4 As multiple methods can be readily defined,

the init() method fits in cleanly with the overall design, and is not a special case for

the language. The flexibility provided by allowing multiple methods enables writing

sophisticated kernels very easily, as is demonstrated in Section 4.4.

Within the confines of accessing only memory local to the kernel and the current

set of Input and Output buffers, each method can execute arbitrary computation.

This allows for full flexibility in implementing control and looping structures within a

given method. Unfortunately this flexibility incurs the cost of enabling programmers

to write methods that take variable amounts of time to complete, do not terminate, or

potentially use unlimited resources. This poses a problem for the compilation system

3For this purpose, two instances of the same Input are considered disjoint if the method is
registered to trigger on different types of Tokens. E.g., method A may trigger on DataTokens and
method B may trigger on ControlTokens from the same Input.

4The init() method described here is roughly equivalent to the prework() method added in
StreamIt 1.1[16]. The StreamIt init() method is used to build the stream graph and is not exe-
cuted as part of the application except when the filter is re-initialized. In this model, the kernel’s
constructor and configureKernel() methods do the work of the the StreamIt init() method.

54 CHAPTER 4. APPLICATION MODEL

which needs to know how long each method takes to execute and how many resources

it consumes. Rather than imposing structural limits on the kernel methods to elimi-

nate this problem, the programmer must instead specify the resources consumed by

the method when it is registered. A more sophisticated system could attempt infer

these values from a simulation or analysis of the program [16].

While methods are logically executed when all of their Inputs are ready, the com-

putation model does not require that scheduling be dynamic. Dynamic execution

by constantly checking for ready inputs is straightforward, but potentially inefficient.

For methods whose Inputs are derived from static-sized inputs generated at a fixed

rate, the result of this dynamic execution is a static schedule. This static schedule can

be determined ahead of time and encoded in a simple finite state machine that exe-

cutes on the processor to which the kernel has been mapped. Such an approach could

eliminate the dynamic scheduling burden for applicable kernels in an application.

In addition to executing methods when their Input data is ready, methods can

be defined to execute when they receive ControlTokens. This is done by adding an

additional parameter to the registerMethodInput() or registerMethodOutput()

call in the configureKernel() method, as seen in the registerMethodInput() call

for the “finishCount” method in Figure 4.12. If an Input does not have a method

defined for handling ControlTokens, any ControlTokens received are passed on to

the Outputs for the Input’s method, once the same token has been received on all

other Inputs for that method. All Inputs to a given method must receive the same

ControlToken before it can be processed to ensure that the tokens are consumed in

order. For example, the subtraction kernel from the differencing program in Figure

4.9 will not pass on any end-of-line tokens until it has received an end-of-line token

on both of its Inputs. This is the desired behavior, as it ensures that only one

end-of-line token is generated by the kernel for each line it finishes processing. By

automatically handling uncaught ControlTokens in this manner, kernels may safely

ignore any ControlTokens they wish as they will make their way downstream through

the application automatically. Methods may, however, register to receive DataTokens

of any type as well. Indeed, the computation model allows multiple methods to

register as being triggered by the same Input as long as they are triggered on different

4.4. KERNEL EXAMPLES 55

types of Tokens. This enables a kernel to take different action when it receives, for

example, an end-of-line token than when it receives data.

4.4 Kernel Examples

The following three kernels demonstrate the use of multiple inputs, multiple methods,

and ControlTokens in the definition of kernels. These features combine to make it

easier to describe common data and control flow patterns in a stream programming

model.

4.4.1 Multiple Inputs

The simplest example of writing a kernel is the subtraction kernel seen in the middle

of the differencing program (Figure 4.5(b)). This kernel simply takes in two values

and outputs the result of differencing the inputs. The code is shown in Figure 4.9.

The kernel code consists of two methods: configureKernel() and subtract(). The

first method is called when the kernel is added to the application. It defines the

required Inputs (“in0” and “in1”, both with size (1× 1) and step size (1, 1)) and the

single Output (“out”, of size (1 × 1)). When the kernel is added to the application

graph, the Inputs and Outputs are created and automatically added to the application

graph and connected to the kernel. The kernel then registers the method(s) within

the kernel that should be executed, and specifies which Input(s) are needed before

the method(s) can fire, and what Output(s) they generate. In this example, the

subtract() method is registered to execute when the Inputs “in0” and “in1” are

ready. The method itself simply reads the two inputs, places the difference of the two

inputs into the result, and then writes the result to the Output “out”.

4.4.2 Multiple Methods

A more complex example is the convolution kernel from Figures 4.5(a) and 4.5(b). The

code, shown in Figure 4.10, contains three methods. The first, configureKernel(),

configures the kernel by defining the Inputs and Outputs, and registering the kernel’s

56 CHAPTER 4. APPLICATION MODEL

Page 1 of 1

SubtractKernel.java 1/23/08 4:58 PM

package kernelApplication.test.kernels;

import kernelApplication.elements.kernels.Kernel;

public class SubtractKernel extends Kernel {

private double [][] result = new double[1][1];

public void configureKernel() {
/*
 * Create the Inputs and Outputs
 */
createInput("in0", 1,1,1,1);
createInput("in1", 1,1,1,1);
createOutput("out", 1,1);
/*
 * Register the subtract() method, define its resource
 * usage, and assign its Inputs and Outputs.
 */
registerMethod("subtract", 0,0,1,1);
registerMethodInput("subtract", "in0");
registerMethodInput("subtract", "in1");
registerMethodOutput("subtract", "out");

}

public void subtract() {
double [][] in0 = readInputData("in0");
double [][] in1 = readInputData("in1");
result[0][0] = in0[0][0] - in1[0][0];
writeOutputData("out", result);

}

}

package kernelApplication.test.kernels;

import kernelApplication.elements.kernels.Kernel;

public class SubtractKernel extends Kernel {

@Override
public void configureKernel() {

/*
 * Create the Inputs and Outputs
 */
createInput("in0", 1,1,1,1);
createInput("in1", 1,1,1,1);
createOutput("out", 1,1);
/*
 * Register the subtract() method, define its resource
 * usage, and assign its Inputs and Outputs.
 */
registerMethod("subtract", 0,0,1,1);
registerMethodInput("subtract", "in0");
registerMethodInput("subtract", "in1");
registerMethodOutput("subtract", "out");

}

public void subtract() throws InterruptedException {
double [][] in0 = readInputData("in0");
double [][] in1 = readInputData("in1");
double [][] result = new double[1][1];
result[0][0] = in0[0][0] -in1[0][0];
writeOutputData("out", result);

}

}

Figure 4.9: Code for a simple subtraction kernel
The configureKernel() method is called when the kernel is added to the appli-
cation graph. The subtract() method is registered as executing when data is
available on the Inputs “in0” and “in1”. The registerMethod() call specifies the
name of the method to register (“subtract”) and the resources the method con-
sumes (storage and operations per iteration). The registerMethodInput() and
registerMethodOutput() calls associate methods and Inputs and Outputs. When
no additional parameters are provided, these calls configure the method to be invoked
when data is received.

methods.5 The second method, runConvolve() is executed when the Input “in”

is ready. This method executes the convolution, as can be seen from the double-

nested for() loops, and then writes the result to the Output “out”. The last method

loadCoeff() is executed when the “coeff” Input receives data. This method takes

the input data and assigns the coeff[][] array to point to that data. The array is

then shared by the runConvolve() method when executing the convolution proper.

In the configureKernel() method the “coeff” input is defined to be a replicated

Input. This specifies that when parallelizing the application, the data to this input

should be replicated and not split, since the same coefficients should be delivered to

5The width and height values are set by the kernel’s constructor when it created.

4.5. DISCUSSION 57

all parallel instances of this kernel.

4.4.3 ControlTokens

An example of the use of ControlTokens is the counting kernel (Figure 4.12) from

a histogram application (Figure 4.11). This kernel builds a histogram by keeping

track of into which bin in the counts[] array each input falls. For each input,

the count() method is executed, which finds the correct bin for the received value

and increments its count. When the input reaches the end of the frame, the “in”

Input receives an end-of-frame token (EOFToken) and the finishCount() method is

executed. finishCount() outputs the final counts to the “out” Output and resets

the counts[] to zero. This flow is illustrated in Figure 4.13 for a parallelized version

of the program.

This kernel is an example where one Input triggers multiple methods depending

on the type of data received. In the full histogram program (Figure 4.11), the “count”

kernel feeds into a “merge” kernel. This allows the application to be parallelized by

creating multiple “count” kernels which can count portions of the input in parallel.

When the input frame is finished, all of the parallel “count” kernels will receive the

end-of-frame token, which will cause them to generate their final count outputs, which

are then combined by the “merge” kernel. In effect, the end-of-frame token triggers

the reduction of the current counts to the single final count, without the need for a

language-specific reduction operator as in Brook [6].

4.5 Discussion

The presented block-parallel programming model has many similarities to previous

stream programming models. The following sections compare the Application Model

(Section 4.5.1), Data Model, including control, (Section 4.5.2), and Computation

Model (Section 4.5.3) to previous work. Differences in scheduling approaches (Section

4.5.4) are also discussed.

58 CHAPTER 4. APPLICATION MODEL

Page 1 of 1

ConvolutionKernel.java 1/23/08 4:53 PM

package kernelApplication.test.kernels;

import java.util.Arrays;

import kernelApplication.elements.kernels.Kernel;
import kernelApplication.run.GlobalClock;
import kernelApplication.trace.Trace;
import kernelApplication.trace.Trace.EventType;
import kernelApplication.util.Warnings;

/**
 * Implements a width x height convolution.
 * If there is no coeff input then 0s are used.
 * @author davidbbs
 *
 */

public class ConvolutionKernel extends Kernel {

int width;
int height;

public ConvolutionKernel(String name, int width, int height) {
super(name);
this.width = width;
this.height = height;

}

public void configureKernel() {
/*
 * Define the Inputs and Outputs, register the method, and assign
 * resources consumed.
 */
createInput("in", width, height, 1, 1,

Math.floor((double)width/2), Math.floor((double)height/2));
createOutput("out", 1,1);
registerMethod("runConvolve", 0, 3, 10, 10+3*height*width);
registerMethodInput("runConvolve", "in");
registerMethodOutput("runConvolve", "out");

/*
 * Define the Input for coefficient loading, register the
 * method called when the coefficients are present,
 * and mark that input as begin replicated. (I.e., inputs
 * to it should be copied, not parallelized.)
 */
createInput("coeff", width, height, width, height,

Math.floor((double)width/2), Math.floor((double)height/2));
registerMethod("loadCoeff", 0, 3, 10, 10+2*height*width);
registerMethodInput("loadCoeff", "coeff");

/*
 * When parallelizing, the coefficient input should be replicated,
 * not distributed.
 */
getInputByName("coeff").setReplicateInput(true);

}

private double[][] coeff;
private double[][] result = new double[1][1];

public void runConvolve(){
double[][] in = readInputData("in");
for (int x=0; x<width; x++)

for (int y=0; y<height; y++)
result[0][0] += in[x][y]*coeff[width-x-1][width-y-1];

writeOutputData("out", result);
}

public void loadCoeff() {
coeff = readInputData("coeff");

}

}

Figure 4.10: Code for a convolution kernel
The configureKernel() method registers two methods for this kernel. The first,
runConvolve(), executes when input data is present on the “in” Input. The second,
loadCoeff(), executes when input data is present on the “coeff” Input, and defines
the shared coeff[][] array that the runConvolve() method uses for the actual
convolution. The calculations shown for the “in” input above determine the correct
offset for the output relative to the input. Offsets are discussed in detail in Section
6.2.

4.5. DISCUSSION 59

input out
(1x1)[1,1] mergein

(1x1)[1,1] hist out
(16x1)[16,1]

in
(16x1)[16,1]

out
(16x1)[16,1]

in
(16x1)[16,1] out

Figure 4.11: Histogram application graph
The blue dotted edge from the Input to the“merge” kernel is a data dependency edge
which indicates that there can be no more than one “merge” kernel for each “in”
Input when the application is parallelized.

4.5.1 Application Model

Hierarchy in applications

Applications written using the model presented here do not have an explicit hierarchi-

cal structure. This is similar to the model used for StreamC/KernelC and sdf-based

approaches. StreamIt, however, requires that applications be built by explicitly using

hierarchical blocks (pipelines, splitjoins, and feedbackloops, see Figure 3.1) to connect

filters [43]. They claim that this enforced hierarchy makes it both easier to describe

and analyze applications [16]. However, the majority of the work compiling the ap-

plications appears to come from breaking down the hierarchy and re-assumbling it

to obtain the right granularity of parallelism for the application and the target ar-

chitecture [15]. It is not clear that the presence of the hierarchy in the first place

actually simplified this manipulation. Indeed, unless the lower levels of the hierarchy

are completely independent of the rest of the application, the hierarchy must nec-

essarily be flattened for whole-program analysis. While it is unclear if hierarchy in

stream programs simplifies analysis and compilation, it does have a real potential to

make code reuse easier by coarsening the level at which the programmers need to

interact with the application structure. Such hierarchy, however, can be easily added

to any of the traditionally “flat” streaming languages.

Static rates

The requirement that the data sizes, rates, and computation rates be statically known

at compile time is quite similar to most other stream languages. StreamC and KernelC

60 CHAPTER 4. APPLICATION MODEL

Page 1 of 1

HistogramKernel.java 4/14/08 9:25 AM

public class HistogramKernel extends Kernel {

private int numberOfBins;
private int[]counts;
private double[][] finalCounts = new double[numberOfBins][1];

public void init() {
super.init();
Arrays.fill(counts, 0);

}

public void configureKernel() {
createInput("in", 1,1,1,1);
createOutput("out", numberOfBins, 1);

// init() method clears the bins, so it takes some time and memory.
registerMethod("init", numberOfBins, 0, 5, numberOfBins*2+3);

// count() runs when we get new data
// On average we search half way, so the run time is ~bins/2
registerMethod("count", 0, 4, 15, numberOfBins/2+5);
registerMethodInput("count", "in");

// finishCount() runs when we get an End-of-frame Token.
registerMethod("finishCount", 0, 4, 6, numberOfBins*3+3);
registerMethodInput("finishCount", "in", EOFToken.class);
registerMethodOutput("finishCount", "out");

}

/**
 * Does the counting.
 */
public void count() {

double[][] input = readInputData("in");
double value = input[0][0];
counts[findBin(value)]++;

}

/**
 * Finishes the count by dumping the results and resetting the counts.
 */
public void finishCount() {

for (int i=0; i<numberOfBins;i++) {
finalCounts[i][0] = counts[i];
counts[i] = 0;

}
writeOutputData("out", finalCounts);

}

}

public class HistogramKernel extends Kernel {

Figure 4.12: Code for a histogram kernel
The histogram counts are stored in the counts[] array, which is initially cleared by
the init() method. The count() method increments the count for the correct bin.
(The findBin() method is omitted for clarity.) At the end of a frame of input, the
finishCount() method is triggered by the End-of-frame ControlToken (EOFToken),
which causes the kernel to send the final counts to the “out” Output and reset the
counts to zero. This is configured by providing the additional parameter to the
registerMethodInput() call for the “in” input to the “finishCount” method.

4.5. DISCUSSION 61

In
pu
t

m
er
ge

Bu
ffe
r

O
ut
pu
t

Sp
lit

hi
st_
0

hi
st_
1

hi
st_
2

hi
st_
3

Jo
in

(a
)

P
ar

al
le

liz
ed

H
is

to
gr

am
P

ro
gr

am

1
2

3
4

5
6

7

(b
)

P
ar

al
le

liz
ed

H
is

to
gr

am
E

nd
-o

f-
Fr

am
e

T
ra

ce

F
ig

u
re

4.
13

:
P

ar
al

le
li
ze

d
H

is
to

gr
am

T
ok

en
B

eh
av

io
r

T
h
e

h
is

to
gr

am
p
ro

gr
am

(F
ig

u
re

4.
11

)
h
as

b
ee

n
p
ar

al
le

li
ze

d
to

u
se

fo
u
r

h
is

to
gr

am
ke

rn
el

s
(F

ig
u
re

4.
13

(a
))

.
T

h
e

ex
ec

u
ti

on
of

th
is

p
ro

gr
am

ca
n

se
en

in
th

e
si

m
u
la

to
r

ou
tp

u
t

in
F

ig
u
re

4.
13

(b
).

T
h
e

in
p
u
t

ge
n
er

at
es

an
E
n
d
O
f
F
r
a
m
e

to
ke

n
(1

),
w

h
ic

h
is

se
n
t

th
ro

u
gh

th
e

b
u
ff

er
(2

an
d

3)
,

an
d

th
en

th
ro

u
gh

th
e

d
at

a
sp

li
tt

er
(4

)
an

d
on

to
th

e
“h

is
t”

ke
rn

el
s

(5
).

T
h
e

h
is

to
gr

am
ke

rn
el

s
th

en
ge

n
er

at
e

th
ei

r
co

u
n
t

ou
tp

u
t

(6
),

w
h
ic

h
is

co
m

b
in

ed
in

th
e

d
at

a
jo

in
er

an
d

p
as

se
d

on
to

th
e

“m
er

ge
”

ke
rn

el
(7

).
T

h
e

d
et

ai
le

d
b

eh
av

io
r

of
th

e
S
p
li
t

an
d

J
oi

n
ke

rn
el

s
is

d
is

cu
ss

ed
in

S
ec

ti
on

7.
1.

62 CHAPTER 4. APPLICATION MODEL

on Imagine, however, can handle variable length streams relatively easily. They do

not suffer from the load balancing problems that most other languages have as their

target architecture only executes a single kernel at a time. This guarantees perfect

load balancing in the presence of variable stream lengths as long as the data can be

prefetched sufficiently. For languages targeting multiple processors, the nature of the

various kernels, be they data-, pipeline-, or task-parallel, plays a strong role in the

overall load balancing, and hence efficiency, of the application. If these behaviors are

not known statically, the compiler can not do a decent optimization.

Inputs and Outputs

StreamIt is the only language of the ones discussed here that limits each kernel (or

filter) to a single input and output stream. This limitation makes analysis simpler, but

leads to some very contorted code when multiple data streams must be synthesized

from manually multiplexed single inputs. In particular, this limitation leads to a

proliferation of splitjoin filters with odd patterns that are highly implementation-

dependent. For example, the MPEG2 application in [10] has to manually split motion

vectors and the macroblocks apart when processing the image. This requires global

knowledge of their size and how they are encoded, which is not available to the

compilation system for analysis. By allowing multiple stream inputs and outputs,

the kernels written in most other languages can separate data in a logical fashion

which not only makes the applications easier to write and maintain, but gives the

compiler additional information to aid in program analysis.

4.5.2 Data Model

Stream Dimensions

The native two-dimensional stream type discussed here make writing and analyzing

image-based applications much easier than the one-dimensional streams of KernelC,

StreamIt, and most sdf variants. The more general n-dimensional streams of Array-

OL, gmdsdf, and wsdf are potentially more elegant, but have significant implemen-

tation difficulties. Their problems stem largely from overly-flexible access methods

4.5. DISCUSSION 63

to the data and explicitly undefined execution order. The latter issue greatly com-

plicates practical implementations because the search space for execution orderings

grows tremendously with each dimension of the data [25]. Even for nominally simple

two-dimensional data, both Array-OL and wsdf have shown this to be a difficult

problem. The extremely flexible data access patterns (see Figure 3.4) are mathe-

matically elegant, but lead to overly complicated inter-kernel analysis when different

input and output patterns meet [4]. Unfortunately, these two issues are closely inter-

twined: to take advantage of the potential buffer savings and efficiency of being able

to accurately describe complex access patterns to the compilation system, the system

must be able to find the ordering that works best given the access patterns. Neither

Array-OL nor wsdf have demonstrated the ability to do this on a significant scale.6

The choice of providing a two-dimensional primitive data type with only limited

sliding window access patterns represents a reasonable tradeoff in terms of complexity

and utility between one-dimensional streams and generalized n-dimensional stream.

While n-dimensional streams are undoubtedly more powerful, it is not clear that the

additional complexity incurred to describe, analyze, and manipulate them is justified.

Control

The integration of ControlTokens into the data streams provides a flexible commu-

nication method much like StreamIt’s teleport messaging [44]. StreamIt, however,

provides the ability for the programmer to specify the minimum and maximum la-

tency for the message, although the determination of reasonable bounds is left up to

the programmer. This is helpful in the StreamIt model because it is assumed that the

application is compiled to a static schedule. A benefit of this level of static analysis

is that it allows messages in StreamIt to be automatically synchronized with frame

boundaries in different parts of the application. For example, a message to change

filter coefficients sent upstream from a filter can be arranged to only arrive between an

input window to the filter. The analysis required to implement this feature requires

6Generalized kernel merging for Array-OL has been implemented for the majority of cases, but
it is a very complex transformation that does not fully address the issue of ordering.

64 CHAPTER 4. APPLICATION MODEL

only that the application have static data rates, and as such could be applied to the

framework discussed here.

Overall, the StreamIt messaging architecture is both successful because of, and

limited by, the fact that it is effectively bolted-on to the rest of the application.

In StreamIt, the communication rates and processing times for handling messages

are not taken into account when scheduling the application. This makes it easy

to implement, and works well when the messages are infrequent and require little

processing, but there is no way to enforce this in the language. By treating all

Tokens, be they ControlTokens or DataTokens, similarly, the approach presented

here allows the message rates and processing times to be explicitly accounted for in

the application analysis. For example, this enables the end-of-frame and end-of-line

tokens to trigger methods which take non-trivial amounts of time, as the analysis is

the same as that of the DataTokens. The downside of this more general approach is

that there is no easy way to specify that a message is generated at an unknown rate,

as is effectively the case with all messages in StreamIt. This feature is useful, but

completely unanalyzable.

4.5.3 Computation Model

The major difference in computation between the approach presented here and pre-

vious streaming models is the explicit inclusion of multiple execution methods within

each kernel. Combined with multiple inputs and outputs, and the ability to have

different methods execute when different token types are received, this provides a

powerful approach to re-configuring and manipulating kernels. Brook kernels have

the ability to receive scalar configuration variables on initial execution, but they are

treated as constants [6]. Kernels written in KernelC have the ability to read and

write microcontroller variables during their execution, but this is not analyzable by

the compiler [35]. In StreamIt the event handlers for each message are similar to

allowing multiple methods, but they are not analyzable by the compiler, and they

break the hierarchical construction of the language (hence the “teleport” name).

The use of data dependency edges to define level of concurrency available in an

4.5. DISCUSSION 65

application provides a much finer level of control than is present in other languages.

A data dependency edge allows a program to specify that the parallelism permitted

for a given kernel is limited by another kernel or input. In StreamIt, program analysis

determines crudely if a filter is parallel or not [15], with no way to specify that there

is bounded parallelism. StreamC/KernelC and Brook do not suffer from this problem

as they assume a computation target that only executes a single kernel at a time.

Array-OL and wsdf assume complete data parallelism and do not address the issue.

4.5.4 Scheduling

The requirement that all parts of the application have statically-determined rates and

sizes at compile time results in the applications described here falling into the broad

category of Synchronous Data Flow (sdf)[33] applications. For all sdf applications,

a static, repeated schedule can be determined by simulating the execution of the ap-

plication with the known rates[33]. However, the cyclic nature of the two-dimensional

inputs, in particular the potentially different behaviors and processing rates during

steady-state processing and at the beginnings and ends of frames, complicates the

schedule by introducing cycles within it. This category of applications, known as

Cyclo-static Synchronous Data Flow (csdf)[13], is characterized by a finite number

of cycles within the overall schedule’s cycle, and can be analyzed as such.

A significant amount of work has been done on scheduling csdf[39] applications.

The majority of this work should apply directly to the application model presented

here. However, the benefits of static scheduling for a many-core architecture are un-

clear. Historically, static scheduling was beneficial as it avoided having the runtime

system check each and every kernel in the application to see which ones could be run

next on the single processor. Not only was this check slow, but it was unlikely to

pick an optimal schedule. For a many-core processor, with most processors executing

one or a only a few kernels, the scheduling overhead is virtually eliminated. Instead,

inefficiencies can arise from having to manage the buffers for communicating data be-

tween processors. This overhead can be reduced by implementing the buffers with the

help of simple hardware DMA engines, thereby making it possible to run dynamically

66 CHAPTER 4. APPLICATION MODEL

scheduled applications highly efficiently. For the particular case of the block-parallel

applications presented here, the larger data transfer size compared to single inputs

for most sdf applications, further amortizes the overhead of buffer management.

It should be noted that the StreamIt compilers have worked very hard to find

optimal static schedules for their applications[23, 15]. This was driven by the desire

to generate static schedules for the on-chip network of the Raw processor[45] for data

communications, although this was apparently abandoned in later efforts [15]. Later

work on StreamIt [48] demonstrated that static scheduling was not essential for good

performance. For general sdf applications, there is also a tradeoff between schedules

and required buffer sizes [5]. This arises from the build-up of data that can occur

between kernels if they are executed in different patterns. However, as long as kernels

run on their own processors and can block when their output buffers are full, the input

buffers can be minimally sized for correctness. This was not possible with StreamIt on

Raw due to the static nature of the communications network. Overall, the motivation

to generate static schedules appears to be historical, having been driven first by the

high overhead of function calls on early dsps, and later by the need to optimally

multiplex kernels on one or a few processors. Recent work [48] indicates that when

distributed across multiple processors with reasonable load balance, the overhead of

dynamic kernel invocation is acceptable.

4.6 Conclusions

The application model presented here is succinct enough to easily describe kernels

and applications efficiently and yet flexible enough to support complex applications.

Data-parallel media applications map easily to the model, while more complicated

applications, such as the limited parallelism present in the JPEG and Histogram ex-

amples, fit cleanly as well. The kernel/stream model is similar to that of StreamIt,

but provides much simpler two-dimensional access semantics without the debilitating

complexity of a fully general multi-dimensonal SDF approach. The use of Control-

Tokens to send non-data signals between kernels allows programmers to elegantly

4.6. CONCLUSIONS 67

encapsulate both in-band (i.e., in order with the data or synchronous) and out-of-

band (i.e., asynchronous) control with ease. The default handling of ControlTokens

allows kernels to handle only those they need explicitly address and safely ignore

any others. While the logical scheduling model is a dynamic data-driven approach,

kernels whose input schedule is statically known can be statically scheduled to reduce

and distribute this burden, while allowing for dynamic operation where required.

However, the most valuable part of this approach is that the application descrip-

tion is parameterized. The application’s data input sizes and rates are defined by the

DataInput, and need not be referenced elsewhere in the application, except implicitly

through the connections made in the application graph. This gives the programmers

the flexibility to change the application processing requirements at any time by merely

changing the size and rate of the DataInputs. This flexibility comes at the price of

requiring a compilation system that can analyze the size and rate data correctly so

as to parallelize the application to meet the requirements. Doing so requires first

analyzing the application to determine the requirements for each kernel (Chapter 5),

and then using those requirements to introduce sufficient parallelism to meet them

without wasting resources (Chapter 7).

Chapter 5

Application Analysis

To determine the required processing and storage for each kernel in the application

given the application’s input size and rate, a data flow analysis is run that propagates

the size and rate from the application’s inputs through the application graph. At each

kernel in the application graph, the sizes of the kernel’s Inputs are used to determine

the number of invocations required per input frame for each method. The size of

the output from the kernel can then be calculated from the sizes of the Outputs for

each method, and this can then be propagated on to the next kernel’s Input. At

the end of this analysis, the required invocation rate is known for each method in

each kernel. The degree of required parallelism can then be readily inferred from

the kernel’s methods’ invocation rates, their resource requirements, and the resources

available on the target hardware’s processor cores. For the program to be valid, this

analysis must return consistent results for all points in the application graph where

two or more different inputs come together. If the analysis is not valid, the application

is inherently inconsistent and incorrect.

5.1 Frame Sizes, Frame Rates, and Iteration Sizes

To determine the invocation rates for each kernel, a data flow analysis is carried out

that calculates the frame size, frame rate, and iteration size at each node in the

application graph. Knowing these three values for all the Inputs to each method in

68

5.1. FRAME SIZES, FRAME RATES, AND ITERATION SIZES 69

a kernel allows the data flow analysis to propagate them to the method’s Outputs.

Once the analysis is complete, these values give the invocation rates for each method

in each kernel, and the size and rate of the data moving between kernels.

The frame size is simply the dimensions of the data at a given point in the appli-

cation. For a 15 × 5 two-dimensional image, the frame size is 15 × 5. For a 128 × 1

vector the frame size is 128× 1, and for a list of 64 motion vector descriptors (where

each vector contains 4 words [x0, y0, dx, dy]), the frame size is 64× 4.

The iteration size is the number of Input or Output chunks that fit in a given

frame size. This value is calculated by determining how the Input’s size and step size

tile the frame size to which the Input is being applied. Given the frame size (FX×FY)

and the Input’s size (inX × inY) and step size (SX , SY), the iteration size (IX × IY)

is calculated as:

IX =
⌊
FX − inX

SX

⌋
+ 1 (5.1)

IY =
⌊
FY − inY

SY

⌋
+ 1 (5.2)

This calculation takes the input frame width and subtracts the initial width re-

quired for the input’s first iteration (hence the addition of 1 later). The remaining

width is then divided by the step size to determine how many steps of the Input fit,

and the floor is taken to ensure that the last iteration does not step outside of the

input frame. For example, the Input to the 3 × 3 convolution filter shown in Figure

4.7 is (3×3) with a step size of (1, 1). The frame size for the Input is 14×5, resulting

in an iteration size of (12× 3):

IX =
⌊

14− 3

1

⌋
+ 1 = 12 (5.3)

IY =
⌊

5− 3

1

⌋
+ 1 = 3 (5.4)

A 128 point FFT (Input size (128 × 1), step size (128, 1)) on a 128 × 1 input would

have an iteration size of 1× 1. For the 64 motion vector descriptors described above,

the kernel processing them would take in inputs of size (1 × 4) and step size (1, 4),

resulting in an iteration size of 64× 1.

70 CHAPTER 5. APPLICATION ANALYSIS

The frame rate at each point is simply the number of frame size inputs per second.

This value is propagated through the application untouched except when kernels are

parallelized, at which point the frame rate for each kernel is scaled by 1/n, where n

is the degree of parallelization of the kernel.

5.2 Data Flow Analysis

The data flow analysis performed on the application graph calculates the frame size,

iteration size, and frame rate at each point in the graph by propagating them across

each element in the graph. The analysis operates on the graph in a topological order

which results in producers (Outputs) being processed and updated before consumers

(Inputs).1 The analysis of an application starts at the DataInputs to the application

and proceeds through their Outputs and on into the Inputs of any consumers. From

there the analysis propagates through the methods of the consumer kernels via their

Inputs and then on to subsequent consumers via the methods’ Outputs. The data

flow analysis transfer functions are given in Table 5.1 for general kernels.

Table 5.1: Default data analysis transfer functions
Output → Input Input → Method Method → Output

Frame Size - -
Method Iteration Size
× Output Size

Frame Rate - - -

Iteration Size
Input chunks in

- -
Output Frame Size

A “-” indicates that the values does not change. Transfer functions may be different
for other kernels, such as Buffer kernels (see Section 6.1.1) and Split and Join kernels.

The initial values for the frame size, iteration size, and frame rate are set by the

DataInputs to the application. When the application is built and the DataInput

1This ordering imposes the requirement that there be no cycles in the application graph. To allow
feedback, it would be possible to replace this single-pass topological ordering with an analysis that
iterated to consistency or to break any cycles before analyzing the graph, as discussed in Section
5.2.1.

5.2. DATA FLOW ANALYSIS 71

is instantiated, its size and rate are defined. By changing this instantiation, the

analysis will automatically propagate the new size and rate information throughout

the application, thereby making it trivial to adapt the same application to different

input rates and sizes. In the simple convolution application shown in Figure 4.6,

for example, the DataInput “input” is defined to have an output size of (2 × 2) at

a rate of 1 frame per second (it reads its values and size from the file “inA.txt” for

simulation). The DataInput’s Output determines its iteration size by calculating how

many Output chunks fit into the DataInput’s frame size, and its rate is simply that of

the DataInput itself. For example, a DataInput for a 30Hz 1920× 480 RGB encoded

input image that has a (3 × 1) output, would have an image size of 1920 × 480, an

iteration size of 640 × 480, and a frame rate of 30Hz. A 4096 × 1 DataInput with a

(128× 1) Output would have an iteration size of 32× 1.

The frame size, iteration size, and frame rate at the Inputs to a kernel are propa-

gated through the kernel on a per-method basis. For each method in the kernel, the

iteration size is calculated for each Input as in Section 5.1. All iteration sizes and

rates must match for each Input to the method or the application is inconsistent.2

Note that because the iteration sizes are related to the frame sizes via the Inputs’

size and step size, the frame sizes of the Inputs do not have to match as long as

the iteration sizes and rates do. The iteration size and frame rate for the method is

then simply that of its Inputs. The method’s Outputs’ sizes and rates can then be

calculated by multiplying the Outputs’ sizes by the iteration size of the methods that

generate them. The Outputs’ rates are the same as their generating methods.

Methods that trigger on ControlTokens need to have frame size, iteration size, and

frame rates calculated based on the token’s rate. For end-of-frame and end-of-line

tokens, these rates are inferred from the Input’s iteration size and rate. Kernels that

define their own ControlTokens need to determine how to appropriately propagate

the analysis data for them. That is, given its input size and rate, the kernel needs

to calculate the size and rate for any ControlTokens it may produce, to allow that

information to be propagated to the rest of the application.

2The number of executions of a method is determined by the iteration size of its Inputs. If
two Inputs to the same method have different iteration sizes, the iteration size of the method is
undefined, and therefore the application is inconsistent.

72 CHAPTER 5. APPLICATION ANALYSIS

Once the analysis data has been calculated for each method in a kernel, it can be

used to calculate the degree of parallelism required for that kernel. To do so the total

operations per second required are calculated by summing over all the methods the

number of operations required per invocation for the method times the iteration size

times the frame rate. This determines the total number of operations per second for

the kernel.

kernel ops
second

=
∑

methods

ops× (IX × IY)× rate (5.5)

To determine the required degree of parallelism, the required kernel operations

per second are divided by the target hardware’s operations per second per processor.

This calculation results in a crude estimate of the number of processors that must be

devoted to a given kernel to meet the data rate requirement inferred from the initial

DataInputs to the application.3 This requires that the compilation system have an

estimate of the number of operations the kernel requires on the target architecture.

For this work, this number is specified when the kernel is created. In general, this

value could be determined by profiling a compiled version of the kernel on the target

hardware or by static analysis of the low-level compiled code. By repeating this

process for all the kernels in an application, the total processing requirement for the

application can be determined.

For example, a 3× 3 convolution that takes 10 operations per invocation running

on a 40 × 40 input image with a frame rate of 100kHz will have an iteration size of

38 × 38. To meet the 100kHz frame rate requirement, 38 × 38 × 105 = 1.4 × 108

invocations per second are required, which is 1.4× 109 operations per second. If the

processor cores are capable of 50MOPS, then 29 of them are required.

3A more accurate cycle calculation for the kernel must take into account the time required to
transmit and receive the data by the Input and Output buffers.

5.2. DATA FLOW ANALYSIS 73

5.2.1 Feedback

Section 4.1.1 defined the application graph as a directed acyclic graph (dag), which

implies that no cycles are allowed in the application definition. This constraint en-

ables easy propagation of information from the application’s DataInputs throughout

the graph in one pass as discussed above, but prevents programmers from writing

applications with feedback. As this is critical to many classes of algorithms, it is

important to investigate what would be involved in fully supporting feedback.

The first issue with supporting feedback (or loops in the application graph) is

enabling the data flow analysis to correctly propagate information from an Output

to the feedback Input it feeds. As loops in the graph make topological traversal ill-

defined, a multi-pass traversal is required. Such an algorithm can be implemented

by either breaking the feedback loops in the graph for the first pass of analysis or by

using a work-list to keep track of nodes that must be revisited due to feedback. In

either case, an Input to a kernel that is generated by a feedback path must be ignored

until the data analysis has determined the frame size, frame rate, and iteration size

for the method that drives that Input. At that point, the calculated driving frame

size, rate, and iteration size can be used to calculate the Input’s frame size, rate, and

iteration size. The analysis must then evaluate if the Input is consistent with what

has already been calculated for the kernel, and if not report the inconsistency to the

user.

The second issue with supporting feedback is defining the initial output value

for the feedback loop for the time before data feeds back through it and it reaches

a steady-state operation. The number of iterations of data required can be readily

determined by the data analysis by looking at the frame rate and iteration sizes along

the feedback path, but the values of the initialization data must be determined by the

programmer. In many cases this will just be zero, but depending on the algorithm

it might need to be different. As the feedback loop will effectively empty at the

beginning of each frame, this initialization data will be generated at the start of each

new frame. To generate such data, a feedback initialization kernel could be inserted

that would output the initialization data at the start of each frame and then pass on

its input thereafter.

74 CHAPTER 5. APPLICATION ANALYSIS

5.3 Example

The data analysis for the first half of the differencing program shown in Figure 4.5(b)

is shown in Figure 5.1. The DataInputs for loading the coefficients into the two

convolution kernels have been removed for clarity. Each node has been annotated

with the frame size (Image:), the iteration size (It:), and the rate (@x/s). Kernels

have the iteration size calculated for each method as “methodName:It:”. In addition,

Inputs and Outputs are annotated with their inset, which is discussed in Chapter 6.

The data flow analysis starts at the DataInput “input” on the left side of the

graph. This DataInput is of frame size 40× 40 at a rate of 62.5Hz. The Output for

this DataInput is of size (1 × 1), which means its frame size and image size are also

40× 40. The frame rate stays the same. The Input to the “conv3x3” kernel takes its

frame size and rate from its source Output. It has size (3× 3) and step size (1, 1), so

the resulting iteration size is (38 × 38). This is simply the calculation from Section

5.1, which is:

IX = IY =
⌊

40− 3

1

⌋
+ 1 = 38 (5.6)

The “conv3x3” kernel has one method of interest (the loadCoeff() and init()

methods are ignored for simplicity), which is runConvolve(). The runConvolve()

method has one Input, so there is no question of consistency, and therefore that

method’s frame size, iteration size, and rate are the same as the Input’s. The kernel’s

Output is size (1× 1), and by multiplying that by the producing method’s iteration

size of (38 × 38), the Output’s frame size is 38 × 38 and the rate is the same as the

method. The same analysis follows for the “conv5x5” kernel, except its iteration size

is (36× 36) as the Input size of (5× 5) results in a 4× 4 output halo instead of the

2× 2 output halo for the 3× 3 convolution.

This application becomes interesting when the outputs from the two convolution

kernels join up at the “subtract” kernel’s single method. Processing the Output from

the “conv3x3” kernel through Input “in0” on the “subtract” kernel results in an

iteration size of (38 × 38), while processing the Output from the “conv5x5” kernel

through Input “in1” results in an iteration size of (36× 36). As the inputs to a given

method must have the same iteration size for the computation to make sense, this

5.3. EXAMPLE 75

in
pu

t
[4

0x
40

@
1x

1
pe

r 1
0c

]
ou

t
(1

x1
)[1

,1
]

in
(3

x3
)[1

,1
]

[1
.0

,1
.0

]

in
(5

x5
)[1

,1
]

[2
.0

,2
.0

]

co
nv

3x
3

ou
t

(1
x1

)[1
,1

]

in
0

(1
x1

)[1
,1

]
[0

.0
,0

.0
]

co
nv

5x
5

ou
t

(1
x1

)[1
,1

]
in

1
(1

x1
)[1

,1
]

[0
.0

,0
.0

]
su

bt
ra

ct
ou

t
(1

x1
)[1

,1
]

in
(2

x2
)[2

,2
]

[0
.0

,0
.0

]
do

w
n2

x2
ou

t
(1

x1
)[1

,1
]

in
(1

x1
)[1

,1
]

[0
.0

,0
.0

]
ou

tp
ut

Im
ag

e:
 1

9.
0x

19
.0

It:
19

x1
9@

15
.6

2/
s:

<o
ut

:(1
/2

,1
/2

)[2
,2

,2
,2

]>

Im
ag

e:
 3

6.
0x

36
.0

It:
36

x3
6@

62
.5

/s:
<o

ut
:(1

,1
)[2

,2
,2

,2
]>

IN
VA

LI
D

in
it:

((I
t:0

x0
@

?/
s:)

)
ru

nD
ow

ns
am

pl
e:

It:
19

x1
9@

15
.6

2/
s:

Im
ag

e:
 4

0.
0x

40
.0

It:
38

x3
8@

62
.5

/s:
<o

ut
:(1

,1
)[1

,1
,1

,1
]>

Im
ag

e:
 3

8.
0x

38
.0

It:
38

x3
8@

62
.5

/s:
<o

ut
:(1

,1
)[1

,1
,1

,1
]>

Im
ag

e:
 3

8.
0x

38
.0

It:
19

x1
9@

15
.6

2/
s:

<o
ut

:(1
,1

)[2
,2

,2
,2

]>

Im
ag

e:
 4

0.
0x

40
.0

It:
40

x4
0@

62
.5

/s:
<o

ut
:(1

,1
)[0

,0
,0

,0
]>

Im
ag

e:
 3

8.
0x

38
.0

It:
38

x3
8@

62
.5

/s:
<o

ut
:(1

,1
)[1

,1
,1

,1
]>

Im
ag

e:
 1

9.
0x

19
.0

It:
19

x1
9@

15
.6

2/
s:

<o
ut

:(1
/2

,1
/2

)[2
,2

,2
,2

]>

lo
ad

Co
ef

f:I
t:1

x1
@

1/
s:

in
it:

((I
t:0

x0
@

?/
s:)

)
ru

nC
on

vo
lv

e:
It:

36
x3

6@
62

.5
/s:

Im
ag

e:
 3

6.
0x

36
.0

It:
36

x3
6@

62
.5

/s:
<o

ut
:(1

,1
)[2

,2
,2

,2
]>

in
it:

((I
t:0

x0
@

?/
s:)

)
co

ns
um

e:
It:

19
x1

9@
15

.6
2/

s:

lo
ad

Co
ef

f:I
t:1

x1
@

1/
s:

in
it:

((I
t:0

x0
@

?/
s:)

)
ru

nC
on

vo
lv

e:
It:

38
x3

8@
62

.5
/s:

Im
ag

e:
 4

0.
0x

40
.0

It:
36

x3
6@

62
.5

/s:
<o

ut
:(1

,1
)[2

,2
,2

,2
]>

F
ig

u
re

5.
1:

D
at

a
fl
ow

an
al

y
si

s
fo

r
th

e
fi
rs

t
h
al

f
of

th
e

d
iff

er
en

ce
p
ro

gr
am

E
ac

h
n
o
d
e

in
th

is
ap

p
li
ca

ti
on

gr
ap

h
h
as

b
ee

n
an

n
ot

at
ed

w
it

h
th

e
re

su
lt

of
ru

n
n
in

g
th

e
d
at

a
fl
ow

an
al

y
si

s
d
is

cu
ss

ed
h
er

e.
In

ad
d
it

io
n

to
th

e
fr

am
e

si
ze

,
it

er
at

io
n

si
ze

,
an

d
fr

am
e

ra
te

,
th

is
fi
gu

re
co

n
ta

in
s

in
se

ts
in

th
e

an
al

y
si

s
an

n
ot

at
io

n
s

an
d

off
se

ts
in

th
e

In
p
u
t

n
o
d
es

,
th

at
w

il
l

b
e

d
is

cu
ss

ed
in

C
h
ap

te
r

6.

76 CHAPTER 5. APPLICATION ANALYSIS

3x3 Convolution Kernel Input 3x3 Convolution Kernel Output

5x5 Convolution Kernel Input 5x5 Convolution Kernel Output

3x3 and 5x5 Outputs Aligned

Figure 5.2: Halo differences between 5x5 and 3x3 kernels
The outputs from two kernels with (3 × 3) and (5 × 5) are shown aligned to their
inputs. The bottom figure shows the two outputs superimposed. If both outputs are
needed at any location (e.g., as in the “subtract” kernel in Figure 4.5(b)), the 1 pixel
border of calculated outputs for the (3×3) kernel around those of the (5×5) outputs
must be correctly handled.

indicates that the application is inconsistent, and hence invalid, as indicated on the

graph.

The reason for this inconsistency is that the same application input has been

processed through two kernels (“conv3x3” and “conv5x5”) that have different output

halos. The result is that while the upper-left-most output from the “conv3x3” kernel

corresponds to the (1, 1) location in the original input, the upper-left-most output

from the “conv5x5” kernel corresponds to the (2, 2) location in the same input. (See

Figure 5.2.) For the “subtract” kernel to make sense, it needs to subtract values

that are in the same position relative to the input from which they were generated.

Equivalently, the “conv3x3” kernel produces an output that is 38×38 (its frame size)

5.4. DISCUSSION 77

while the “conv5x5” kernel produces an image that is (2, 2) smaller, or only 36× 36.

If these two outputs are aligned relative to the original input from which they were

calculated (“input” in the application), the output from the “conv5x5” kernel would

be inset from the “conv3x3” kernel’s output by 1 pixel on each side. Since there

is no data from the “conv5x5” kernel for this 1 pixel inset, it does not make sense

to “subtract” the different size outputs of the two kernels. This effect can be seen

graphically in Figure 5.2.

The above example actually reveals two inconsistencies in the application. The

first is that the shared input that is used to generate the output from the two convolve

kernels has inconsistent sizes when the outputs are used together at the subtraction

kernel. The solution to this is to throw out the extra outputs from the “conv3x3”

kernel or to zero-pad the input to the 5× 5 kernel. The second inconsistency is that

the output from the application’s DataInput is generated in (1 × 1) chunks, but it

is consumed by the “conv3x3” and “conv5x5” kernels in (3× 3) and (5× 5) chunks,

respectively. With the input arriving in left-to-right, top-to-bottom order, the first

(3× 3) chunk of data for the first iteration of the “conv3x3” kernel will not be ready

until the third value on the third line. In order to use the previous values as well,

they must be buffered. Chapter 6 discusses inserting InsetKernels and BufferKernels

to correct both of these inconsistencies.

5.4 Discussion

The application analysis presented here is reminiscent of the analysis used in sdf ap-

plications to determine that the token production and consumption rates are matched

in steady-state flow. These are determined by examining the topology matrix Γ (see

Section 2.1) to derive a set of balance equations whose self-consistency indicates

that production and consumption rates are valid. This analysis is quite simple for

one-dimensional sdf applications, and can be generalized to wsdf and mdsdf multi-

dimensional cases. The multi-dimensional analysis could be applied to the application

description presented here, but as it does not assume an execution order, it would

not be of assistance in determining how to solve the aforementioned inconsistencies.

78 CHAPTER 5. APPLICATION ANALYSIS

The type of application analysis presented here is useful for fixing correctable er-

rors in the application description (see Chapter 6) and for alerting the programmer to

uncorrectable application inconsistencies. Languages that provide less description of

the data movement to the compiler hamper such analysis and increase the complex-

ity for the programmer. For example, the single input/output design of the StreamIt

language, forces programmers to manually multiplex and demultiplex data in single

streams, which is error-prone and difficult to read and maintain. This results in pro-

gram structures where global constants are used throughout the program to manually

multiplex multiple data streams, such as the Y, Cb, and Cr image data and their asso-

ciated motion vectors in the MPEG-2 decoder example [10]. Similar difficulties arise

with languages that only allow one-dimensional streams, such as StreamC/KernelC.

These languages force users to manually map their two-dimensional data to one-

dimensional streams which reduces the compiler’s ability to analyze them.

The language presented here provides the programmer with the ability to more

accurately describe how data is used to the compiler. The inclusion of multiple

two-dimensional inputs and outputs per method and multiple methods per kernel,

eliminates the need for most manual multiplexing and indexing of streams, while

providing the compiler with a concise, parameterized description of how the program

operates on its data. Not only does this simplify and increase the ability of the

compiler to analyze the program, but it also makes it easier and cleaner to write the

program. This results in a compilation system that is more helpful in detecting and

correcting programmer errors, and more readily able to analyze and manipulate the

flow of data for static programs.

Chapter 6

Buffers and Insets

As demonstrated at the end of Chapter 5, an application that appears well-defined can

display inconsistencies when analyzed. The differencing application (Figure 4.5(b))

is a clear example of this problem. The application is specified correctly, but when

analyzed two problems are revealed. The first is that the DataInput generates data

in (1× 1) chunks, a row at a time, while the convolution kernels consume the data in

(3×3) or (5×5) chunks. This requires that a buffer be inserted between the DataInput

and the convolution kernels to buffer a sufficient number of rows of input to generate

the required data chunks. The second inconsistency arises from trying to subtract

the output of one convolution kernel from the other. Because the convolutions are of

different sizes (3×3 and 5×5), the outputs are of different sizes (38×38 and 36×36)

despite having the same ancestor inputs. (See Figure 5.2.) This causes the two inputs

to the subtract kernel to have different iteration sizes for the same method, which is

inconsistent.

Input
Buffer 20x6

Buffer 20x10

conv3x3 Buffer 18x6

conv5x5

subtract Buffer 16x4 down2x2 Output
Inset

Figure 6.1: Automatically buffered and corrected differencing program
The differencing program from Figure 4.5(b) has been analyzed and appropriate In-
setKernels (Section 6.2) and BufferKernels (Section 6.1) have been automatically
inserted to correct the inconsistencies. This program now consistent.

79

80 CHAPTER 6. BUFFERS AND INSETS

These inconsistencies result in an invalid application description, that prevents

analysis, manipulation, and execution. However, the original program definition

(Figure 4.5(b)) is as expected from the programmer. To enable the programming

system to accept program descriptions with these inconsistencies, it is necessary to

automatically analyze and correct them, the results of which are shown in Figure 6.1.

6.1 Buffers

Inserting a buffer between two kernels is necessary whenever the Input size and step

do not match that of the source Output. In these cases, a buffer needs to be inserted

to store enough of the source data to allow the sink to read in the data in the size

specified by its Input. Besides being necessary for correctness, buffers increase the

overall application buffering beyond the single buffers in each Input and Output, and

provide an opportunity to take advantage of the data reuse present in many kernels

(see Section 4.2.1).

Buffers provide the abstraction of two-dimensional circular memory structures

that write in new data as long as they can without overwriting old data that has

not yet been read out. (See Figure 6.2.) This results in an access pattern whereby

the buffers are written line-by-line, filling up horizontally to the end of a line, and

then wrapping around at the bottom to overwrite the oldest data at the top. Buffers

may be large enough to need to map to larger, higher-level memories in the target

architecture, and may also require higher-level blocking to fit. These issues are not

addressed here, but are discussed in Appendix C.

6.1.1 Buffer Sizing

The size of a buffer is determined by the image size of the source writing into the

buffer and the Input size needed by sink kernel reading out of it. For the DataInput’s

row-by-row ordering, the buffer generally needs to be as wide as the source image.1

At a minimum, the buffer needs to be tall enough to hold one row of the larger of

1Alternatively, if the application were defined such that the DataInputs generated data in a
column-by-column order, the buffer would generally need to be as tall as the image.

6.1. BUFFERS 81

Write Read

(In to Buffer) (Out from Buffer)

Step: (1,1)

Write Valid: YES Write Valid: NO

Read Valid: NO 1 Read Valid: YES

2

3

0 Write Valid: YES 4 Write Valid: YES

1 Read Valid: NO 5 Read Valid: YES

2

3

0 Write Valid: YES 4 Write Valid: NO

1 Read Valid: YES 5 Read Valid: YES

2 2

3 3

0 Write Valid: NO 4 Write Valid: NO

1 Read Valid: YES 5 Read Valid: YES

2 2

3 3

7.The read buffer wraps around vertically

and continues.

8. etc.

3. After enough data has accumulated, the

buffer can begin to read out.

4. Data keeps writing in and reading out

until one or the other is blocked.

5. Data that will no longer be reused is

available to be overwritten.

6. The buffer wraps around vertically as the

next row is written in.

1. Empty buffer.

2. Buffer starts writing in data.

(i
m

a
g
e
 r

o
w

)

Figure 6.2: Two-dimensional circular buffer operation

its output or input. However, if the input size is not an even multiple of the output,

more rows may be required to ensure that the buffer can store enough rows of the

input to generate the outputs.2 For example, for a source Output size of 3×3 feeding

a sink Input size of 1 × 2, the buffer needs to be a minimum of 4 rows high to hold

two rows of the input, which is the minimum amount of input to generate one row

of output. If the Input was 1 × 1, the minimum height would be simply that of the

2If the Input and Output have the same height and step size, then the buffer can be simply that
tall as there is no need to buffer more than one row. In this case a horizontal-only buffer may be
used which is circular only in the horizontal direction and can further reduce buffer requirements.

82 CHAPTER 6. BUFFERS AND INSETS

Output, or 3. (See Figure 6.3.) Thus, the minimum buffer height is:

max
(
outY ,

⌈
outY
inY

⌉
× inY

)
(6.1)

While the above specifies the minimum size of the buffers, they should generally

be large enough to double buffer the data, thereby allowing the next line of data to be

written in while the current one is read out. The calculation to determine the height

for double buffering is similar to the above, but the buffer should be tall enough to

hold enough rows of input to cover two rows of output (taking into account the step

size of the output) or two rows of input. The maximum of two rows of input or two

rows of output is required to ensure that there is space to allow the next set of data

to be written or enough to hold two sets of output data. If we define the minimum

double buffered output height (one full row plus a the step size of the next row) to

be:

α = outY + SY (6.2)

the minimum double buffered height is then:

max
(
α,
⌈
α

inY

⌉
× inY , 2× inY

)
(6.3)

This ensures that the buffer is tall enough to hold the smallest of double-buffering

the output, the input, or the number of input rows to make up the double-buffered

output.

Unfortunately this double buffer sizing ignores the effects of buffering between

input frames. (See Figure 6.4). When one input frame is ending, the buffer needs to

be sufficiently large to hold enough input from the next frame to build up the first

full row of output for the next frame. This is necessary to ensure that the buffer does

not become a bottleneck by forcing any downstream kernels to wait at the end of

one frame for the next frame to fill in. In addition, when a buffer is placed after a

DataInput, it must ensure that it can continuously take in data at the DataInput’s

rate, or the application will drop data and producer incorrect results. Elsewhere in

the application there is likely to be sufficient buffering in Inputs, Outputs, and other

6.1. BUFFERS 83

Step: (1,1)

Step: (1,1)

Minimum Buffer Double Buffer

Minimum Buffer Double Buffer

Write Read

Write Read

Figure 6.3: Buffer sizes for double-buffering

buffers to relax this requirement to only demand that the buffer accept inputs at the

average rate of its source. The inflexible buffers that come after DataInputs therefore

require sufficient space to ensure that they will always be able to accept data at their

source DataInput’s rate. The correct buffering for this case is enough to hold one row

of output and enough rows of the input size to make up another full input row, or to

double buffer the input. This gives the required height for buffers as:3

outY + max
(⌈
outY
inY

⌉
× inX , inX × 2

)
(6.4)

For the more flexible buffers elsewhere in the application, less buffering may be re-

quired.

Buffer Data Flow Analysis

The data flow analysis for a buffer is quite similar to that of a regular kernel. The

primary difference is that the output size is not directly the method’s iteration size

times the output size due to reuse in the output. Instead, the buffer calculates the

number of output iterations based on the original Output and Input between which

the buffer has been placed. The frame rate remains the same.

3The buffering present in each Input and Output adds 4 more buffers (Output to buffer Input,
buffer Input, buffer Output, and Input from buffer Output) to the total buffering as well. For a
1× 1 Input to a 5× 5 convolution kernel, this reduces the required buffering from the calculated 10
lines to 8, and from 11 lines to 10 for a 1× 2 Input.

84 CHAPTER 6. BUFFERS AND INSETS

35 32 34

36 33 35

37 34 36

38 35 37

36 38

37

38

0 0 0

1 1 1

37 34 36

38 35 37

36 38

37

38

0 0 0

1 1 1

37 2 2

38 3 3

36 38

37

38

0 0 0

1 1 1

37 2 2

38 3 3

36 38

37

38

Write Read Step: (1,1)

(In to Buffer) (Out from Buffer)

When frame 0 finishes, frame 1 is ready to

start processing.

(i
m

a
g
e
 r

o
w

)

Double Buffering for

Flexible Inter-Frame

The input has been unable to write in the last

three values during the processing of one output.

This will work as long as there is sufficient

flexibility in earlier buffers.

Last Line of frame 0 being read out from the

buffer.

First line of frame 1 being written into the

buffer at the same time.

Frame 1 can write the 2nd line before frame

0 is finished reading out.

(i
m

a
g
e
 r

o
w

)

Double Buffering for

Single Frames

Double Buffering for

Inflexible Inter-Frame

Last Line of frame 0 being read out from the

buffer.

Last Line of frame 0 being read out from the

buffer.

First line of frame 1 being written into the

buffer at the same time.

First line of frame 1 being written into the

buffer at the same time.

Frame 1 can not write its 2nd line until

frame 0 is finished reading out.

Frame 1 can write the 2nd line before frame

0 is finished reading out.

When frame 0 finishes, frame 1 is not ready

to start processing.

When frame 0 finishes, frame 1 is ready to

start processing.

(i
m

a
g
e
 r

o
w

)

Figure 6.4: Buffer sizes for double-buffering between frames
To ensure that computation can continue uninterrupted between frames, the buffer
needs to be large enough to hold the last row of output from the first frame and
enough of the next frame to capture its first row of output. This ensures that the
buffer will not cause a bottleneck that prevents the first output from the next frame
from processing immediately after the last output from the first frame is processed.
This constraint can be relaxed for more flexible buffers that are not fed directly from
the application’s DataInputs.

6.2. INSETS 85

6.1.2 Implementation

Buffers are implemented as BufferKernels. The BufferKernel runs continuously (as

opposed to being triggered when the input is ready) so they can simulate constantly

reading and writing. The run loop tries to 1) write in new data if new data is available

and space is available in the buffer, 2) read out data if there is data available in the

buffer and the output is ready, 3) consume any tokens if they are available on the

input, and 4) generate any required tokens on the output. The run loop is shown in

Figure 6.5. For the simulator, the buffers are implemented in a brute-force manner

whereby the current frame for each element in the buffer is stored in a separate array,

thereby making it easy to check if an appropriate chunk of data or free space is

available for reading or writing. This makes it straight-forward to read out the end

of one frame while storing in the beginning of the next frame.

The difficulty of implementing the buffers comes from the different sizes and step

sizes of the input and output, and the desire to have a double-buffered input that

uses the available storage efficiently between lines and frames. By relaxing any of

these constraints the buffer could be implemented much more simply. Alternatively,

hardware support in the form of an appropriate DMA engine could be used to simplify

the implementation.

6.2 Insets

When an input to an application is processed through two different paths in the

application graph, the outputs of the two paths will differ in their iteration sizes if the

kernels along the two paths generate different output halos. This was demonstrated

in the differencing program in Figure 5.1. If the results of these two paths are then

used together as inputs to the same method, an application inconsistency occurs as

all inputs to a given method must have the same iteration size. The cause of this

inconsistency is that the method using both inputs (the “subtract” kernel in the

case of the differencing program) sees two input images of different sizes because the

kernels produce outputs of different sizes. (See Figure 5.2.)

86 CHAPTER 6. BUFFERS AND INSETS

Page 1 of 1

NewBufferKernel.java 1/23/08 4:50 PM

public void runBuffer() {
while (isRunning()) {

/*
 * As long as we are idle waiting for input just wait.
 */
while (isRunning() && !validToReadBuffer() &&

 !readyToReadData() && !readyToReadToken()) {
yield();

}

/*
 * Try to write into the buffer.
 */
boolean write = tryToWriteBuffer();

/*
 * Try to read a token from the input.
 */
boolean token = tryToReadToken();

/*
 * Try to read out from the buffer.
 * If this needs to generate an output token it will do so and try to
 * read in more data if it is blocked in sending the output token.
 */
boolean read = tryToReadBuffer();

/*
 * If we didn't do anything then yield, otherwise go around the loop again.
 */
if (!(write | read | token))

yield();
}

}

public void runBuffer() throws InterruptedException {
while (isRunning()) {

/*
 * As long as we are idle waiting for input just wait.
 */
while (isRunning() && !validToReadBuffer() &&

 !readyToReadData() && !readyToReadToken()) {
yield();

}

/*
 * Try to write into the buffer.
 */
boolean write = tryToWriteBuffer();

/*
 * Try to read a token from the input.
 */
boolean token = tryToReadToken();

/*
 * Try to read out from the buffer.
 * If this needs to generate an output token it will do so and try to
 * read in more data if it is blocked in sending the output token.
 */
boolean read = tryToReadBuffer();

Figure 6.5: Run loop for the BufferKernel
Note that this kernel is not Input-triggered, and therefore must explicitly yield to
other kernels if it is to be run in a time-multiplexed manner.

However, the logic of the program (“subtract these two intermediate results”) is

reasonable. Indeed the desired outcome is to realize that these two differently-sized

outputs are related such that throwing out the outer pixel border on the “conv3x3”

kernel’s output, or zero-padding the input to the “conv5x5” kernel, will produce the

correct (and desired) result. This fix is achieved by inserting an InsetKernel after

the “conv3x3” kernel that removes that border, or inserting a ZeroPadKernel before

the “conv5x5” kernel that enlarges the input sufficiently to produce valid outputs on

the border. Determining that this is the correct application modification requires an

additional data flow analysis that tracks where each application input is used and

how its coordinates and halo have been transformed by the kernels through which it

has passed.

6.2. INSETS 87

6.2.1 Data Flow Analysis for Insets

The data flow analysis for calculating insets is similar to the analysis in Chapter 5:

information regarding each DataInput is propagated through the application graph in

topological order, and updated at each Input and Output. However, unlike the frame

size, iteration size, and frame rate, the inset applies only to Inputs and Outputs. As

the data flow analysis is performed, the insets are updated from source Output to

sink Input, and then from method Input to method Output. For an application to

be consistent, the Inputs to a method that share a common ancestor Output must

have matching insets. If they do not, an InsetKernel is inserted after the kernel

or a ZeroPadKernel is inserted before the kernel to correct the Input’s inset4. In

the differencing program example the common ancestor Output is the “out” Output

from the “input” DataInput, which flows through both convolution kernels to the

“subtract” kernel.

Insets are represented as the number of pixels the data is inset from the ancestor

Output in each direction and scale factors for the x- and y-directions:

< ancestorOutput : (scalex, scaley)[left, top, right, bottom] > (6.5)

The scale factor accounts for kernels that change the relative size of an image, such

as downsampling. As an example, the inset for the Outputs from the “conv3x3” and

“conv5x5” kernels in the difference program (Figure 5.1) are < out : (1, 1)[1, 1, 1, 1] >

and < out : (1, 1)[2, 2, 2, 2] >, respectively. These correctly reflect the 1- and 2-pixel

wide halos relative to the ancestor Output “out” from the ancestor DataInput “input”

shown in Figure 5.2.

The inset data flow analysis begins by creating initial insets of < (1, 1)[0, 0, 0, 0] >

at the Outputs for all DataInputs to the application. From there they are propagated

through the application in a topological order. There are two transformations that

are applied to the insets. The first is from a source Output to a sink Input. This

4The decision as to whether to zero-pad or inset the data must be made by the programmer due to
its effect on the final output. The implementation presented here automatically inserts InsetKernels
as needed, but does not implement zero-padding.

88 CHAPTER 6. BUFFERS AND INSETS

transformation calculates the base inset at the sink Input, divides it by the inset scale

at the source Output, and then adds it to the inset from the source Output.

Inset calculation for the differencing program

From the difference program, the kernel’s sink Input to the “conv5x5” kernel has a

size of (5 × 5) with a step size of (1, 1), for a halo of (5 − 1 × 5 − 1) = (4 × 4).

To calculate the base inset for this Input, an offset (OX , OY) is needed to indicate

how the (4 × 4) halo (HX ×HY) is distributed. The base inset at the Input is then

calculated as:

insetbase = [OX , OY , HX −OX , HY −OY] (6.6)

The offset can be though of as specifying how the method’s Output is offset

from an Input. Figure 6.6 shows the effect of three different offsets for the Input to

the “conv5x5” kernel. Offsets are defined for Inputs when they are created and are

denoted as [x.x, y.y] in the application graph.5 For the difference program’s “conv5x5”

kernel with an offset of (2, 2), the base inset at the Input is then:

insetbase = [2, 2, 4− 2, 4− 2] = [2, 2, 2, 2] (6.7)

This is scaled by the source Output’s scale ((1, 1) in this case) and added to the

source Output’s inset of [0, 0, 0, 0], resulting in the inset of < out : (1, 1)[2, 2, 2, 2] >.

[2, 2, 2, 2] = [0, 0, 0, 0] + [
2

1
,
2

1
,
2

1
,
2

1
] (6.8)

The final Output → Input transformation is then:

inputinset = sourceOutputinset +
insetbase

sourceOutputscale

(6.9)

The second transformation that is applied during the inset analysis is from the

source Input to a method to its sink Output. As the step size and frame size are the

5Offsets have been omitted from most examples before this point for simplicity. The need for
fractional offsets will be discussed later.

6.2. INSETS 89

5x5 Convolution Kernel

Input: (5x5)[1,1]
Output: (1x1)

Offset to Output: 0,0

Offset to Output: 1,1

Offset to Output: 2,2

Offset to Output: 0,0

Offset to Output: 2,2

Offset to Output: 1,1

Figure 6.6: Offset example for a 5× 5 convolution kernel

same for an Output, its halo is necessarily (0 × 0). Therefore the only part of the

inset that changes is the scale, which is determined by dividing the step size of the

Output by the step size of the Input.

In the case of the difference application, this analysis concludes that the two

inputs to the “subtract” kernel have insets of < out : (1, 1)[1, 1, 1, 1] > and < out :

(1, 1)[2, 2, 2, 2] > and iteration sizes of (38 × 38) and (36 × 36). (See Figure 5.1.)

The inset data analysis makes it clear that to fix this inconsistency, an InsetKernel

needs to be inserted along the “conv3x3” path to inset the output by an additional

[1, 1, 1, 1] to bring them both to [2, 2, 2, 2]. Alternatively, a ZeroPadKernel needs to

be inserted before the “conv5x5” kernel to bring them both to [1, 1, 1, 1] by enlarging

the input image.

90 CHAPTER 6. BUFFERS AND INSETS

Input
out

(1x1)[1,1]

bayerIn
(6x2)[2,2]
[2.0,0.0]

h-bayerIn
(4x4)[2,2]
[1.0,1.0]

hG
hGout

(1x2)[1,2]

h-hGIn
(2x4)[1,2]
[0.5,1.0]

h
RGBout

(6x2)[6,2]

RGBIn
(3x1)[3,1]
[0.0,0.0]

hRGBIn
(3x1)[3,1]
[0.0,0.0]

vRGBIn
(3x1)[3,1]
[0.0,0.0]

hDiff
gammaBetaOut

(2x1)[2,1]

GammaBetaIn
(6x3)[2,1]
[2.0,1.0]

hGrad
HGradientOut

(2x1)[2,1]

hGammaBetaIn
(2x1)[2,1]
[0.0,0.0]

vGammaBetaIn
(2x1)[2,1]
[0.0,0.0]

select
finalRGBOut

(3x1)[3,1]
in

(216x76)[216,76]
[0.0,0.0]

Output

runGradient:It:16x16@16/s:
Image: 8.0x20.0

It:7x9@4/s:
<out:(1/2,1)[3,1,3,1]>

Image: 36.0x18.0
It:16x16@16/s:

<out:(2,1)[4,2,4,2]>

Image: 20.0x20.0
It:9x9@4/s:

<out:(1,1)[1,1,1,1]>

Image: 32.0x16.0
It:16x16@16/s:

<out:(2,1)[4,2,4,2]>

Image: 54.0x18.0
It:18x18@16/s:

<out:(3,1)[4,2,4,2]>

Image: 54.0x18.0
It:1/4x0.2368@342/s:
<out:(3,1)[4,2,4,2]>

Image: 54.0x18.0
It:18x18@16/s:

<out:(3,1)[3,1,3,1]>

Image: 32.0x16.0
It:16x16@16/s:

<out:(2,1)[4,2,4,2]>

Image: 20.0x20.0
It:8x10@4/s:

<out:(1,1)[2,0,2,0]>

Image: 32.0x16.0
It:16x16@16/s:

<out:(2,1)[4,2,4,2]>

Image: 36.0x18.0
It:18x18@16/s:

<out:(2,1)[3,1,3,1]>

Image: 54.0x18.0
It:18x18@16/s:

<out:(3,1)[3,1,3,1]>

Image: 8.0x20.0
It:8x10@4/s:

<out:(1/2,1)[2,0,2,0]>

runHg:It:8x10@4/s:

INVALID

init:((It:0x0@?/s:))
consume:It:1/4x0.2368@342/s:

Image: 20.0x20.0
It:20x20@16/s:

<out:(1,1)[0,0,0,0]>

Image: 54.0x18.0
It:18x18@16/s:

<out:(3,1)[3,1,3,1]>

INVALID

runDifference:It:18x18@16/s:

Figure 6.7: Bayer demosaicing program inconsistency
The [2.0, 0.0], [0.5, 1.0], and [1.0, 1.0] values in each Input are the offsets from that
Input to the kernel’s Output.

Inset calculation for the Bayer demosaicing program

A more complicated example from a Bayer demosaicing application is shown in Figure

6.7. This application demonstrates a similar problem with insets as the differencing

program whereby the two inputs to the “h” kernel have different iteration sizes and

insets, thereby rendering the application invalid. In addition, this example demon-

strates how scaling comes into play with insets and how fractional offsets may be

required to properly define an Input. To analyze this program, the data flow anal-

ysis first proceeds along the top half of the graph (“out” → “bayerIn” → “hG” →
“hGout” → “h-hGIn” → “h”) and then the bottom half (“out” → “h-bayerIn” →
“h”).

The inset calculations for the top half of the application, through the “hG” kernel,

are shown in Figure 6.8. The calculation starts at the Input “bayerIn” to the “hG”

kernel. Here the inset from the source is < out : (1, 1)[0, 0, 0, 0] > and the base inset

for the Input is < (1, 1)[2, 0, 2, 0] > because the Input has a halo of (4 × 0) and an

offset of (2.0, 0.0), which gives insetbase = [2, 0, 4 − 2, 0 − 0] = [2, 0, 2, 0]. The final

inset for the Input is then < out : (1, 1)[2, 0, 2, 0] >, which is then propagated through

the “hGout” Output. As this is a propagation from and Input → Output, only the

scale changes. Here the scale is the Output step size divided by the Input step size, or

(1÷2, 1÷1) = (0.5, 1.0). This scale is then used at the next point when adding the base

6.2. INSETS 91

inset from the “h-hGIn” Output to the inset at the “hGout”. This changes the “h-

hGIn’s” base inset from < (1, 1)[0.5, 1, 0.5, 1] > to < (0.5, 1)[1, 1, 1, 1] >, which is then

added to the inset coming into the Input for the final result of < (0.5, 1)[3, 1, 3, 1] >.

The iteration size, which is closely related to the inset, is (7× 9).

hG

bayerIn
(6x2)[2,2]
[2.0,0.0]

hGout
(1x2)[1,2]

h-hGIn
(2x4)[1,2]
[0.5,1.0]

Image: 8.0x20.0
It:7x9@4/s:

<out:(1/2,1)[3,1,3,1]>

Image: 20.0x20.0
It:8x10@4/s:

<out:(1,1)[2,0,2,0]>

Image: 8.0x20.0
It:8x10@4/s:

<out:(1/2,1)[2,0,2,0]>

runHg:It:8x10@4/s:

bayerIn (6x2)[2,2][2.0,0.0] hGout (1x2) h-hGIn (2x4)[1,2][0.5,1.0]

Halo (4x0) Halo (0x0) Halo (1x2)

Base Inset [2,0,2,0] Base Inset [0,0,0,0] Base Inset [0.5, 1, 0.5, 1]

Scale Change (1,1) Scale Change (0.5,1) Scale Change (1,1)

Base Inset [2 , 0 , 2 , 0] Base Inset [0 , 0 , 0 , 0] Base Inset [0.5 , 1 , 0.5 , 1]

Source Scale ÷ (1 , 1 , 1 , 1) Source Scale ÷ (1 , 1 , 1 , 1) Source Scale ÷ (0.5 , 1 , 0.5 , 1)

[2 , 0 , 2 , 0] [0 , 0 , 0 , 0] [1 , 1 , 1 , 1]

Source Output + [0 , 0 , 0 , 0] Source Output + [2 , 0 , 2 , 0] Source Output + [2 , 0 , 2 , 0]

Final Inset [2 , 0 , 2 , 0] Final Inset [2 , 0 , 2 , 0] Final Inset [3 , 1 , 3 , 1]

Final Scale (1 , 1) Final Scale (0.5 , 1) Final Scale (0.5 , 1)

(Iteration size: 8x10) (Iteration size: 8x10) (Iteration size: 7x9)

Figure 6.8: Bayer “hG” kernel inset calculations
The data flow calculation proceeds from left-to-right, with the result of the first
calculation feeding into the next one as the “Source Output”. The calculations follow
the transformations discussed in the text.

Note that the “h” kernel’s “h-hGIn” input has an offset of [0.5, 1.0]. This fractional

offset is necessary because the kernel before it, “hG”, effectively downsampled its

output relative to the input. This can be seen by observing that the output step

size for the “hG” kernel is (1, 2) while its input step size is (2, 2). The 0.5 offset

ends up being divided by the 0.5 scale to produce the correct result. Graphically this

downsampling is shown in Figure 6.9, where the output is shown to be half as wide as

the input. The fractional offset here is required to make the application consistent,

and must, unfortunately, be manually entered by the programmer. The insets can

not be automatically calculated as they are determined by how the generated data is

related to the input data, which is a function of how the kernel has been implemented.

The lower path in Figure 6.7 is through the “h-bayerIn” Output. This path’s

calculations are shown in Figure 6.10. The calculation here is much simpler, and

92 CHAPTER 6. BUFFERS AND INSETS

Bayer hG Kernel

Input: (6x2)[2,2]

Offset to Output: 0,0 Offset to Output: 0,0

Output: (1x2)

Offset to Output: 1,0

Offset to Output: 2,0

Offset to Output: 1,0

Offset to Output: 2,2

Figure 6.9: Offset example for the Bayer hG kernel
Note that the Output has a scale factor of (0.5, 1) relative to the Input, which leads
to the output frame size being half that of the Input.

reveals that the the inset after the “g-bayerIn” kernel is < out : (1, 1)[1, 1, 1, 1] > and

the iteration size is (9 × 9). As can be seen from the analysis, this results in two

inconsistent Inputs at the “h” kernel. However, while it is much less clear why this

inconsistency occurs than in the simpler differencing example, the solution is similarly

clear from the analysis as it was in the differencing program: insert an InsetKernel

with inset [2, 0, 2, 0] to bring both insets to [3, 1, 3, 1]. The calculation after adding

such an InsetKernel is shown in Figure 6.11.

Note that scaling also comes into play when determining if two Inputs to a method

are consistent. Adding a [2, 0, 2, 0] inset to the bottom path in the aforementioned

application will result in the top path having an inset of < out : (0.5, 1)[3, 1, 3, 1] >

while the bottom one has a scale of < out : (1, 1)[3, 1, 3, 1] >. (See Figure 6.14(a).)

6.2. INSETS 93

This requires that the analysis to determine if the Inputs are consistent scale the

Input’s step size by the inset scale when comparing them. In this example, the upper

path’s setph size of 1 is scaled by (divided by) 1
2

which matches the lower path’s step

size of 2 scaled by 1.

6.2.2 Zero Padding

A standard method for dealing with differing insets between two kernels’ Outputs is

to zero-pad the input to the smaller of the two rather than throw out the data from

the larger. This approach keeps the frame size the same by adding dummy data as

needed, as shown in Figure 6.12. The data analysis required to zero pad is the same

as that required to insert InsetKernels. The difference is that ZeroPadding kernels

are placed before the kernel with the smaller output, rather than after the kernel with

the larger output.

ZeroPadding kernels can take advantage of the end-of-frame and end-of-line Control-

Tokens to know when to generate zeros on their outputs vs. passing through the data

they receive. As their Output frame size is not merely their iteration size times

their Output size (due to the addition of the zero padding), they must implement

h-bayerIn (4x4)[2,2][1.0,1.0]

Halo (2x2)

Base Inset [1,1,1,1]

Scale Change (1,1)

Base Inset [1 , 1 , 1 , 1]

Source Scale ÷ (1 , 1 , 1 , 1)

[1 , 1 , 1 , 1]

Source Output + [0 , 0 , 0 , 0]

Final Inset [1 , 1 , 1 , 1]

Final Scale (1 , 1)

(Iteration size: 9x9)

out
(1x1)[1,1]

h-bayerIn
(4x4)[2,2]
[1.0,1.0]

Image: 20.0x20.0
It:9x9@4/s:

<out:(1,1)[1,1,1,1]>

Image: 20.0x20.0
It:20x20@16/s:

<out:(1,1)[0,0,0,0]>

Figure 6.10: Bayer “h-bayerIn” Input inset calculations

94 CHAPTER 6. BUFFERS AND INSETS

h-bayerIn
(4x4)[2,2]
[1.0,1.0]

in
(5x1)[1,1]
[2.0,0.0]

out
(1x1)[1,1]

Image: 16.0x20.0
It:7x9@4/s:

<out:(1,1)[3,1,3,1]>

runReduction:It:16x20@16/s:
init:((It:0x0@?/s:))

Image: 20.0x20.0
It:16x20@16/s:

<out:(1,1)[2,0,2,0]>

Image: 16.0x20.0
It:16x20@16/s:

<out:(1,1)[2,0,2,0]>

in (5x1)[1,1][2.0,2.0] out h-bayerIn

Halo (4x0) Halo Halo

Base Inset [2,0,2,0] Base Inset Base Inset

Scale Change (1,1) Scale Change Scale Change

Base Inset [2 , 0 , 2 , 0] Base Inset [0 , 0 , 0 , 0] Base Inset [1 , 1 , 1 , 1]

Source Scale ÷ (1 , 1 , 1 , 1) Source Scale ÷ (1 , 1 , 1 , 1) Source Scale ÷ (1 , 1 , 1 , 1)

[2 , 0 , 2 , 0] [0 , 0 , 0 , 0] [1 , 1 , 1 , 1]

Source Output + [0 , 0 , 0 , 0] Source Output + [2 , 0 , 2 , 0] Source Output + [2 , 0 , 2 , 0]

Final Inset [2 , 0 , 2 , 0] Final Inset [2 , 0 , 2 , 0] Final Inset [3 , 1 , 3 , 1]

Final Scale (1 , 1) Final Scale (1 , 1 Final Scale (1 , 1

(Iteration size: 16x20) (Iteration size: 16x20) (Iteration size: 7x9)

)

(1x1)

(0x0)

[0,0,0,0]

(1,1)

)

(4x4)[2,2][1.0,1.0]

(2x2)

[1,1,1,1]

(1,1)

offset(h-bayerIn)
(0,0)[2,0,2,0]

Figure 6.11: Bayer “h-bayerIn” Input inset calculations with appropriate InsetKernel
With the addition of this InsetKernel, the inset and iteration size now match that of
the upper path, as is seen in Figure 6.9.

an appropriate transfer function for the data analysis discussed in Chapter 5. When

executing, ZeroPadding kernels simply keep track of their state based on receiving

data and control tokens.

6.3 Automatic Insertion of Buffers and Insets

The data flow analysis presented here and in Chapter 5 enable the compilation sys-

tem to automatically insert BufferKernels and InsetKernels/ZeroPadKernels to cor-

rect the inconsistencies discussed here. The procedure for inserting the buffers and

insets starts by inserting InsetKernels. This is accomplished by analyzing the appli-

cation’s insets until inconsistent node is encountered. At that point, an appropriate

InsetKernel is inserted to correct the inconsistency. The analysis is then restarted

and repeated until no more insert inconsistencies are found. The application is then

similarly analyzed for buffering, and appropriately-sized BufferKernels are inserted

as needed. Since the addition of BufferKernels can change the insets in the applica-

tion, this pattern of inserting insets and buffers is repeated until the application is

6.3. AUTOMATIC INSERTION OF BUFFERS AND INSETS 95

3x3 Convolution Kernel Input 3x3 Convolution Kernel Output

5x5 Convolution Kernel Input, Padded 5x5 Convolution Kernel Output

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3x3 and 5x5 Outputs Aligned

Figure 6.12: Adjusting insets by zero-padding inputs.
Zero-padding the Input to the 5× 5 convolution kernel results in both kernels having
the same output size. This method is similar to the removing the additional data
generated by the 3× 3 convolution kernel as seen in Figure 5.2.

consistent.

The results of automatically analyzing and inserting InsetKernel as needed for the

differencing program can be seen in Figure 6.13(a). Automatically inserted kernels are

shaded pink. As expected from Section 6.2.1, a [1,1,1,1] InsetKernel (“offset(in0)”)

has been added after the “conv3x3” kernel, resulting in the both Inputs to the “sub-

tract” kernel having insets of < out : (1, 1)[2, 2, 2, 2] >, and consistent iteration sizes

of (36× 36).

The automatic insertion of buffers (Figure 6.13(b)) similarly does what one would

expect, and adds buffers before both the “conv3x3” and “conv5x5” kernels to buffer

enough lines of the (1 × 1) input chunks to output data in the required (3 × 3)

and (5 × 5) chunks required by the kernels. In addition, a buffer is added after the

“conv3x3” kernel to supply the required (3×3) input chunks to the InsetKernel. This

is inefficient, but correct6. The full program graph after inset and buffer insertion is

6A more efficient implementation would move the InsetKernel close to the beginning of the

96 CHAPTER 6. BUFFERS AND INSETS

shown in Figure 6.13(c). This application is complete, consistent, and executable.

The Bayer demosaicing application is shown in Figure 6.14(a) after inset insertion.

As expected, a [2, 0, 2, 0] InsetKernel has been added to the lower branch to bring the

[1, 1, 1, 1] inset up to [3, 1, 3, 1] to match the top branch. Note that the scales of the

Inputs to the “h” kernel, however, do not match. The “h-hGIn” Input has a scale of

[0.5, 1.0] and the “h-bayerIn” Input is [1.0, 1.0]. This is addressed by comparing the

step size divided by the scale to determine if the inset’s scales match rather than the

raw scale. This results in both having effective scales of 2, which is consistent.

Inserting buffers into the Bayer application (Figure 6.14(b)) results in a very

similar structure to that seen in the differencing program. Once the buffers and insets

have been inserted (Figure 6.14(c)), the application is consistent and executable.

6.4 Discussion

Buffer sizing for one-dimensional sdf applications is a well-studied problem. In

particular, there is a tradeoff between the size of the schedule and the minimum

steady-state buffering required between kernels [5, 33]7. StreamIt inserts buffers im-

plicitly at compilation, instead of representing them as kernels and inserting them

into the application. This makes the application description less general as there is

implicit buffering hidden in the structure. It is claimed that the memory sizes for

the buffers generated by StreamIt are sufficiently small to fit on-chip, but they are

mapped into off-chip memory for simplicity [15]. For streaming languages with only

one-dimensional stream types, buffering tends to be sub-optimal for two-dimensional

data as the compiler does not have full information about the stream access pat-

terns. StreamC/KernelC is somewhat of a hybrid in this regard because the stride

information for derived streams provides some information to the compiler when

multi-dimensional data is mapped to one-dimensional streams.

application as possible to minimize the computation, rather than throwing out computed results as
is demonstrated here. Either provide correct application execution, however.

7The work on minimum steady-state buffer sizing is directly applicable here, but the use of buffers
to adapt different input and output sizes often subsumes this role. In cases where it does not, more
traditional buffer size analysis may be required.

6.4. DISCUSSION 97

in
p
u
t

o
u
t

(1
x
1
)[

1
,1

]

in
(3

x
3
)[

1
,1

]
[1

.0
,1

.0
]

in
(5

x
5
)[

1
,1

]
[2

.0
,2

.0
]

co
n

v
3

x
3

o
u
t

(1
x
1
)[

1
,1

]
in

(3
x
3
)[

1
,1

]
[1

.0
,1

.0
]

co
n

v
5

x
5

o
u
t

(1
x
1
)[

1
,1

]

in
1

(1
x
1
)[

1
,1

]
[0

.0
,0

.0
]

su
b

tr
ac

t
o
u
t

(1
x
1
)[

1
,1

]

in
0

(1
x
1
)[

1
,1

]
[0

.0
,0

.0
]

in
(2

x
2
)[

2
,2

]
[0

.0
,0

.0
]

d
o

w
n

2
x

2
o
u
t

(1
x
1
)[

1
,1

]
in

(1
x
1
)[

1
,1

]
[0

.0
,0

.0
]

O
u
tp

u
t

o
ff

se
t(

in
0
)

(0
,0

)[
1
,1

,1
,1

]
o
u
t

(1
x
1
)[

1
,1

]

Im
ag

e:
 1

8
.0

x
1

8
.0

It
:1

8
x

1
8

@
1

5
.6

2
/s

:
<

o
u

t:
(1

/2
,1

/2
)[

2
,2

,2
,2

]>

Im
ag

e:
 3

6
.0

x
3

6
.0

It
:3

6
x

3
6

@
6

2
.5

/s
:

<
o

u
t:

(1
,1

)[
2

,2
,2

,2
]>

in
it

:(
(I

t:
0

x
0

@
?/

s:
))

su
b

tr
ac

t:
It

:3
6

x
3

6
@

6
2

.5
/s

:

Im
ag

e:
 3

6
.0

x
3

6
.0

It
:3

6
x

3
6

@
6

2
.5

/s
:

<
o

u
t:

(1
,1

)[
2

,2
,2

,2
]>

in
it

:(
(I

t:
0

x
0

@
?/

s:
))

ru
n

D
o

w
n

sa
m

p
le

:I
t:

1
8

x
1

8
@

1
5

.6
2

/s
:

Im
ag

e:
 3

8
.0

x
3

8
.0

It
:3

8
x

3
8

@
6

2
.5

/s
:

<
o

u
t:

(1
,1

)[
1

,1
,1

,1
]>

Im
ag

e:
 4

0
.0

x
4

0
.0

It
:3

8
x

3
8

@
6

2
.5

/s
:

<
o

u
t:

(1
,1

)[
1

,1
,1

,1
]>

Im
ag

e:
 3

6
.0

x
3

6
.0

It
:1

8
x

1
8

@
1

5
.6

2
/s

:
<

o
u

t:
(1

,1
)[

2
,2

,2
,2

]>

ru
n

R
ed

u
ct

io
n

:I
t:

3
6

x
3

6
@

6
2

.5
/s

:
in

it
:(

(I
t:

0
x

0
@

?/
s:

))

Im
ag

e:
 4

0
.0

x
4

0
.0

It
:4

0
x

4
0

@
6

2
.5

/s
:

<
o

u
t:

(1
,1

)[
0

,0
,0

,0
]>

Im
ag

e:
 3

6
.0

x
3

6
.0

It
:3

6
x

3
6

@
6

2
.5

/s
:

<
o

u
t:

(1
,1

)[
2

,2
,2

,2
]>

Im
ag

e:
 1

8
.0

x
1

8
.0

It
:1

8
x

1
8

@
1

5
.6

2
/s

:
<

o
u

t:
(1

/2
,1

/2
)[

2
,2

,2
,2

]>

lo
ad

C
o

ef
f:

It
:1

x
1

@
1

/s
:

in
it

:(
(I

t:
0

x
0

@
?/

s:
))

ru
n

C
o

n
v

o
lv

e:
It

:3
6

x
3

6
@

6
2

.5
/s

:

Im
ag

e:
 3

6
.0

x
3

6
.0

It
:3

6
x

3
6

@
6

2
.5

/s
:

<
o

u
t:

(1
,1

)[
2

,2
,2

,2
]>

in
it

:(
(I

t:
0

x
0

@
?/

s:
))

co
n

su
m

e:
It

:1
8

x
1

8
@

1
5

.6
2

/s
:

lo
ad

C
o

ef
f:

It
:1

x
1

@
1

/s
:

in
it

:(
(I

t:
0

x
0

@
?/

s:
))

ru
n

C
o

n
v

o
lv

e:
It

:3
8

x
3

8
@

6
2

.5
/s

:

Im
ag

e:
 3

8
.0

x
3

8
.0

It
:3

6
x

3
6

@
6

2
.5

/s
:

<
o

u
t:

(1
,1

)[
2

,2
,2

,2
]>

Im
ag

e:
 4

0
.0

x
4

0
.0

It
:3

6
x

3
6

@
6

2
.5

/s
:

<
o

u
t:

(1
,1

)[
2

,2
,2

,2
]>

(a
)

D
iff

er
en

ce
pr

og
ra

m
w

it
h

da
ta

flo
w

an
al

ys
is

an
d

In
se

tK
er

ne
ls

(fi
rs

t
ha

lf
en

la
rg

em
en

t)

In
pu

t
ou

t
(1

x1
)[1

,1
]

in
(1

x1
)[1

,1
]

[0
.0

,0
.0

]

in
(1

x1
)[1

,1
]

[0
.0

,0
.0

]

co
nv

3x
3

ou
t

(1
x1

)[1
,1

]
in

(3
x3

)[1
,1

]
[1

.0
,1

.0
]

in
(1

x1
)[1

,1
]

[0
.0

,0
.0

]

co
nv

5x
5

ou
t

(1
x1

)[1
,1

]
in

(5
x5

)[1
,1

]
[2

.0
,2

.0
]

in
1

(1
x1

)[1
,1

]
[0

.0
,0

.0
]

su
bt

ra
ct

ou
t

(1
x1

)[1
,1

]

in
0

(1
x1

)[1
,1

]
[0

.0
,0

.0
]

in
(1

x1
)[1

,1
]

[0
.0

,0
.0

]
do

w
n2

x2
ou

t
(1

x1
)[1

,1
]

in
(2

x2
)[2

,2
]

[0
.0

,0
.0

]

in
(1

x1
)[1

,1
]

[0
.0

,0
.0

]
O

ut
pu

t

of
fs

et
(in

0)
(0

,0
)[1

,1
,1

,1
]

ou
t

(1
x1

)[1
,1

]
in

(3
x3

)[1
,1

]
[1

.0
,1

.0
]

in
pu

t.o
ut

 to
 c

on
v3

x3
.in

(1
x1

)[1
,1

]--
>(

3x
3)

[1
,1

] (
0)

bu
ffe

r[2
4x

6]
()

ou
t

(3
x3

)[1
,1

]

in
pu

t.o
ut

 to
 c

on
v5

x5
.in

(1
x1

)[1
,1

]--
>(

5x
5)

[1
,1

] (
0)

bu
ffe

r[2
4x

10
]()

ou
t

(5
x5

)[1
,1

]

co
nv

3x
3.

ou
t t

o
of

fs
et

(in
0)

.in
(1

x1
)[1

,1
]--

>(
3x

3)
[1

,1
] (

0)
bu

ffe
r[2

2x
6]

()

ou
t

(3
x3

)[1
,1

]
su

bt
ra

ct
.o

ut
 to

 d
ow

n2
x2

.in
(1

x1
)[1

,1
]--

>(
2x

2)
[2

,2
] (

0)
bu

ffe
r[2

0x
4]

()

ou
t

(2
x2

)[2
,2

]

(b
)

D
iff

er
en

ce
pr

og
ra

m
w

it
h

In
se

tK
er

ne
ls

an
d

B
uff

er
K

er
ne

ls
(fi

rs
t

ha
lf

en
la

rg
em

en
t)

In
pu

t

in
pu

t.o
ut

 to
 c

on
v3

x3
.in

(1
x1

)[1
,1

]--
>(

3x
3)

[1
,1

] (
0)

bu
ffe

r[2
4x

6]
()

in
pu

t.o
ut

 to
 c

on
v5

x5
.in

(1
x1

)[1
,1

]--
>(

5x
5)

[1
,1

] (
0)

bu
ffe

r[2
4x

10
]()

co
nv

3x
3

co
nv

3x
3.

ou
t t

o
of

fs
et

(in
0)

.in
(1

x1
)[1

,1
]--

>(
3x

3)
[1

,1
] (

0)
bu

ffe
r[2

2x
6]

()

co
nv

5x
5

su
bt

ra
ct

su
bt

ra
ct

.o
ut

 to
 d

ow
n2

x2
.in

(1
x1

)[1
,1

]--
>(

2x
2)

[2
,2

] (
0)

bu
ffe

r[2
0x

4]
()

do
w

n2
x2

O
ut

pu
t

3x
3

Co
ef

f

5x
5

Co
ef

f

of
fs

et
(in

0)
(0

,0
)[1

,1
,1

,1
]

(c
)

Fu
ll

di
ffe

re
nc

e
pr

og
ra

m
w

it
h

In
se

tK
er

ne
ls

an
d

B
uff

er
K

er
ne

ls
(s

im
pl

ifi
ed

ap
pl

ic
at

io
n

gr
ap

h)

F
ig

u
re

6.
13

:
D

iff
er

en
ce

p
ro

gr
am

w
it

h
In

se
tK

er
n
el

s
an

d
B

u
ff

er
K

er
n
el

s
N

ot
e

th
at

6.
13

(c
)

in
cl

u
d
es

th
e

in
p
u
ts

fo
r

th
e

co
effi

ci
en

ts
to

th
e

co
n
vo

lu
ti

on
fi
lt

er
s.

98 CHAPTER 6. BUFFERS AND INSETS

In
p
u
t

o
u
t

(1
x
1
)[1

,1
]

b
ay

erIn
(6

x
2
)[2

,2
]

[2
.0

,0
.0

]

in
(5

x
1
)[1

,1
]

[2
.0

,0
.0

]

h
G

h
G

o
u
t

(1
x
2
)[1

,2
]

h
-h

G
In

(2
x
4
)[1

,2
]

[0
.5

,1
.0

]

h
R

G
B

o
u
t

(6
x
2
)[6

,2
]

h
-b

ay
erIn

(4
x
4
)[2

,2
]

[1
.0

,1
.0

]

R
G

B
In

(3
x
1
)[3

,1
]

[0
.0

,0
.0

]

in
(7

x
3
)[1

,1
]

[3
.0

,1
.0

]

in
(7

x
3
)[1

,1
]

[3
.0

,1
.0

]

h
D

iff
g
am

m
aB

etaO
u
t

(2
x
1
)[2

,1
]

G
am

m
aB

etaIn
(6

x
3
)[2

,1
]

[2
.0

,1
.0

]
h
G

rad
H

G
rad

ien
tO

u
t

(2
x
1
)[2

,1
]

h
G

am
m

aB
etaIn

(2
x
1
)[2

,1
]

[0
.0

,0
.0

]

v
G

am
m

aB
etaIn

(2
x
1
)[2

,1
]

[0
.0

,0
.0

]

select
fi

n
alR

G
B

O
u
t

(3
x
1
)[3

,1
]

h
R

G
B

In
(3

x
1
)[3

,1
]

[0
.0

,0
.0

]

v
R

G
B

In
(3

x
1
)[3

,1
]

[0
.0

,0
.0

]
in

(2
1
6
x
7
6
)[2

1
6
,7

6
]

[0
.0

,0
.0

]

V
erify

:d
ataO

u
t[2

1
6
x
7
6
]

m
atlab

/b
ay

er_
sp

lit/fi
n
alR

G
B

O
u
t.tx

t

o
ffset(h

-b
ay

erIn
)

(0
,0

)[2
,0

,2
,0

]
o
u
t

(1
x
1
)[1

,1
]

o
ffset(v

R
G

B
In

)
(0

,0
)[3

,1
,3

,1
]

o
u
t

(1
x
1
)[1

,1
]

o
ffset(h

R
G

B
In

)
(0

,0
)[3

,1
,3

,1
]

o
u
t

(1
x
1
)[1

,1
]

ru
n
G

rad
ien

t:It:1
2
x
1
6
@

1
6
/s:

ru
n
R

ed
u
ctio

n
:It:3

6
x
1
6
@

4
8
/s:

in
it:((It:0

x
0
@

?/s:))

Im
ag

e: 2
8
.0

x
1
8
.0

It:1
2
x
1
6
@

1
6
/s:

<
o
u
t:(2

,1
)[4

,2
,4

,2
]>

Im
ag

e: 8
.0

x
2
0
.0

It:7
x
9
@

4
/s:

<
o
u
t:(1

/2
,1

)[3
,1

,3
,1

]>
Im

ag
e: 2

4
.0

x
1
6
.0

It:1
2
x
1
6
@

1
6
/s:

<
o
u
t:(2

,1
)[4

,2
,4

,2
]>

Im
ag

e: 1
6
.0

x
2
0
.0

It:7
x
9
@

4
/s:

<
o
u
t:(1

,1
)[3

,1
,3

,1
]>

Im
ag

e: 4
2
.0

x
1
8
.0

It:3
6
x
1
6
@

4
8
/s:

<
o
u
t:(3

,1
)[4

,2
,4

,2
]>

Im
ag

e: 2
0
.0

x
2
0
.0

It:8
x
1
0
@

4
/s:

<
o
u
t:(1

,1
)[2

,0
,2

,0
]>

Im
ag

e: 2
8
.0

x
1
8
.0

It:1
4
x
1
8
@

1
6
/s:

<
o
u
t:(2

,1
)[3

,1
,3

,1
]>

Im
ag

e: 2
4
.0

x
1
6
.0

It:1
2
x
1
6
@

1
6
/s:

<
o
u
t:(2

,1
)[4

,2
,4

,2
]>

Im
ag

e: 8
.0

x
2
0
.0

It:8
x
1
0
@

4
/s:

<
o
u
t:(1

/2
,1

)[2
,0

,2
,0

]>

Im
ag

e: 4
2
.0

x
1
8
.0

It:1
4
x
1
8
@

1
6
/s:

<
o
u
t:(3

,1
)[3

,1
,3

,1
]>

ru
n
S

electio
n
:It:1

2
x
1
6
@

1
6
/s:

in
it:((It:0

x
0
@

?/s:))

ru
n
R

ed
u
ctio

n
:It:3

6
x
1
6
@

4
8
/s:

in
it:((It:0

x
0
@

?/s:))

ru
n
R

ed
u
ctio

n
:It:1

6
x
2
0
@

1
6
/s:

in
it:((It:0

x
0
@

?/s:))
Im

ag
e: 3

6
.0

x
1
6
.0

It:1
2
x
1
6
@

1
6
/s:

<
o
u
t:(3

,1
)[4

,2
,4

,2
]>

Im
ag

e: 4
2
.0

x
1
8
.0

It:3
6
x
1
6
@

4
8
/s:

<
o
u
t:(3

,1
)[4

,2
,4

,2
]>

ru
n
H

o
rizo

n
tal:It:7

x
9
@

4
/s:

ru
n
D

ifferen
ce:It:1

4
x
1
8
@

1
6
/s:

Im
ag

e: 3
6
.0

x
1
6
.0

It:1
2
x
1
6
@

1
6
/s:

<
o
u
t:(3

,1
)[4

,2
,4

,2
]>

Im
ag

e: 3
6
.0

x
1
6
.0

It:1
/6

x
0
.2

1
0
5
@

3
4
2
/s:

<
o
u
t:(3

,1
)[4

,2
,4

,2
]>

Im
ag

e: 3
6
.0

x
1
6
.0

It:1
2
x
1
6
@

1
6
/s:

<
o
u
t:(3

,1
)[4

,2
,4

,2
]>

Im
ag

e: 2
4
.0

x
1
6
.0

It:1
2
x
1
6
@

1
6
/s:

<
o
u
t:(2

,1
)[4

,2
,4

,2
]>

Im
ag

e: 3
6
.0

x
1
6
.0

It:3
6
x
1
6
@

4
8
/s:

<
o
u
t:(3

,1
)[4

,2
,4

,2
]>

ru
n
H

g
:It:8

x
1
0
@

4
/s:

Im
ag

e: 3
6
.0

x
1
6
.0

It:3
6
x
1
6
@

4
8
/s:

<
o
u
t:(3

,1
)[4

,2
,4

,2
]>

Im
ag

e: 2
0
.0

x
2
0
.0

It:1
6
x
2
0
@

1
6
/s:

<
o
u
t:(1

,1
)[2

,0
,2

,0
]>

in
it:((It:0

x
0
@

?/s:))
co

n
su

m
e:It:1

/6
x
0
.2

1
0
5
@

3
4
2
/s:

Im
ag

e: 1
6
.0

x
2
0
.0

It:1
6
x
2
0
@

1
6
/s:

<
o
u
t:(1

,1
)[2

,0
,2

,0
]>

Im
ag

e: 2
0
.0

x
2
0
.0

It:2
0
x
2
0
@

1
6
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

(a)
B

ayer
program

w
ith

data
flow

analysis
and

InsetK
ernels

(first
half

enlargem
ent)

In
p

u
t

o
u
t

(1
x
1
)[1

,1
]

in
(1

x
1
)[1

,1
]

[0
.0

,0
.0

]

in
(1

x
1
)[1

,1
]

[0
.0

,0
.0

]

h
G

h
G

o
u
t

(1
x
2
)[1

,2
]

b
ay

erIn
(6

x
2
)[2

,2
]

[2
.0

,0
.0

]

in
(1

x
2
)[1

,2
]

[0
.0

,0
.0

]

h
R

G
B

o
u
t

(6
x
2
)[6

,2
]

h
-b

ay
erIn

(4
x
4
)[2

,2
]

[1
.0

,1
.0

]

h
-h

G
In

(2
x
4
)[1

,2
]

[0
.5

,1
.0

]

in
(6

x
2
)[6

,2
]

[0
.0

,0
.0

]

in
(6

x
2
)[6

,2
]

[0
.0

,0
.0

]

in
(6

x
2
)[6

,2
]

[0
.0

,0
.0

]

h
D

iff
g
am

m
aB

etaO
u
t

(2
x
1
)[2

,1
]

R
G

B
In

(3
x
1
)[3

,1
]

[0
.0

,0
.0

]

in
(2

x
1
)[2

,1
]

[0
.0

,0
.0

]
h
G

rad
H

G
rad

ien
tO

u
t

(2
x
1
)[2

,1
]

G
am

m
aB

etaIn
(6

x
3
)[2

,1
]

[2
.0

,1
.0

]

h
G

am
m

aB
etaIn

(2
x
1
)[2

,1
]

[0
.0

,0
.0

]

v
G

am
m

aB
etaIn

(2
x
1
)[2

,1
]

[0
.0

,0
.0

]

select
fi

n
alR

G
B

O
u
t

(3
x
1
)[3

,1
]

h
R

G
B

In
(3

x
1
)[3

,1
]

[0
.0

,0
.0

]

v
R

G
B

In
(3

x
1
)[3

,1
]

[0
.0

,0
.0

]

in
(3

x
1
)[3

,1
]

[0
.0

,0
.0

]
O

u
tp

u
t

o
ffset(h

-b
ay

erIn
)

(0
,0

)[2
,0

,2
,0

]
o
u
t

(1
x
1
)[1

,1
]

in
(5

x
1
)[1

,1
]

[2
.0

,0
.0

]

in
(1

x
1
)[1

,1
]

[0
.0

,0
.0

]

o
ffset(h

R
G

B
In

)
(0

,0
)[3

,1
,3

,1
]

o
u
t

(1
x
1
)[1

,1
]

in
(7

x
3
)[1

,1
]

[3
.0

,1
.0

]

in
(1

x
1
)[1

,1
]

[0
.0

,0
.0

]

o
ffset(v

R
G

B
In

)
(0

,0
)[3

,1
,3

,1
]

o
u
t

(1
x
1
)[1

,1
]

in
(7

x
3
)[1

,1
]

[3
.0

,1
.0

]

in
(1

x
1
)[1

,1
]

[0
.0

,0
.0

]

b
ay

er.o
u

t to
 h

G
.b

ay
erIn

(1
x

1
)[1

,1
]-->

(6
x

2
)[2

,2
] (0

)
b

u
ffer[2

0
x

4
]()

o
u
t

(6
x
2
)[2

,2
]

b
ay

er.o
u

t to
 o

ffset(h
-b

ay
erIn

).in
(1

x
1

)[1
,1

]-->
(5

x
1

)[1
,1

] (0
)

b
u

ffer[6
x

1
]()

o
u
t

(5
x
1
)[1

,1
]

h
G

.h
G

o
u

t to
 h

.h
-h

G
In

(1
x

2
)[1

,2
]-->

(2
x

4
)[1

,2
] (0

)
b

u
ffer[8

x
8

]()

o
u
t

(2
x
4
)[1

,2
]

o
ffset(h

-b
ay

erIn
).o

u
t to

 h
.h

-b
ay

erIn
(1

x
1

)[1
,1

]-->
(4

x
4

)[2
,2

] (0
)

b
u

ffer[1
6

x
8

]()

o
u
t

(4
x
4
)[2

,2
]

h
.R

G
B

o
u

t to
 h

D
iff.R

G
B

In
(6

x
2

)[6
,2

]-->
(3

x
1

)[3
,1

] (0
)

b
u

ffer[4
2

x
5

]()

o
u
t

(3
x
1
)[3

,1
]

h
.R

G
B

o
u

t to
 o

ffset(h
R

G
B

In
).in

(6
x

2
)[6

,2
]-->

(7
x

3
)[1

,1
] (0

)
b

u
ffer[4

2
x

7
]()

o
u
t

(7
x
3
)[1

,1
]

h
.R

G
B

o
u

t to
 o

ffset(v
R

G
B

In
).in

(6
x

2
)[6

,2
]-->

(7
x

3
)[1

,1
] (0

)
b

u
ffer[4

2
x

7
]()

o
u
t

(7
x
3
)[1

,1
]

h
D

iff.g
am

m
aB

etaO
u

t to
 h

G
rad

.G
am

m
aB

etaIn
(2

x
1

)[2
,1

]-->
(6

x
3

)[2
,1

] (0
)

b
u

ffer[2
8

x
6

]()

o
u
t

(6
x
3
)[2

,1
]

o
ffset(h

R
G

B
In

).o
u

t to
 select.h

R
G

B
In

(1
x

1
)[1

,1
]-->

(3
x

1
)[3

,1
] (0

)
b

u
ffer[6

x
1

]()

o
u
t

(3
x
1
)[3

,1
]

o
ffset(v

R
G

B
In

).o
u

t to
 select.v

R
G

B
In

(1
x

1
)[1

,1
]-->

(3
x

1
)[3

,1
] (0

)
b

u
ffer[6

x
1

]()

o
u
t

(3
x
1
)[3

,1
]

(b)
B

ayer
program

w
ith

InsetK
ernels

and
B

ufferK
ernels

(first
half

enlargem
ent)

Input

bayer.out to hG
.bayerIn

(1x1)[1,1]-->(6x2)[2,2] (0)
buffer[20x4]()

bayer.out to offset(h-bayerIn).in
(1x1)[1,1]-->(5x1)[1,1] (0)

buffer[6x1]()

hG
hG

.hG
out to h.h-hG

In
(1x2)[1,2]-->(2x4)[1,2] (0)

buffer[8x8]()

h

h.RG
Bout to hD

iff.RG
BIn

(6x2)[6,2]-->(3x1)[3,1] (0)
buffer[42x5]()

h.RG
Bout to offset(hRG

BIn).in
(6x2)[6,2]-->(7x3)[1,1] (0)

buffer[42x7]()

h.RG
Bout to offset(vRG

BIn).in
(6x2)[6,2]-->(7x3)[1,1] (0)

buffer[42x7]()

hD
iff

hD
iff.gam

m
aBetaO

ut to hG
rad.G

am
m

aBetaIn
(2x1)[2,1]-->(6x3)[2,1] (0)

buffer[28x6]()
hG

rad

select
O

utout

offset(h-bayerIn)
(0,0)[2,0,2,0]

offset(h-bayerIn).out to h.h-bayerIn
(1x1)[1,1]-->(4x4)[2,2] (0)

buffer[16x8]()

offset(hRG
BIn)

(0,0)[3,1,3,1]
offset(hRG

BIn).out to select.hRG
BIn

(1x1)[1,1]-->(3x1)[3,1] (0)
buffer[6x1]()

offset(vRG
BIn)

(0,0)[3,1,3,1]

offset(vRG
BIn).out to select.vRG

BIn
(1x1)[1,1]-->(3x1)[3,1] (0)

buffer[6x1]()

(c)
Full

B
ayer

dem
osaicing

program
w

ith
InsetK

ernels
and

B
ufferK

ernels
(sim

plified
application

graph)

F
igu

re
6.14:

B
ayer

p
rogram

w
ith

In
setK

ern
els

an
d

B
u
ff

erK
ern

els

6.4. DISCUSSION 99

Windowed sdf uses virtual tokens (combinations of output tokens) to adjust data

sizes to match outputs and inputs as is done here with buffers. However, the lack

of an implicit data ordering in wsdf makes buffer sizing an expensive search over

both orderings and sizings. The implementation presented in [25] demonstrates that

this search is possible (although slow) for two kernels at a time with a single stream

between them. By specifying a scan-line ordering, the calculation of buffer sizes is

greatly simplified in the implementation presented here.

The issue of insets or borders is only mentioned in the context of wsdf. They

claim that their model supports the addition of border pixels to correct the same

type of application inconsistencies discussed here. However, it appears that this must

be done manually. Their approach should be similar to the automatic zero-padding

discussed here, although it is possible that the lack of a implicit execution order may

severely complicate the analysis.

Placing InsetKernels in the manner described here throws out results that will

not be used later on. This is inherently inefficient as it first computes the values and

then disposes of them. Instead of disposing of this data after it has been processed, it

would be more efficient to push the InsetKernels as far towards the beginning of the

application as possible. To do this, they would have to be adjusted to compensate for

the halos of the kernels through which they were pushed, and could only be pushed

forwards if the application was consistent for subsequent uses of the data long the

path on which they are pushed. To achieve the best results, the analysis would need

to be able to merge InsetKernels that were pushed together at merge points in the

application appropriately.

Combined with the analysis from Chapter 5, the inset analysis presented here

allows the compilation system to ensure that the application is consistent, and au-

tomatically adjust the application behavior to the logical behavior specified by the

programmer. This relieves the programmer of the majority of the burden of keeping

track of the relative sizes of data at any point in the program, and instead allows him

to concentrate on the behavior of individual kernels independently. However, as seen

with the need for fractional offsets in the Bayer demosaicing application, this does

not completely remove the burden of understanding application details.

Chapter 7

Parallelization

The goal of writing programs in the model presented here is to allow rapid develop-

ment of programs that can be readily analyzed and manipulated by a compilation sys-

tem. The most important manipulations are automatic parallelization and placement

of the application so as to meet its real-time constraints. The application analysis

discussed in Chapter 5 enables analysis of a consistent application to determine the

iteration rate of each kernel in the application and the communications bandwidth

required between each kernel. Combined with the application’s description of the

resource requirements for each kernel method (operations per invocation and words

of storage), and a description of the resources provided by each processor (operations

per second and words of storage), computation of the number of processors required

for each kernel is relatively straightforward.

Input Split (2) Output

input.out to conv5x5.in_0
(2x2)[2,2]-->(5x5)[1,1] (0)

buffer[22x6]()

input.out to conv5x5.in_1
(2x2)[2,2]-->(5x5)[1,1] (0)

buffer[22x6]()

Join (2) iSplit (3)

conv5x5_0

conv5x5_1

conv5x5_2

Join (3)

Figure 7.1: Simplified application graph for a parallelized application

The number of processors required for a kernel may be set by either its operation

rate or its memory requirements, depending on the kernel and the resources available

100

7.1. SPLIT/JOIN KERNELS 101

on each processor. Parallelizing the application consists of modifying the application

graph by replicating the kernels as required and inserting Split and Join kernels to

distribute and collect the data in a manner appropriate to the kernels being paral-

lelized. (See Figure 7.1.) However, the resulting application may be inefficient due to

the centralized nature of the Split and Join kernels, which will be addressed in Sec-

tion 7.6.2. Kernels may also require less than a whole processor to execute, in which

case they should be considered for time-multiplexing with other kernels on the same

processor to increase the utilization of the processor resources. This is particularly

true for the Split and Join kernels themselves as they require very little computation

to execute, and is discussed in Chapter 8. This chapter presents a flexible Split/Join

kernel implementation and discusses how it is used to distribute data to kernels that

exhibit full data parallelism or limited data parallelism.

7.1 Split/Join Kernels

The Split and Join kernels used to parallelize applications are programmable data

distribution and collection finite state machines. When they are instantiated, their

input (Join) or output (Split) degree is specified, and their behavior is defined by

sequentially adding states and specifying how many pieces of data should be processed

in each state and to or from which Input or Output the data should be sent or received.

This allows for nearly complete flexibility in the use of these kernels. This capability is

necessary as the type of data distribution depends on the type of parallelism available

in the kernel.

Split/Join kernels handle ControlTokens in the same manner as any other kernel.

Split kernels pass tokens on to all of their outputs when they receive a ControlToken.

For end-of-line and end-of-frame tokens, for example, this ensures that all of the

parallelized kernels receive the ControlTokens when they have completed their last

iteration for the given line or frame. Join kernels pass ControlTokens on to their

output when all of the inputs have the same ControlToken. For the end-of-line or

end-of-frame tokens, this ensures that all of the parallelized kernels have had a chance

102 CHAPTER 7. PARALLELIZATION

to complete their work on the current line or frame in order before the Join passes

on the ControlToken1.

By default, kernels use a parallelization algorithm that assumes pure data paral-

lelism, whereby each iteration is assumed to be independent. The degree of parallelism

allowed is then limited only by the presence of data dependency edges in the appli-

cation (as in Figure 4.11 and Figure 4.5(c)). Kernels that are not fully data parallel

can easily specify the use of their own algorithm for parallelization. This flexibility

is used for parallelizing the BufferKernels as is discussed in Section 7.4, and could be

used for other irregular parallelizations such as FFTs.

7.2 Data Parallel Kernels

Kernels that use the default parallelization algorithm default to a purely data-parallel

parallelization. This consists of replicating the kernels and inserting a Split/Join pair

around the replicated kernels that distributes the incoming data in a round-robin

pattern. The finite state machine for the Split/Join kernels in this case simply sends

(Split) or receives (Join) one chunk of data to/from each of the Split/Join kernel’s

Outputs/Inputs in order. Table 7.1 shows the fsm for the data-parallel parallelization

of the convolution kernel in the simple convolution test (Figure 4.5(a)).

Table 7.1: Purely round-robin Split/Join fsm
State Next State Input(s)/Output(s) Number to send/receive

0 1 0 1
1 2 1 1
2 0 2 1

In this example, the programming system has determined that three instances of

the convolution kernel are required (“conv5x5 0”, “conv5x5 1”, and “conv5x5 2”).

1This approach to token distribution will not have the desired behavior if ControlTokens apply
to particular data outputs and not the stream as a whole. In such cases, where the intent is to “tag”
particular pieces of data with ControlTokens, the ControlTokens should only be sent to the kernel
that last received data. Such functionality has not been explored in this work.

7.2. DATA PARALLEL KERNELS 103

This calculation was based on taking the iteration size and rate from the application

analysis, multiplying it by the number of operations required by the kernel’s method,

and then dividing the number of operations provided per second by the target pro-

cessor by that number.2 Since the convolution kernel is data parallel and there are no

data dependency edges connected to the “conv5x5” kernel in the original application

graph, the kernel is replicated three times, and Split and Join kernels are added to

the graph to distribute the data as shown in Figure 7.2.

The fsms for the Split and Join kernels on either side of the parallelized con-

volution kernels are highlighted in the application graph shown in Figure 7.2. The

notation State: x n@[a,b,c] indicates that state x sends or receives n Inputs or

Outputs to/from Inputs or Outputs a, b, and c. The fmss defined here are as described

in Table 7.1. They serve to distribute every new input to the next convolution kernel

in a purely round-robin fashion. However, this simple approach may forfeit some

of the data reuse between sequential iterations as they are distributed to different

kernels. This effect and a means to address it are discussed in Section 7.6.1.

Because this is a purely round-robin distribution, the data analysis keeps the it-

eration size and image size the same at each of the outputs of the Split kernel, but

assigns each a rate of 1
n
× originalRate. The Join kernel, as it is similarly purely

round-robin, combines the rates of its inputs to calculate its output rate. Therefore,

to floating-point accuracy, neither the rate, nor the iteration size nor image size change

when comparing the Split → (conv5x5 0, conv5x5 1, conv5x5 2) → Join par-

allelization to the single conv5x5 kernel. This is as expected because parallelizing the

kernel should reduce the work load per kernel, but should not change the total work

or the size of the work.

The data-parallel parallelization discussed here is quite broad and covers most

kernels whose work is independent. In addition to the image processing examples

presented here (where the pixels are processed independently of other pixels), opera-

tions such as motion vector searches and block encodings can be parallelized in the

2A more careful accounting adds in the cycles required to access the Input and write the Outputs
as well as time for propagating any DataTokens that are not handled by the kernel.

104 CHAPTER 7. PARALLELIZATION

in
p
u

t

[2
0
x

2
0

@
1

x
1

 p
er 1

0
0
c] n

ex
t d

u
e 0

 (0
,0

)
o
u
t

(1
x
1
)[1

,1
]

in
(1

x
1
)[1

,1
]

[0
.0

,0
.0

]

V
erify

:resu
lt[1

6
x
1
6
]

m
atlab

/C
o
n
v
o
lv

eS
u
b
D

o
w

n
sam

p
leT

est/co
n
v
5
5
o
u
t.tx

t

in
(1

x
1
)[1

,1
]

[0
.0

,0
.0

]

co
eff lo

ad

[5
x
5

@
5
x
5

 p
er 1

c] n
ex

t d
u

e 0
 (0

,0
)

o
u
t

(5
x
5
)[5

,5
]

in
(5

x
5
)[5

,5
]

[0
.0

,0
.0

]

S
p
lit

o
u
t1

(1
x
1
)[1

,1
]

o
u
t0

(1
x
1
)[1

,1
]

in
(1

x
1
)[1

,1
]

[0
.0

,0
.0

]

in
(1

x
1
)[1

,1
]

[0
.0

,0
.0

]

Jo
in

o
u
t

(5
x
5
)[1

,1
]

*
in

0
(5

x
5
)[1

,1
]

[0
.0

,0
.0

]

*
in

1
(5

x
5
)[1

,1
]

[0
.0

,0
.0

]

in
(5

x
5
)[1

,1
]

[0
.0

,0
.0

]

in
p
u
t.o

u
t to

 co
n
v
5
x
5
.in

_
0

(1
x
1
)[1

,1
]-->

(5
x
5
)[1

,1
] (0

)
b
u
ffer[1

2
x
6
]()

o
u
t

(5
x
5
)[1

,1
]

in
p
u
t.o

u
t to

 co
n
v
5
x
5
.in

_
1

(1
x
1
)[1

,1
]-->

(5
x
5
)[1

,1
] (0

)
b
u
ffer[1

2
x
6
]()

o
u
t

(5
x
5
)[1

,1
]

S
p
lit

o
u
t1

(5
x
5
)[1

,1
]

o
u
t2

(5
x
5
)[1

,1
]

o
u
t0

(5
x
5
)[1

,1
]

in
(5

x
5
)[1

,1
]

[2
.0

,2
.0

]

in
(5

x
5
)[1

,1
]

[2
.0

,2
.0

]

in
(5

x
5
)[1

,1
]

[2
.0

,2
.0

]

co
eff->

co
n
v

5
x

5
 R

ep
licate (3

)

o
u
t1

(5
x
5
)[5

,5
]

o
u
t2

(5
x
5
)[5

,5
]

o
u
t0

(5
x
5
)[5

,5
]

co
eff

(5
x
5
)[5

,5
]

[2
.0

,2
.0

]

co
eff

(5
x
5
)[5

,5
]

[2
.0

,2
.0

]

co
eff

(5
x
5
)[5

,5
]

[2
.0

,2
.0

]

Jo
in

o
u
t

(1
x
1
)[1

,1
]

*
in

2
(1

x
1
)[1

,1
]

[0
.0

,0
.0

]

*
in

0
(1

x
1
)[1

,1
]

[0
.0

,0
.0

]

*
in

1
(1

x
1
)[1

,1
]

[0
.0

,0
.0

]

co
n

v
5

x
5

_
0

o
u
t

(1
x
1
)[1

,1
]

co
n

v
5

x
5

_
1

o
u
t

(1
x
1
)[1

,1
]

co
n

v
5

x
5

_
2

o
u
t

(1
x
1
)[1

,1
]

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[2

,2
,-2

,-2
]>

Im
ag

e: 2
0
.0

x
2
0
.0

It:2
0
x
2
0
@

2
5
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

ru
n
S

p
litJo

in
:It:2

4
x
2
0
@

2
5
/s:

S
tate: 0

!1
@

[0
]

S
tate: 1

!1
@

[1
]

S
tate: 2

!1
@

[2
]

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

lo
ad

C
o
eff:It:1

x
1
@

1
/s:

in
it:((It:0

x
0
@

?/s:))
ru

n
C

o
n
v
o
lv

e:It:2
4
x
2
0
@

8
.3

3
/s:

Im
ag

e: 2
0
.0

x
2
0
.0

It:2
0
x
2
0
@

2
5
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

Im
ag

e: 1
6
.0

x
2
4
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

in
it:((It:0

x
0
@

?/s:))
co

n
su

m
eE

O
F

:It:1
x
1
@

2
5
/s:

ru
n
B

u
ffer:It:1

2
x
2
0
@

2
5
/s:

co
n
su

m
eE

O
L

:It:1
x
2
0
@

2
5
/s:

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 1
6
.0

x
2
4
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

lo
ad

C
o
eff:It:1

x
1
@

1
/s:

in
it:((It:0

x
0
@

?/s:))
ru

n
C

o
n
v
o
lv

e:It:2
4
x
2
0
@

8
.3

3
/s:

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

h
an

d
leT

o
k
en

:It:1
x
1
@

1
/s:

ru
n
S

p
litJo

in
:It:1

x
1
@

1
/s:

S
tate: 0

!1
@

[0
, 1

, 2
]

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[2

,2
,-2

,-2
]>

h
an

d
leT

o
k
en

:It:2
4
x
2
0
@

2
5
/s:

ru
n
S

p
litJo

in
:It:2

4
x
2
0
@

2
5
/s:

S
tate: 0

!1
@

[0
]

S
tate: 1

!1
@

[1
]

S
tate: 2

!1
@

[2
]

lo
ad

C
o
eff:It:1

x
1
@

1
/s:

in
it:((It:0

x
0
@

?/s:))
ru

n
C

o
n
v
o
lv

e:It:2
4
x
2
0
@

8
.3

3
/s:

Im
ag

e: 1
2
.0

x
2
0
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

in
it:((It:0

x
0
@

?/s:))
co

n
su

m
e:It:2

4
x
2
0
@

2
5
/s:

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[2

,2
,-2

,-2
]>

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

ru
n
S

p
litJo

in
:It:2

4
x
2
0
@

2
5
/s:

S
tate: 0

!8
@

[0
]

S
tate: 1

!8
@

[1
]

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 1
2
.0

x
2
0
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

Im
ag

e: 1
2
.0

x
2
0
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

h
an

d
leT

o
k
en

:It:2
0
x
2
0
@

2
5
/s:

ru
n
S

p
litJo

in
:It:2

0
x
2
0
@

2
5
/s:

S
tate: 0

!8
@

[0
]

S
tate: 1

!4
@

[0
, 1

]

S
tate: 2

!8
@

[1
]

Im
ag

e: 1
6
.0

x
2
4
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 1
2
.0

x
2
0
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

in
it:((It:0

x
0
@

?/s:))
co

n
su

m
eE

O
F

:It:1
x
1
@

2
5
/s:

ru
n
B

u
ffer:It:1

2
x
2
0
@

2
5
/s:

co
n
su

m
eE

O
L

:It:1
x
2
0
@

2
5
/s:

Im
ag

e: 1
6
.0

x
2
4
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

F
igu

re
7.2:

R
ou

n
d
-rob

in
p
arallelization

of
a

con
volu

tion
kern

el
T

h
e

f
sm

s
for

th
e

S
p
lit/J

oin
kern

els
are

sh
ow

n
in

th
e

red
b

ox
es,

m
atch

in
g

T
ab

le
7.1.

T
h
ey

d
istrib

u
te

th
e

d
ata

in
a

p
u
rely

rou
n
d
-rob

in
fash

ion
to

th
e

th
ree

in
stan

ces
of

th
e

“con
v
5x

5”
kern

el.
T

h
e

d
atafl

ow
an

aly
sis

sh
ow

n
h
ere

in
d
icates

each
ou

tp
u
t

of
th

e
S
p
lit

kern
el

is
ru

n
n
in

g
at

13
of

th
e

in
p
u
t

rate,
(8.33/s

v
s.

25/s)
as

ex
p

ected
,

b
u
t

th
e

fi
n
al

join
ed

ou
tp

u
t

is
b
ack

to
th

e
fu

ll
25/s

rate.
T

h
e

co
effi

cien
t

in
p
u
ts

to
th

e
con

volu
tion

kern
els

(n
ot

sh
ow

n
h
ere)

are
con

n
ected

u
sin

g
a

R
ep

licate
kern

el
w

h
ich

m
erely

cop
ies

th
e

d
ata

on
its

in
p
u
ts.

T
h
is

is
d
on

e
b

ecau
se

th
e

co
effi

cien
t

In
p
u
t

w
as

m
arked

as
rep

licated
in

th
e

kern
el

d
efi

n
ition

.
(S

ee
F

igu
re

4.10).

7.3. KERNELS WITH LIMITED PARALLELISM 105

same manner. All that is required for this approach is that the kernels be indepen-

dent, and that the kernel resource requirements and input sizes and rates be known

in advance.

7.3 Kernels with limited parallelism

The presence of data dependency edges (shown with blue dashed lines) in the appli-

cation graph indicate that a given kernel’s parallelism is limited by that of the edge’s

source. This constraint simply forces the number of instances of the edge’s sink to be

equal to that of the source. Therefore, if the sink requires a certain degree of paral-

lelization to meet the required rates, the source must be equally parallelized. If the

application analysis indicates that this will not meet the computation rate required,

or the source can not be parallelized, then the application is incapable of meeting its

constraint on the targeted hardware as the parallelism is at its maximum.

Data dependency edges allow the programmer significant flexibility in expressing

the available parallelism in an application. For example, by adding a data dependency

edge from an application input to a kernel, as in the Histogram program (Figure 4.11),

the programmer can specify that a kernel must be serialized for each input image.

The result of enforcing this constraint on the Histogram program is shown in Figure

7.3. If the program is parallelized across multiple images, this kernel could still be

parallelized.

A more sophisticated example is shown in Figure 7.4. Here a serial pipeline

is defined by connecting kernels B, C, and D with data dependency edges. This

enforces the constraint that processing of the output of B must be done serially by

C and D, but as B itself may be processed in parallel, the compiler can choose

the legitimate parallelization shown in Figure 7.4(b). This parallelization may be

dictated by the resource requirements of kernels B, C, or D, with the other two

kernels being parallelized to the same degree to respect the constraint. By specifying

such constraints, the programmer has dictated that the data generated from each

iteration of B must be processed by only one instance of both C and D. This type

of processing could be useful for such things as local contrast enhancement where the

106 CHAPTER 7. PARALLELIZATION

Input mergein->hist Split (2) Output

hist_0

hist_1

hist->out Join (2)

Figure 7.3: Simplified parallelized histogram with data dependency edge
The presence of the data dependency edge in this application restricts the degree of
parallelism for the “merge” kernel to be equal to or less than that of the DataInput
“Input”. The “hist” kernel has no such limitation on its parallelism, and so it is
replicated as needed.

B kernel evaluates the contrast of a block, and then tells the C and D kernels what

processing to do on that block. By adding the data dependency edge, the programmer

can force C and D to operate over each iteration’s output from B, regardless of the

particular Input and Output sizes of each kernel.

The compiler framework further enables kernels to specify their own paralleliza-

tion algorithm. For data-parallel kernels, such as the “hist” kernel in Figure 7.3,

the default round-robin parallelizer is used. BufferKernels use the column-replicating

parallelization discussed in Section 7.4. For commutative reductions, such as the

“merge” kernel in this case, it would be possible to implement a tree-reduction par-

allelization. The resulting tree could then be annotated with data dependency edges

to ensure that those kernels are not touched by subsequent compiler manipulations.

This flexibility allows the compiler framework to be extended to handle new types of

parallelism, but requires that they be implemented by the programmer.

7.4 BufferKernels

Unlike the convolution kernel discussed in Section 7.2, BufferKernels are not purely

data parallel, and therefore require a different type of parallelization. For the Buffer-

Kernels to function, they must collect data in sufficiently large chunks that they can

7.4. BUFFERKERNELS 107

Input A OutputB C D E

(a) Program with a serial pipeline

Input A OutputSplit

B_0 C_0 D_0

JoinB_1 C_1 D_1

B_2 C_2 D_2

E

(b) Parallelized serial pipeline

Figure 7.4: Parallelization of a serial pipeline
The serial pipeline B → C → D in Figure 7.4(a) can be parallelized, but the serial
dependencies between the kernels as indicated by the data dependency edges must
be maintained. Figure 7.4 demonstrates this parallelization while maintaining the
dependencies.

generate the required output data chunks. If the data were to be distributed round-

robin to parallelized BufferKernels, each one would end up with a vertical interleaving

of the data which would result in incorrect output. Instead, the BufferKernels must

be partitioned so that they chop up the input data in vertical slices. That is, if the

BufferKernel needs to be parallelized in two, the first one should take the first half

of the columns of the input and the second one the last half. However, if the Output

driven by the BufferKernel has a step size that is smaller than its size (e.g., it reuses

some data on each horizontal iteration), the halo data must be replicated between

the split BufferKernels at the edges.

Figure 7.5 demonstrates the need to replicate data between BufferKernels. In the

case of a BufferKernel feeding a (3× 3) Output (the top examples in Figure 7.5), the

two columns around the split point must be replicated and sent to each BufferKernel.

This enables both BufferKernels to have the data that is reused across the last Output

from the first buffer and the first Output from the second buffer. Similarly, if the

buffer is split more than two ways, these replicated regions must be placed on both

ends of any intermediate buffers as well as at the ending and beginning of the first

108 CHAPTER 7. PARALLELIZATION

Original Buffer Original Buffer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Split Buffer 1 Split Buffer 1 Split Buffer 3

0 1 2 3 4 5 6 7 8 Split Buffer 2 0 1 2 3 5 6 15 16 19 20 21

Overlap: 9 10 11 12 13 14 15 16 17 7 8 9 10 11 12 13 14

Duplicated:

Original Buffer Original Buffer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Split Buffer 1 Split Buffer 1 Split Buffer 3

0 1 2 3 4 5 6 7 Split Buffer 2 0 1 3 4 5 Split Buffer 2 13 14 15 16 17

Overlap: 8 9 10 11 12 13 14 15 8 6 7 8 9 10 11 12

Duplicated:

Double Buffer (1x1) -> (3x3)

3-way Split2-way Split

Double Buffer (1x1) -> (5x5)

Split Buffer 3

2-way Split 3-way Split

Duplicated: 40%

Overlap:

20%

4

2

10%

Overlap: 4

Duplicated: 20%

Figure 7.5: Data replication for parallelization of BufferKernels
The shaded region indicates the data that must be duplicated when the BufferKernel
is parallelized. The outlines of the (3× 3) and (5× 5) Outputs are shown to indicate
where the duplicated data is used. The iteration number is displayed under the buffer.

7.4. BUFFERKERNELS 109

Table 7.2: Split and Join kernel fsms for a (5× 5) Output BufferKernel
SplitKernel

State Next State Output(s) Number to send

0 1 0 8
1 2 0,1 4
2 0 1 8

JoinKernel
State Next State Input Number to receive

0 1 0 8
1 0 1 8

and last buffers, respectively. Similar results hold for a BufferKernel feeding a (5×5)

Output. As the halo is larger ((4× 4) vs. (2× 2)) for the (5× 5) Output, the region

that must be replicated is larger, and the percent of duplicated data increases. In

general, the percent of replicated data increases with the halo size and the degree of

parallelization of the buffers.

To parallelize a buffer, therefore, the new buffers must be large enough to hold the

replicated data, and the Split/Join kernels must be constructed to correctly distribute

and collect the data. Figure 7.5 shows the data replication for the case of two-way

parallelized BufferKernel with a (1×1) input and a (5×5) Output. For each line, the

Split kernel must send the first 8 values to the first buffer, the next 4 values to both

buffers, and finally the last 8 values to the second buffer. When reading the data out,

the the first 8 outputs come from the first buffer and the last 8 from the second buffer.

The fsms for these Split/Join kernels are listed in Table 7.2. The actual application

can be seen in Figure 7.6. The full, automatically parallelized application is shown

in Figure 7.7(a).

The data flow analysis for the irregular Split and Join kernels for BufferKernels

is different from that of the purely round-robin ones for the data parallel kernels.

In this case the frame rate stays the same, but the iteration size and image size

are appropriately adjusted. This adjustment takes into account the replicated data

in the parallelized BufferKernels. Between the Split and Join kernels it appears

110 CHAPTER 7. PARALLELIZATION

in
p
u
t

[2
0
x
2
0
@

1
x
1
 p

er 1
0
0
c] n

ex
t d

u
e 0

 (0
,0

)
o

u
t

(1
x

1
)[1

,1
]

in
(1

x
1

)[1
,1

]
[0

.0
,0

.0
]

V
erify

:resu
lt[1

6
x
1
6
]

m
atlab

/C
o
n
v
o
lv

eS
u
b
D

o
w

n
sam

p
leT

est/co
n
v
5
5
o
u
t.tx

t

in
(1

x
1

)[1
,1

]
[0

.0
,0

.0
]

co
eff lo

ad

[5
x
5
@

5
x
5
 p

er 1
c] n

ex
t d

u
e 0

 (0
,0

)
o

u
t

(5
x

5
)[5

,5
]

in
(5

x
5

)[5
,5

]
[0

.0
,0

.0
]

S
p
lit

o
u

t1
(1

x
1

)[1
,1

]

o
u

t0
(1

x
1

)[1
,1

]

in
(1

x
1

)[1
,1

]
[0

.0
,0

.0
]

in
(1

x
1

)[1
,1

]
[0

.0
,0

.0
]

Jo
in

o
u

t
(5

x
5

)[1
,1

]

*
in

0
(5

x
5

)[1
,1

]
[0

.0
,0

.0
]

*
in

1
(5

x
5

)[1
,1

]
[0

.0
,0

.0
]

in
(5

x
5

)[1
,1

]
[0

.0
,0

.0
]

in
p
u
t.o

u
t to

 co
n
v
5
x
5
.in

_
0

(1
x
1
)[1

,1
]-->

(5
x
5
)[1

,1
] (0

)
b
u
ffer[1

2
x
6
]()

o
u

t
(5

x
5

)[1
,1

]

in
p
u
t.o

u
t to

 co
n
v
5
x
5
.in

_
1

(1
x
1
)[1

,1
]-->

(5
x
5
)[1

,1
] (0

)
b
u
ffer[1

2
x
6
]()

o
u

t
(5

x
5

)[1
,1

]
S

p
lit

o
u

t1
(5

x
5

)[1
,1

]

o
u

t2
(5

x
5

)[1
,1

]

o
u

t0
(5

x
5

)[1
,1

]

in
(5

x
5

)[1
,1

]
[2

.0
,2

.0
]

in
(5

x
5

)[1
,1

]
[2

.0
,2

.0
]

in
(5

x
5

)[1
,1

]
[2

.0
,2

.0
]

co
eff->

co
n
v
5
x
5
 R

ep
licate (3

)

o
u

t1
(5

x
5

)[5
,5

]

o
u

t2
(5

x
5

)[5
,5

]

o
u

t0
(5

x
5

)[5
,5

]

co
eff

(5
x

5
)[5

,5
]

[2
.0

,2
.0

]

co
eff

(5
x

5
)[5

,5
]

[2
.0

,2
.0

]

co
eff

(5
x

5
)[5

,5
]

[2
.0

,2
.0

]

Jo
in

o
u

t
(1

x
1

)[1
,1

]

*
in

2
(1

x
1

)[1
,1

]
[0

.0
,0

.0
]

*
in

0
(1

x
1

)[1
,1

]
[0

.0
,0

.0
]

*
in

1
(1

x
1

)[1
,1

]
[0

.0
,0

.0
]

co
n
v
5
x
5
_
0

o
u

t
(1

x
1

)[1
,1

]

co
n
v
5
x
5
_
1

o
u

t
(1

x
1

)[1
,1

]

co
n
v
5
x
5
_
2

o
u

t
(1

x
1

)[1
,1

]

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[2

,2
,-2

,-2
]>

Im
ag

e: 2
0
.0

x
2
0
.0

It:2
0
x
2
0
@

2
5
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

ru
n
S

p
litJo

in
:It:2

4
x
2
0
@

2
5
/s:

S
tate: 0

!1
@

[0
]

S
tate: 1

!1
@

[1
]

S
tate: 2

!1
@

[2
]

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

lo
ad

C
o
eff:It:1

x
1
@

1
/s:

in
it:((It:0

x
0
@

?/s:))
ru

n
C

o
n
v
o
lv

e:It:2
4
x
2
0
@

8
.3

3
/s:

Im
ag

e: 2
0
.0

x
2
0
.0

It:2
0
x
2
0
@

2
5
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

Im
ag

e: 1
6
.0

x
2
4
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

in
it:((It:0

x
0
@

?/s:))
co

n
su

m
eE

O
F

:It:1
x
1
@

2
5
/s:

ru
n
B

u
ffer:It:1

2
x
2
0
@

2
5
/s:

co
n
su

m
eE

O
L

:It:1
x
2
0
@

2
5
/s:

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 1
6
.0

x
2
4
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

lo
ad

C
o
eff:It:1

x
1
@

1
/s:

in
it:((It:0

x
0
@

?/s:))
ru

n
C

o
n
v
o
lv

e:It:2
4
x
2
0
@

8
.3

3
/s:

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

h
an

d
leT

o
k
en

:It:1
x
1
@

1
/s:

ru
n
S

p
litJo

in
:It:1

x
1
@

1
/s:

S
tate: 0

!1
@

[0
, 1

, 2
]

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[2

,2
,-2

,-2
]>

h
an

d
leT

o
k
en

:It:2
4
x
2
0
@

2
5
/s:

ru
n
S

p
litJo

in
:It:2

4
x
2
0
@

2
5
/s:

S
tate: 0

!1
@

[0
]

S
tate: 1

!1
@

[1
]

S
tate: 2

!1
@

[2
]

lo
ad

C
o
eff:It:1

x
1
@

1
/s:

in
it:((It:0

x
0
@

?/s:))
ru

n
C

o
n
v
o
lv

e:It:2
4
x
2
0
@

8
.3

3
/s:

Im
ag

e: 1
2
.0

x
2
0
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

Im
ag

e: 2
8
.0

x
2
4
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

in
it:((It:0

x
0
@

?/s:))
co

n
su

m
e:It:2

4
x
2
0
@

2
5
/s:

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[2

,2
,-2

,-2
]>

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

ru
n
S

p
litJo

in
:It:2

4
x
2
0
@

2
5
/s:

S
tate: 0

!8
@

[0
]

S
tate: 1

!8
@

[1
]

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 1
2
.0

x
2
0
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

Im
ag

e: 1
2
.0

x
2
0
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

h
an

d
leT

o
k
en

:It:2
0
x
2
0
@

2
5
/s:

ru
n
S

p
litJo

in
:It:2

0
x
2
0
@

2
5
/s:

S
tate: 0

!8
@

[0
]

S
tate: 1

!4
@

[0
, 1

]

S
tate: 2

!8
@

[1
]

Im
ag

e: 1
6
.0

x
2
4
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

Im
ag

e: 2
4
.0

x
2
0
.0

It:2
4
x
2
0
@

8
.3

3
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[1

.5
,1

.6
6
6
7
,1

.5
,1

.6
6
6
7
]>

Im
ag

e: 1
2
.0

x
2
0
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

Im
ag

e: 5
.0

x
5
.0

It:1
x
1
@

1
/s:

<
o
u
t:(1

,1
)[0

,0
,0

,0
]>

in
it:((It:0

x
0
@

?/s:))
co

n
su

m
eE

O
F

:It:1
x
1
@

2
5
/s:

ru
n
B

u
ffer:It:1

2
x
2
0
@

2
5
/s:

co
n
su

m
eE

O
L

:It:1
x
2
0
@

2
5
/s:

Im
ag

e: 1
6
.0

x
2
4
.0

It:1
2
x
2
0
@

2
5
/s:

<
o
u
t:(1

.3
3
3
3
,1

.2
)[0

,0
,3

,3
.3

3
3
3
]>

F
igu

re
7.6:

S
p
lit/J

oin
kern

els
for

K
ern

elB
u
ff

er
p
arallelization

T
h
e

f
sm

s
for

th
e

S
p
lit/J

oin
kern

els
are

sh
ow

n
in

th
e

red
b

ox
es,

m
atch

in
g

T
ab

le
7.2.

T
h
ey

d
istrib

u
te

th
e

d
ata

b
y

sen
d
in

g
vertical

slices
of

th
e

in
p
u
t

im
age

to
each

of
th

e
tw

o
in

stan
ces

of
th

e
B

u
ff

erK
ern

el
w

ith
ap

p
rop

riate
d
ata

rep
lication

.
T

h
e

d
atafl

ow
an

aly
sis

sh
ow

n
h
ere

in
d
icates

th
at

th
e

rate
rem

ain
s

th
e

sam
e

for
th

e
p
arallelized

B
u
ff

erK
ern

els
b
u
t

th
at

th
eir

iteration
sizes

are
larger

th
an

th
e

in
p
u
t

(tw
o

12
×

20
from

on
e

20
×

20)
d
u
e

to
th

e
rep

licated
d
ata.

7.5. RESULTS 111

that the frame size has increased due to this replicated data. However, the Outputs

from the BufferKernels generate the same aggregate number of output iterations as

they did before the parallelization. Therefore, the Join kernel adds the iteration

sizes horizontally and its output is then the same as that of the non-parallelized

BufferKernel. This requires that the Split/Join kernels implement different data flow

analyses depending on whether they are regular “pure” round-robin distributions or

irregular ones.

Calculating the size and required data overlap for BufferKernels is straightforward

for buffers whose Input size is an even divisor of the Output size, as shown in Figure

7.5. For more complex buffers, the the easiest way to determine the buffer sizing and

data distribution is to simulate one row worth of inputs and outputs to the buffer,

and to use this simulation to determine the best splits and the required amount of

replicated data. This allows the buffer sizes and Split/Join fsms to be determined

together.

7.5 Results

The full application graph for the convolution example is shown in Figure 7.7(a),

and simplified application graphs are shown for it and the Bayer demosacing ap-

plications in Figures 7.1 and 7.7(b). These applications were transformed from the

original application descriptions fully automatically, including inserting InsetKernels

and BufferKernels (as discussed in Chapter 6) and parallelizing the computation ker-

nels to meet the input requirements.

Further examples of the automatic analysis, buffering, and parallelization are seen

in Figures 7.8-7.11. These four application graphs show the result of changing the

input parameters to the differencing example to force the application to parallelize

for memory, computation, or both, as described in Table 7.3.

112 CHAPTER 7. PARALLELIZATION

input
[20x20@

1x1 per 100c] next due 0 (0,0)
out

(1x1)[1,1]
in

(1x1)[1,1]
[0.0,0.0]

Verify:result[16x16]
m

atlab/ConvolveSubD
ow

nsam
pleTest/conv55out.txt

in
(1x1)[1,1]
[0.0,0.0]

coeff load
[5x5@

5x5 per 1c] next due 0 (0,0)
out

(5x5)[5,5]
in

(5x5)[5,5]
[0.0,0.0]

input.out to conv5x5.in split (2)

out1
(1x1)[1,1]

out0
(1x1)[1,1]

in
(1x1)[1,1]
[0.0,0.0]

in
(1x1)[1,1]
[0.0,0.0]

input.out to conv5x5.in join (2)
out

(5x5)[1,1]

*in0
(5x5)[1,1]
[0.0,0.0]

*in1
(5x5)[1,1]
[0.0,0.0]

in
(5x5)[1,1]
[0.0,0.0]

input.out to conv5x5.in_0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[12x6]()

out
(5x5)[1,1]

input.out to conv5x5.in_1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[12x6]()

out
(5x5)[1,1]

in->conv5x5 Split (3)

out1
(5x5)[1,1]

out2
(5x5)[1,1]

out0
(5x5)[1,1]

in
(5x5)[1,1]
[2.0,2.0]

in
(5x5)[1,1]
[2.0,2.0]

in
(5x5)[1,1]
[2.0,2.0]

coeff->conv5x5 Replicate (3)

out1
(5x5)[5,5]

out2
(5x5)[5,5]

out0
(5x5)[5,5]

coeff
(5x5)[5,5]
[2.0,2.0]

coeff
(5x5)[5,5]
[2.0,2.0]

coeff
(5x5)[5,5]
[2.0,2.0]

conv5x5->out Join (3)
out

(1x1)[1,1]

*in2
(1x1)[1,1]
[0.0,0.0]

*in0
(1x1)[1,1]
[0.0,0.0]

*in1
(1x1)[1,1]
[0.0,0.0]

conv5x5_0
out

(1x1)[1,1]

conv5x5_1
out

(1x1)[1,1]

conv5x5_2
out

(1x1)[1,1]

Im
age: 5.0x5.0

It:1x1@
1/s:

<out:(1,1)[2,2,-2,-2]>

Im
age: 20.0x20.0

It:20x20@
25/s:

<out:(1,1)[0,0,0,0]>
runSplitJoin:It:24x20@

25/s:
State: 0
1@

[0]
State: 1
1@

[1]
State: 2
1@

[2]

Valid token states: []

Im
age: 28.0x24.0

It:24x20@
8.33/s:

<out:(1.3333,1.2)[0,0,3,3.3333]>
Im

age: 24.0x20.0
It:24x20@

8.33/s:
<out:(1.3333,1.2)[1.5,1.6667,1.5,1.6667]>

Im
age: 28.0x24.0

It:24x20@
25/s:

<out:(1.3333,1.2)[0,0,3,3.3333]>

Im
age: 5.0x5.0

It:1x1@
1/s:

<out:(1,1)[0,0,0,0]>

loadCoeff:It:1x1@
1/s:

init:((It:0x0@
?/s:))

runConvolve:It:24x20@
8.33/s:

Im
age: 20.0x20.0

It:20x20@
25/s:

<out:(1,1)[0,0,0,0]>

Im
age: 16.0x24.0

It:12x20@
25/s:

<out:(1.3333,1.2)[0,0,3,3.3333]>

init:((It:0x0@
?/s:))

consum
eEO

F:It:1x1@
25/s:

runBuffer:It:12x20@
25/s:

consum
eEO

L:It:1x20@
25/s:

Im
age: 28.0x24.0

It:24x20@
8.33/s:

<out:(1.3333,1.2)[1.5,1.6667,1.5,1.6667]>

Im
age: 16.0x24.0

It:12x20@
25/s:

<out:(1.3333,1.2)[0,0,3,3.3333]>

Im
age: 28.0x24.0

It:24x20@
8.33/s:

<out:(1.3333,1.2)[0,0,3,3.3333]>

loadCoeff:It:1x1@
1/s:

init:((It:0x0@
?/s:))

runConvolve:It:24x20@
8.33/s:

Im
age: 28.0x24.0

It:24x20@
8.33/s:

<out:(1.3333,1.2)[1.5,1.6667,1.5,1.6667]>

Im
age: 24.0x20.0

It:24x20@
8.33/s:

<out:(1.3333,1.2)[1.5,1.6667,1.5,1.6667]>

Im
age: 5.0x5.0

It:1x1@
1/s:

<out:(1,1)[0,0,0,0]>

Im
age: 24.0x20.0

It:24x20@
8.33/s:

<out:(1.3333,1.2)[1.5,1.6667,1.5,1.6667]>

handleToken:It:1x1@
1/s:

runSplitJoin:It:1x1@
1/s:

State: 0
1@
[0, 1, 2]

Valid token states: []

Im
age: 28.0x24.0

It:24x20@
25/s:

<out:(1.3333,1.2)[0,0,3,3.3333]>

Im
age: 5.0x5.0

It:1x1@
1/s:

<out:(1,1)[2,2,-2,-2]>

handleToken:It:24x20@
25/s:

runSplitJoin:It:24x20@
25/s:

State: 0
1@
[0]

State: 1
1@
[1]

State: 2
1@
[2]

Valid token states: []

loadCoeff:It:1x1@
1/s:

init:((It:0x0@
?/s:))

runConvolve:It:24x20@
8.33/s:

Im
age: 12.0x20.0

It:12x20@
25/s:

<out:(1,1)[0,0,0,0]>

Im
age: 28.0x24.0

It:24x20@
8.33/s:

<out:(1.3333,1.2)[0,0,3,3.3333]>

Im
age: 28.0x24.0

It:24x20@
8.33/s:

<out:(1.3333,1.2)[1.5,1.6667,1.5,1.6667]>

init:((It:0x0@
?/s:))

consum
e:It:24x20@

25/s:

Im
age: 24.0x20.0

It:24x20@
8.33/s:

<out:(1.3333,1.2)[1.5,1.6667,1.5,1.6667]>

Im
age: 24.0x20.0

It:24x20@
8.33/s:

<out:(1.3333,1.2)[1.5,1.6667,1.5,1.6667]>

Im
age: 5.0x5.0

It:1x1@
1/s:

<out:(1,1)[2,2,-2,-2]>
Im

age: 24.0x20.0
It:24x20@

25/s:
<out:(1.3333,1.2)[1.5,1.6667,1.5,1.6667]>

Im
age: 5.0x5.0

It:1x1@
1/s:

<out:(1,1)[0,0,0,0]>

Im
age: 5.0x5.0

It:1x1@
1/s:

<out:(1,1)[0,0,0,0]>

runSplitJoin:It:24x20@
25/s:

State: 0
8@
[0]

State: 1
8@
[1]

Valid token states: []

Im
age: 24.0x20.0

It:24x20@
25/s:

<out:(1.3333,1.2)[1.5,1.6667,1.5,1.6667]>

Im
age: 12.0x20.0

It:12x20@
25/s:

<out:(1,1)[0,0,0,0]>

Im
age: 12.0x20.0

It:12x20@
25/s:

<out:(1,1)[0,0,0,0]>

handleToken:It:20x20@
25/s:

runSplitJoin:It:20x20@
25/s:

State: 0
8@
[0]

State: 1
4@
[0, 1]

State: 2
8@
[1]

Valid token states: []

Im
age: 16.0x24.0

It:12x20@
25/s:

<out:(1.3333,1.2)[0,0,3,3.3333]>

Im
age: 24.0x20.0

It:24x20@
8.33/s:

<out:(1.3333,1.2)[1.5,1.6667,1.5,1.6667]>

Im
age: 12.0x20.0

It:12x20@
25/s:

<out:(1,1)[0,0,0,0]>

Im
age: 5.0x5.0

It:1x1@
1/s:

<out:(1,1)[0,0,0,0]>

init:((It:0x0@
?/s:))

consum
eEO

F:It:1x1@
25/s:

runBuffer:It:12x20@
25/s:

consum
eEO

L:It:1x20@
25/s:

Im
age: 16.0x24.0

It:12x20@
25/s:

<out:(1.3333,1.2)[0,0,3,3.3333]>

(a)
Full

autom
atically

parallelized
convolution

program

bayer
[20x20@

1x1 per 9c] next due 0 (0,0)

bayer.out to hG
.bayerIn

(1x1)[1,1]-->(6x2)[2,2] (0)
buffer[20x4]()

bayer.out to offset(h-bayerIn).in
(1x1)[1,1]-->(5x1)[1,1] (0)

buffer[6x1]()

hG
hG

.hG
out to h.h-hG

In
(1x2)[1,2]-->(2x4)[1,2] (0)

buffer[8x8]()

hD
iff

hD
iff.gam

m
aBetaO

ut to hG
rad.G

am
m

aBetaIn
(2x1)[2,1]-->(6x3)[2,1] (0)

buffer[28x6]()

select
Verify:result[216x76]

m
atlab/bayer_split/finalRG

BO
ut.txt

offset(h-bayerIn)
(0,0)[2,0,2,0]

offset(h-bayerIn).out to h.h-bayerIn
(1x1)[1,1]-->(4x4)[2,2] (0)

buffer[16x8]()

offset(hRG
BIn)

(0,0)[3,1,3,1]
offset(hRG

BIn).out to select.hRG
BIn

(1x1)[1,1]-->(3x1)[3,1] (0)
buffer[6x1]()

offset(vRG
BIn)

(0,0)[3,1,3,1]

offset(vRG
BIn).out to select.vRG

BIn
(1x1)[1,1]-->(3x1)[3,1] (0)

buffer[6x1]()

h-hG
In->h Split (3)

h-bayerIn->h Split (3)

h.RG
Bout to hD

iff.RG
BIn

(6x2)[6,2]-->(3x1)[3,1] (0)
buffer[42x5]()

h.RG
Bout to offset(hRG

BIn).in
(6x2)[6,2]-->(7x3)[1,1] (0)

buffer[42x7]()

h.RG
Bout to offset(vRG

BIn).in
(6x2)[6,2]-->(7x3)[1,1] (0)

buffer[42x7]()

G
am

m
aBetaIn->hG

rad Split (6)

h_0

h_1

h_2

h->RG
Bout Join (3)

hG
rad_0

hG
rad_1

hG
rad_2

hG
rad_3

hG
rad_4

hG
rad_5

hG
rad->H

G
radientO

ut Join (6)

(b)
Sim

plified
autom

atically
parallelized

B
ayer

dem
osaicing

program

F
igu

re
7.7:

A
u
tom

atic
p
arallelization

ex
am

p
les

T
h
e

rep
licated

co
effi

cien
t

in
p
u
ts

to
th

e
con

volu
tion

kern
els

in
F

igu
re

7.7(a)
are

in
d
icated

b
y

d
ash

ed
ed

ges.

7.5. RESULTS 113

Table 7.3: Automatic parallelization examples
Small Input Size Large Input Size

Low Input Rate
Figure 7.5 Figure 7.5

“Small/Slow” “Big/Slow”
storage-limited

High Input Rate
Figure 7.5 Figure 7.5

“Small/Fast” “Big/Fast”
compute-limited compute- and storage-limited

The same application description was used for all four instances. Only the input size
and rate was changed.

Input

input.out to conv3x3.in
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()

input.out to conv5x5.in
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[24x10]()

conv3x3
conv3x3.out to offset(in0).in
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[22x6]()

conv5x5

subtract
subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[20x4]()
down2x2 Output

3x3 coeff

5x5 coeff

offset(in0)
(0,0)[1,1,1,1]

21

3

4 5

6

Figure 7.8: Baseline differencing program (“Small/Slow”)

For this baseline combination of processor and input size and rate no parallelization
is required. A key for the color-coding used in the timeline displays can be found
in Figure B.3. For Figures 7.8-7.11: 1) magenta: writing into the 3x3 buffer(s),
2) cyan/magenta: reading/writing from/to the 3x3 buffer(s), 3) green: “conv3x3”
kernel execution, 4) magenta: writing into the 5x5 buffer(s), 5) cyan/magenta: read-
ing/writing from/to the 5x5 buffer(s), 6) green: “conv5x5” kernel execution. Yellow
indicates stalls waiting for output.

114 CHAPTER 7. PARALLELIZATION

Input

input.out to conv3x3.in
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()

input.out to conv5x5.in
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[24x10]()

subtract
subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[20x4]()
down2x2 Output

3x3 coeff Replicate

5x5 coeff Replicate

offset(in0)
(0,0)[1,1,1,1]

Split

Split

conv3x3.out to offset(in0).in
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[22x6]()

conv3x3_0

conv3x3_1 Join

conv5x5_0

conv5x5_1

Join

21

3

4 5

6

Figure 7.9: Differencing program with increased input rate (“Small/Fast”)

Doubling the input rate over the baseline in Figure 7.8 requires that the limiting com-
putation kernels (in this case the “conv5x5” and “conv3x3” kernels) be parallelized
to meet the increased input rate.

Input

Split

Split

conv3x3 Split

conv5x5

subtract
subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[44x4]()
down2x2 Output

3x3 coeff

5x5 coeff

offset(in0)
(0,0)[1,1,1,1]

input.out to conv3x3.in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

input.out to conv3x3.in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

Join

input.out to conv5x5.in_0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

input.out to conv5x5.in_1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

input.out to conv5x5.in_2
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[18x10]()

Join

conv3x3.out to offset(in0).in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()

conv3x3.out to offset(in0).in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()
Join

21
3

4 5

6

Figure 7.10: Differencing program with increased input size (“Big/Slow”)

Keeping the throughput constant but doubling the input size over the baseline in
Figure 7.8 requires that the limiting storage kernels (in this case all three of the
buffers) be parallelized to fit within the limited memory resources of each processor.
Note that due to the required overlap between buffers as seen in Figure 7.5, three
buffers are required for the “conv5x5” kernel when the input size is doubled.

7.5. RESULTS 115

Input

Split

Split

subtract
subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[44x4]()
down2x2 Output

3x3 coeff Replicate

5x5 coeff Replicate

offset(in0)
(0,0)[1,1,1,1]

input.out to conv3x3.in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

input.out to conv3x3.in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

Join Split

input.out to conv5x5.in_0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

input.out to conv5x5.in_1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

input.out to conv5x5.in_2
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[18x10]()

Join Split

conv3x3_0

conv3x3_1

conv3x3_2

Join Split

conv5x5_0

conv5x5_1

conv5x5_2

conv5x5_3

conv5x5_4

Join

conv3x3.out to offset(in0).in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()

conv3x3.out to offset(in0).in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()
Join

54

6

1 2

3

Figure 7.11: Differencing program with increased input size and rate (“Big/Fast”)

Doubling both the input size and rate over the baseline in Figure 7.8 requires that
both the limiting storage and computation kernels be appropriately parallelized.

116 CHAPTER 7. PARALLELIZATION

7.6 Discussion

7.6.1 BufferKernel Data Reuse

The parallelization of buffers discussed in Section 7.4 may limit an application’s ability

to take advantage of data reuse between iterations of computation kernels. This is due

to the round-robin distribution of the data to the parallelized computation kernels,

which effectively destroys data locality between kernel iterations by spreading the

spatially local iterations across physically disparate processors. For example, the

simple convolution kernel shown in Figure 7.12, when parallelized (Figure 7.13), sends

every other convolution to alternating convolution kernels. The resulting data reuse is

shown in Figure 7.14. The two-way round-robin parallelization results in a data reuse

for each of the convolution kernels of 15 of the 25 input elements, as each iteration

must receive the five new elements for that iteration, and the five elements that were

new for the previous iteration, but which were sent to the other convolution kernel.

If subsequent iterations of the “conv5x5” kernel were executed on the same processor

instead, the data reuse would be 20 of the 25 input elements in steady-state. Similarly,

a round-robin parallelization across three processors would result in a reuse of only

10 of 25. For six or more processors the reuse is eliminated entirely, since each kernel

executes every sixth iteration, and the input size for the kernel is only five.

To avoid eliminating this inter-iteration reuse, the buffers can be parallelized to

match the kernels which they are feeding. This would change the round-robin distri-

bution of data to the vertical-slices required for parallelizing buffers, as described in

Section 7.4. For the example presented above, this results in the application graph

in Figure 7.15. This transformed application has the buffer kernel split in two, with

appropriate Split and Join kernels. The resulting data distribution pattern sends the

first 8 iterations to “conv5x5 0” and the second 8 to “conv5x5 1”. As the iterations

that each kernel processes are now both spatially local (iterations 1-8 for “conv5x5 0”

and 9-16 for “conv5x5 1”), nearly the full data reuse across the 8 iterations can be

utilized. To do so, a static copy elimination would use the known data usage pat-

terns from the kernels’ inputs and the buffer’s output to determine that only the new

data on each iteration was required to be transmitted between the buffers and the

7.6. DISCUSSION 117

Input conv5x5 Output

Figure 7.12: Simple 5×5 convolution application graph

Input
buffer

(1x1)[1,1]-->(5x5)[1,1] (0)
buffer[20x10]()

split

conv5x5_0

conv5x5_1

join Output

Figure 7.13: Automatically buffered and parallelized 5×5 convolution program
The basic parallelization applied here to the program in Figure 7.12 uses a purely
round-robin Split kernel to distribute the work to two convolution kernels. The buffer
is not parallelized because it is not resource constrained.

"conv5x5_0": Iterations 1 and 3 (5,7,...) "conv5x5_0": Iterations 1 and 4 (7,10,...) "conv5x5_0": Iterations 1 and 2 (3,4,...)

reuse new new

"conv5x5_1": Iterations 2 and 4 (6,8,...) "conv5x5_1": Iterations 2 and 5 (8,11,...) "conv5x5_1": Iterations 8 and 9 (10,11,...)

reuse new new

new

Parallel Buffers for Data Reuse

(2 kernels)

Pure Round-Robin

(3 kernels)

new

new reuse

reuse

Pure Round-Robin

(2 kernels)

reuse

reuse

reuse

"conv5x5_2": Iterations 3 and 6 (9,12,...)

Figure 7.14: Data reuse options for a 5× 5 convolution
The data reuse for a 5 × 5 convolution kernel is shown. The new data for each
iteration is shown in light blue, while the data that can potentially be reused is shown
in dark green. The pure-round-robin parallelization reduces data reuse by sending
consecutive iterations to different processors (left and middle). A more intelligent
distribution (right) can maximize reuse by sending consecutive blocks of iterations to
the same processor.

118 CHAPTER 7. PARALLELIZATION

Input split

b0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[12x10]()

b1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[12x10]()

conv5x5_0

join

conv5x5_1

Output

Figure 7.15: Näıve buffer parallelization for reuse
The buffer feeding the convolution kernels in Figure 7.13 has been replicated to allow
each convolution kernel to receive data from one buffer directly, thereby increasing
the potential for data reuse.

2
1

3

Figure 7.16: Simulation trace of näıvely parallelized buffers
The results of running the program shown in Figure 7.15 indicate that the program
input is forced to stall (3) at cycle 11,000 due to the lack of buffering between the
convolution kernels and the Join kernel. The convolution kernels show low utilization
as indicated by the large amount of time spent waiting to write their outputs (1 and
2, yellow with black horizontal lines) compared to time spent executing (green).

convolution kernels. The data overlap between the two buffers, however, would still

require data duplication as in Figure 7.5. Given known costs for data movement,

storage, and duplication, it would be possible to choose the optimal distribution for

each buffer/kernel pair. Determining the optimal distribution for an entire appli-

cation would be significantly more difficult as the local buffer/kernel choice has an

impact on the global result.

While parallelizing the buffer to match the required parallelization of the compu-

tation kernels enables the exploitation of greater data reuse, it does not work in all

situations. Indeed, the example presented in Figure 7.15 will not operate as expected.

The problem is that the Join kernel expects to receive iterations 1-8 from convolution

kernel “conv5x5 0” before receiving any data from “conv5x5 1”. This means that

“conv5x5 1” will stall after its second iteration because it will have filled its Output’s

7.6. DISCUSSION 119

buffer and the buffer in its Input to the Join kernel. From that point on, it will not

be able to proceed until all 8 of the outputs from “conv5x5 0” have been processed.

This results in a steady-state behavior wherein each of the parallelized kernels must

wait for the other to execute before it can continue, which will not meet the real-time

constraints of the application if two were required in the first place. This behavior

can be seen in the simulation trace in Figure 7.16. The yellow blocks with the black

lines through them for the two convolution kernels are the time they spend stalled

waiting for the Join kernel to receive their outputs. The result is that the application

fails to process data at its input rate, and therefore stalls the input at cycle 11,000

when the buffers fill.

To address the issue seen in Figure 7.16, there must be an output buffer for each of

the parallelized input buffers. Such buffers ensure that both computation kernels can

be kept busy at all times regardless of the state of the Join kernel at the end. These

output buffers can either be inserted for this purpose, or any down-stream buffer in

the application can be used. By inserting such buffers, the application is transformed

as seen in Figure 7.17, and the runs correctly as demonstrated by the simulation trace

in Figure 7.18.

The transformations described here can be thought of two ways: either as sepa-

rately parallelizing the buffers and then merging the Join/Split kernels between the

buffers and the computation kernels, or as moving the Split for the computation ker-

nels through the application graph in front of the buffer kernel. In either case, the

round-robin data distribution for the computation kernels needs to be replaced with

the vertical-slice data distribution required for the buffer, which is how the data lo-

cality reuse is realized. In general, multiple computation kernels can exist between

the input and output buffers. As long as no Buffer Kernels are required between the

computation kernels this approach will work without modification. However, if the

Input and Output sizes of the kernels are such that buffering is required, the imple-

mentation becomes more complicated, requiring either replication of computation or

complex distribution of intermediate results.

These transformations enable buffers to be parallelized to maximize data reuse

to the kernels they feed. When combined with time-multiplexing the buffers on the

120 CHAPTER 7. PARALLELIZATION

Input split

b0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[12x10]()

b1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[12x10]()

conv5x5_0
bo0

(1x1)[1,1]-->(1x1)[1,1] (0)
buffer[8x3]()

conv5x5_1
bo1

(1x1)[1,1]-->(1x1)[1,1] (0)
buffer[8x3]()

Outputjoin

Figure 7.17: Correctly parallelized buffers for reuse
The addition of buffers after the convolution kernels allows the second convolution
kernel to continue processing while the Join kernel takes results from the first convo-
lution kernel. This allows maximum data reuse across the convolution kernels, but
at the cost of additional buffering.

2

1

3

Figure 7.18: Simulation trace of correctly parallelized buffers for reuse
The results of running the program shown in Figure 7.17 indicate that the program
does not stall and in fact completes (3) as expected on cycle 13,878. Note the high
utilization (lack of output stalls) of the convolution kernels at (1) and (2) in this
program trace compared to that of Figure 7.16.

same processor as the kernels, this enables maximum data reuse by keeping the data

local to the processor that will consume it. The tradeoff is the need to parallelize

the buffers which results in increased storage and computation overhead. In addition

to enabling increased reuse, these configurations can reduce the required commu-

nications bandwidth between kernels. In the example in Figure 7.17, both buffers

can simultaneously output data to the computation kernels. Compared to the de-

fault implementation of Figure 7.13, this doubles the bandwidth available to feed the

computation kernels as well as reducing the required bandwidth by increasing the

reuse.

7.6. DISCUSSION 121

7.6.2 Split/Join Inefficiencies

While the parallelized applications presented in Chapter 7 are all correct in the sense

that they produce the desired output and meet the required input rates given the

specified hardware resources, they are clearly not optimal. As can be seen in all of

these graphs, and is explicitly illustrated in Figure 7.19(a), the approach of simply

replicating a kernel as required and then inserting Split and Join kernels around it

leads to an overall program structure which consists of Split→Kernel→Join followed

immediately by another Split→Kernel→Join. This program structure can be inef-

ficient because of its forced centralization of data movement and the difficulty of

load-balancing the Split/Join kernels.

For example, in Figure 7.19(a), all data from the parallelized kernels is forced to

come together at centralized collection and distribution points, even if the pattern of

the data movement would not require it. Here kernels A and B in are both replicated

3 times, so it would seem be wasteful to have the outputs from the As collected

by a centralized Join kernel immediately before distributing them to the Bs via a

second Split kernel. Such distribution can be inefficient as well as they can waste

interconnection bandwidth by moving all data through a central point. One solution,

if valid, would be to eliminate the intermediate Join/Split kernels and directly connect

the A and B kernels, as illustrated in Figure 7.19(c).

Along similar lines, having centralized Split and Join kernels makes load balancing

difficult. The Split and Join kernels require very little storage and processing time,

which makes them prime candidates for sharing a processor with another kernel in a

time-multiplexed manner. However, pairing the single Split or Join kernel with one

of the multiple parallelized processing kernels on a single processor results in a load

imbalance. If the processing kernels have been parallelized such that their expected

utilization is high, then the addition of the Split or Join kernel to any of them may

exceed the processor’s resources.

Both of these issues can be addressed by distributing the Split and Join kernels

among the computation kernels they serve. This effectively partitions the finite state

machines in the original Split and Join kernels such that a separate Split or Join

kernel can be created for each computation kernel. The result of this transformation

122 CHAPTER 7. PARALLELIZATION

Input Split (3) Output

A_0

A_1

A_2

Join (3) Split (3)

B_0

B_1

B_2

Join (3)

(a) Inefficient Split/Join structures from simple parallelization

Input Split (3) Output

A_0

A_1

A_2

Join (3)

Split (3)_0

Split (3)_1

Split (3)_2

Join (3)_0 B_1

Join (3)_1 B_2

Join (3)_2 B_0

(b) Distributed Split/Joins

Input Split (3) Output

A_0

A_1

A_2

B_0

B_1

B_2

Join (3)

(c) Elimination of redundant Split/Joins

Figure 7.19: Split/Join optimization examples

is that each data-parallel kernel has its own Split and Join kernel, which can be easily

time-multiplexed in a load-balanced fashion and distributed for optimal bandwidth

utilization. Furthermore, it may be possible to eliminate the resulting individual

Split/Joins if their data movement is fixed, as shown in Figures 7.19(b)-7.19(c).

While this approach evenly distributes the Split/Join overhead among the compu-

tation kernels, it also been increases the overhead as there are more Split/Join kernels

that must be executed. This proliferation is demonstrated in Figure 7.20(a), where

the program from Figure 7.11 has had its Split/Join kernels automatically distributed.

Alternatively, for data-parallel computations, the distribution could be adjusted to

be not perfectly round-robin, thereby reducing the processor utilization of one of the

7.6. DISCUSSION 123

Input

input.out to conv3x3.in split (2)

input.out to conv5x5.in split (3)

subtract
subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[44x4]()
down2x2 Output

offset(in0)
(0,0)[1,1,1,1]

input.out to conv3x3.in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

input.out to conv3x3.in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

input.out to conv3x3.in_0 Split (0)

input.out to conv3x3.in_1 Split (1)

input.out to conv5x5.in_0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

input.out to conv5x5.in_1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

input.out to conv5x5.in_2
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[18x10]()

input.out to conv5x5.in_0 Split (0)

input.out to conv5x5.in_1 Split (1)

input.out to conv5x5.in_2 Split (2)

conv3x3_0 conv3x3_0 Split (0)

conv3x3_1 conv3x3_1 Split (1)

conv3x3_2 conv3x3_2 Split (2)

conv5x5->out Join (5)

conv5x5_0

conv5x5_1

conv5x5_2

conv5x5_3

conv5x5_4

conv3x3.out to offset(in0).in join (2)

conv3x3.out to offset(in0).in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()

conv3x3.out to offset(in0).in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()

conv3x3_0 Join (0)

conv3x3_1 Join (1)

conv3x3_2 Join (2)

conv5x5_0 Join (0)

conv5x5_1 Join (1)

conv5x5_2 Join (2)

conv5x5_3 Join (3)

conv5x5_4 Join (4)

conv3x3.out to offset(in0).in_0 Join (0)

conv3x3.out to offset(in0).in_1 Join (1)

(a) Proliferation of Split/Join kernels when distributed

input.out to conv5x5.in_1 Split (1)

conv5x5_3 Join (3)

conv5x5_4 Join (4)

conv5x5_2 Join (2)

conv5x5_1 Join (1)

conv5x5_0 Join (0)

input.out to conv5x5.in split (3)
input.out to conv5x5.in_1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

input.out to conv5x5.in_0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

input.out to conv5x5.in_2
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[18x10]()

subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[44x4]()
down2x2

input.out to conv3x3.in_0 Split (0)

conv3x3_2 Join (2)

conv3x3_1 Join (1)

conv3x3_0 Join (0)

input.out to conv3x3.in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

conv5x5_3

conv5x5->out Join (5)

conv3x3.out to offset(in0).in_1 Join (1)
conv3x3.out to offset(in0).in_1

(1x1)[1,1]-->(3x3)[1,1] (0)
buffer[24x6]()

conv3x3.out to offset(in0).in join (2)

conv5x5_4

offset(in0)
(0,0)[1,1,1,1]

subtract

input.out to conv5x5.in_0 Split (0)

conv3x3_2 Split (2)

conv3x3.out to offset(in0).in_0 Join (0)

conv3x3_2

conv5x5_2

input.out to conv3x3.in_1 Split (1)input.out to conv3x3.in split (2)
input.out to conv3x3.in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

conv3x3_1 Split (1)conv3x3_1

input.out to conv5x5.in_2 Split (2)

conv3x3_0 Split (0)conv3x3_0

conv3x3.out to offset(in0).in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()

Outputconv5x5_1

conv5x5_0

Input

(b) Time-multiplexing of distributed Split/Join kernels

Figure 7.20: Split/Join distribution and time-multiplexing

The results of automatically distributing the Split/Join kernels from the parallelized
program in Figure 7.11 (top) and using the distributed kernels for a load-balanced
time-multiplexing (bottom). The gray boxes in Figure 7.20(b) indicate the ker-
nels that have been selected to be time-multiplexed on the same processor. As the
Split/Join kernels in this program do not execute a static distribution they can not
be eliminated, thereby incurring a significant overhead compared to the program in
Figure 7.11.

parallelized kernels, which could then be time-multiplexed with the non-distributed

Split/Join kernels without incurring as much of a load imbalance.

7.6.3 Analysis

The parallelization problem addressed here is most similar to that targeted by the

StreamIt compiler [16, 15]. StreamIt attempts to maximize throughput by optimizing

load balance and minimizing synchronization across a fixed number of processors. The

approach presented here is to determine the minimum number of processors to meet

124 CHAPTER 7. PARALLELIZATION

the real-time constraints imposed by the application’s input sizes and rates. While

these may appear fundamentally different, they both have the same issues of optimally

utilizing resources. For an application with real-time constraints, the goal is to utilize

the fewest number of resources, while a maximum throughput approach attempts to

make the best use of a fixed number. Either approach can be crudely mapped to the

other by wrapping the compilation process in a loop that either adjusts the real-time

constraint until the desired number of processors are utilized, or adjusts the number

of processors until the desired real-time constraint is achieved.

StreamIt’s splitjoin filters differ from the Split/Join kernel presented here in two

important ways. First, they are regular kernels and not hierarchical containers. This

implies that the computation and storage resources required to implement the data

distribution and collection can be incorporated transparently in the overall applica-

tion analysis. Secondly, the finite state machines in the these Split/Join kernels are

not limited to round-robin data distribution, and can replicate data, for example to

distribute data to parallelized buffers. This functionality could be reproduced with

a significant degree of complexity in StreamIt by using multiple splitjoins and data

replications. The tradeoff is that it is possible to create Split/Join kernels that are

hard to analyze, and the application analysis that inserts them may need to keep

track of its intentions separately, as extracting them from the constructed Split/Join

kernels may be difficult.

The basic parallelization presented here is sufficient to ensure the application

meets its real-time constraints, but it is unlikely to result in an efficient implementa-

tion. This is due in large part to the proliferation of Split/Join kernels with their low

cpu and memory utilization, which need to be load-balanced with the high-utilization

computation kernels. (See Section 7.5.) More generally, this simple approach maps

each resulting kernel in the parallelized application to a separate processor tile which

is unlikely to result in high utilization. StreamIt deals with this issue by applying

varying degrees of kernel fission to pipelined data-parallel kernels, and using software

pipelining to enable flexible scheduling of pipelined, but data dependent, kernels.

The end result is a time-multiplexing of processors wherein each processor executes

multiple kernels over time, to potentially improve load balancing. Implementing such

7.6. DISCUSSION 125

time-multiplexing requires that the buffering between the kernels to be multiplexed

be reasonable, and reasonably calculable. Both StreamIt [15] and Array-OL [4] found

this to the case for certain combinations of filters/kernels, but not for others. Chapter

8 discusses such time-multiplexing to improve utilization.

7.6.4 Other Access Patterns

Matrix multiplication is a common operation, but has a very different reuse pat-

tern from that of the image processing kernels discussed heretofore. This difference

makes it difficult to map matrix multiplication to the block-parallel framework. The

fundamental problem is that matrix multiplication accesses data in both column-

and row-order, which is awkward within the fixed scan line ordering presented here.

In addition, matrix multiplication re-uses the entirety of one matrix for each row

(or column) in the other matrix, which is not readily expressible with the given In-

put/Output parameterization.

The simplest implementation of a two-dimensional matrix multiplication, C =

AB, would consist of a single kernel to implement the matrix multiplication with two

inputs A and B, each the size of the matrices to be multiplied. This would result

in sufficient input buffering being instantiated for the kernel to hold the entirety

of each input matrix A and B, and would not be data-parallel, thereby preventing

parallelization. A slightly more sophisticated implementation might add a kernel to

replicate B a sufficient number of times to allow each row of A to be multiplied in

parallel by a matrix-vector multiplication kernel. With the addition of this replication

kernel, the rest of the analysis and parallelization would be supported by the system

presented here. However, such an implementation might exhibit poor data locality

as B would be replicated and sent out once for each row in A.

A proper matrix multiplication implementation would provide the compiler with

a parallelization algorithm which could determine how to parallelize the matrix mul-

tiplication, and generate the correct, potentially heterogenous, series of kernels to

implement that parallelization. Such an algorithm would need to block the input

data appropriately to fit in on-chip memory, and transfer intermediate results to and

126 CHAPTER 7. PARALLELIZATION

from off-chip storage as needed. However, this complex data movement is a function

of the algorithm, and not a requirement of the programming system. While this

system can support such an implementation, writing the particular parallelization

algorithm is roughly as complex as in other programming environments.

Another common operation is a fast Fourier transform, or FFT. These operations

are typically parallelized using a butterfly structure of alternating data exchanges and

computation, and can map well to pipelined implementations. As with matrix mul-

tiplication, such non-scan line data ordering is difficult to map to the Input/Output

parameterization supported here. To enable FFT kernels to be parallelized, an ap-

propriate parallelization algorithm must again be implemented for the compilation

system.

These two examples of non-windowed data access demonstrate that while this

framework can support arbitrary algorithms, the limitations of the data movement

parameterization supported by the block-parallel approach may require that their

analysis and parallelization be implemented specifically for the algorithm. This trade-

off acknowledges that trying to provide either a too general automatic parallelization

capability or too general input parameterization makes implementing an effective

compiler extraordinarily difficult. Instead, this framework provides the capabilities

to automatically and efficiently handle simple two-dimensional windowed access data-

parallel kernels, and allows the programmer to extend it to handle more specific cases.

Chapter 8

Time Multiplexing

Once a program has been analyzed and parallelized it must be mapped to physical

processor resources. This mapping has two interdependent aspects: physical place-

ment of kernels on processors (see Appendix A) and time-multiplexing of multiple

kernels on one processor. The physical mapping and multiplexing are not fully inde-

pendent as the selection of which kernels to time-multiplex will have a direct impact

on the communications patterns, which will therefore change the optimal physical

placement. However, if the communications costs are assumed to be independent

of the physical mapping, as is the case for the simulated results presented here (see

Appendix B), these two steps can be treated as independent.

This chapter discusses the need to time-multiplex kernels to achieve higher over-

all processor utilization, and presents a simple greedy algorithm for doing so. The

algorithm is first motivated by examining the utilization of the näıve 1:1 mapping of

kernels to processors implicitly presented in the previous chapters. These results are

used to determine how low-utilization kernels can be time-multiplexed with other ker-

nels to increase the overall utilization, without exceeding the available computation or

storage resources. Finally, the result of applying all the analyses and transformations

discussed in this thesis, including the time-multiplexing of the kernels, is compared

across a range of programs.

127

128 CHAPTER 8. TIME MULTIPLEXING

down2x2 Output

offset(in0)
(0,0)[1,1,1,1]

subtract

conv3x3.out to offset(in0).in
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[22x6]()
subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[20x4]()

conv5x5

input.out to conv3x3.in
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()
conv3x3

input.out to conv5x5.in
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[24x10]()

Input

(a) “Small/Slow” program from Figure 7.8

conv3x3_2

Join conv5x5_4

Join

input.out to conv5x5.in_1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

Join
input.out to conv5x5.in_0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

conv5x5_3 down2x2 Output

input.out to conv5x5.in_2
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[18x10]()

Split

input.out to conv3x3.in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

input.out to conv3x3.in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

Split conv5x5_2

conv3x3_1 Split

conv3x3.out to offset(in0).in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()

conv3x3.out to offset(in0).in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()

Join

conv5x5_0

Join

subtract
subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[44x4]()

Split

conv3x3_0

offset(in0)
(0,0)[1,1,1,1]

conv5x5_1

Split

Input

(b) “Big/Fast” program from Figure 7.11

Figure 8.1: 1:1 kernel-to-processor mapping
The implied näıve 1:1 processor-to-kernel mappings for two of the applications from
Chapter 7 are shown. The individual kernel groups are shown as gray boxes around
the kernels included within them. Each kernel group indicates the kernels that will
be executed in a time-multiplexed manner on a single procoressor. Coefficient inputs
are not shown for simplicity.

8.1 Näıve Mappings

The previous chapters have implicitly assumed a näıve 1:1 mapping of kernels to

processors. That is, in each of the examples presented so far, it was assumed that

each computation kernel, split/join kernel, and buffer kernel was mapped to its own

processor. This can be clearly seen in Figure 7.11 where each of the kernels in the

application graph has a corresponding trace in the simulator output. The explicit 1:1

mapping for that example is shown in Figure 8.1(b), where each of the kernels in the

program has been placed in its own kernel group. The kernel groups for an applica-

tion determine which kernels will be time-multiplexed together on a given processor.

The time-multiplexing is implemented as a round-robin cooperative scheduling of the

kernels, where each kernel yields to the scheduler when it finishes invoking a method

or is stalled waiting for an input or output. (See Appendix B for more details on the

simulator implementation.)

While this 1:1 mapping results in a functionally correct application, it is unlikely

8.1. NAÏVE MAPPINGS 129

to result in a high-efficiency implementation. This is due to the inherent low uti-

lization of the processors dedicated to executing simple kernels, such as splits and

joins. Having underutilized processors in the implementation is inefficient due to

their power consumption and area requirements. While it is standard practice to

put idle processors in low-power sleep states, the transitions to and from sleep incur

penalties in both performance and power for the time and power it takes to enter

and exit sleep. Furthermore, underutilized processors increase the die area required

to implement the program, which increases chip cost. To both minimize power and

area it is important to keep the minimum number of processors as highly utilized as

possible1.

The efficiency of these 1:1 mappings can be seen in Figure 8.22 for the programs

shown in Figure 8.1. The overall results are not impressive. The “small/slow” and

“big/fast” programs achieve an average of just 20% and 32% utilization, respectively.

(The “Big/Slow” application has higher overall utilization only because it has a higher

percentage of computation kernels due to its higher data rate.) In the case of the

“small/slow” program, the single “conv5x5” kernel achieves 93% utilization, while the

“conv3x3” kernel requires roughly only a processor. The “big/fast” program shows

that the “conv5x5” kernel was parallelized into five instances, with each instance

operating at 91% utilization. Similarly, the “conv3x3” kernel was parallelized three

times, with each instance running at 75% utilization. When taken by themselves (see

“Computation Average” in Figure 8.2), the computation kernels have a significantly

higher average utilization (38% and 71%) for the two programs, even including the

“subtract” and “down2x2” kernels which do very little work. In both of these cases,

the computation kernels are correctly parallelized given the constraint of an integer

number of evenly-load balanced kernel instances and the real-time requirements.

The low overall average utilization (“Average” in Figure 8.2) is due to two issues:

1It should be noted that other issues may change this formulation. For example, if instruction
storage is highly constrained, it might be more energy efficient to put a processor to sleep and
execute other kernels on different processors than to reload instructions from a higher-level memory
in order to multiplex multiple kernels on the same processor.

2Figure 8.2 has the amusing property that it acts as an optical illusion. To see this, tilt the page
away from yourself while examining the long striped lines in the graph. They will appear to bend
as you tilt the page.

130 CHAPTER 8. TIME MULTIPLEXING

0% 25% 50% 75% 100%

[Convolution: conv3x3]

[Convolution: conv5x5]

[DownsampleKernel: down2x2]

[InsetKernel: offset(in0)]

[Buffer: conv3x3.out to offset(in0).in]

[Buffer: input.out to conv3x3.in]

[Buffer: input.out to conv5x5.in]

[Buffer: subtract.out to down2x2.in]

[SubtractKernel: subtract]

Average

Computation Average

Other Average

[Convolution: conv3x3_0]

[Convolution: conv3x3_1]

[Convolution: conv3x3_2]

[Convolution: conv5x5_0]

[Convolution: conv5x5_1]

[Convolution: conv5x5_2]

[Convolution: conv5x5_3]

[Convolution: conv5x5_4]

[DownsampleKernel: down2x2]

[InsetKernel: offset(in0)]

[Join: conv3x3.out to offset(in0).in join (2)]

[Join: conv3x3->out Join (3)]

[Join: conv5x5->out Join (5)]

[Join: input.out to conv3x3.in join (2)]

[Join: input.out to conv5x5.in join (3)]

[Buffer: conv3x3.out to offset(in0).in_0]

[Buffer: conv3x3.out to offset(in0).in_1]

[Buffer: input.out to conv3x3.in_0]

[Buffer: input.out to conv3x3.in_1]

[Buffer: input.out to conv5x5.in_0]

[Buffer: input.out to conv5x5.in_1]

[Buffer: input.out to conv5x5.in_2]

[Buffer: subtract.out to down2x2.in]

[Replicate: coeff->conv3x3 Replicate (3)]

[Replicate: coeff->conv5x5 Replicate (5)]

[Split: conv3x3.out to offset(in0).in split (2)]

[Split: in->conv3x3 Split (3)]

[Split: in->conv5x5 Split (5)]

[Split: input.out to conv3x3.in split (2)]

[Split: input.out to conv5x5.in split (3)]

[SubtractKernel: subtract]

Average

Computation Average

Other Average

S
m

a
ll
 S

lo
w

B
ig

 F
a
s
t

Run Token Read ReadToken Write WriteToken InputWait OutputWait

S
m

a
ll
 S

lo
w

B
ig

 F
a
s
t

Figure 8.2: 1:1 mapping utilization

Processor utilization for a 1:1 kernel-to-processor mappings of the programs shown in
Figure 8.1. The run time (light blue) is the time spent doing useful work. The Input-
Wait and OutputWait (striped yellow) bars represent time the kernels are waiting to
receive or send data, respectively. “Computation Average” shows the utilization av-
eraged over the computation kernels, and “Other Average” shows the average across
the remaining (split/join, buffer) kernels. Note that the two coefficient replication
kernels in the “Big/Fast” program show zero utilization because they only execute
once at the beginning of the application to load the coefficients into the convolution
kernels.

8.2. GREEDY MERGE ALGORITHM 131

1) inherently low-utilization kernels such as splits, joins, and buffers that are each

mapped to a dedicated processor, and 2) the round-robin distribution of work to par-

allelized computation kernels, which only achieves high utilization if the amount of

work required is close to an integer multiple of the capabilities of an individual pro-

cessor. The inherently low-utilization kernels are in general non-computation kernels.

Taken by themselves, these “other” kernels (“Other Average” in Figure 8.2) have net

utilizations of 7% and 14% for the two programs, respectively, which significantly

reduces the average utilization. To ameliorate this problem, the kernels with low

utilization should be time-multiplexed with other low-utilization kernels on a reduced

set of processors. Doing so will result in fewer processors with a higher utilization

per processor.

8.2 Greedy Merge Algorithm

To overcome the poor utilization demonstrated with 1:1 kernel-to-processor map-

pings, kernels should be time-multiplexed on the same processor. This effectively

builds up a higher utilization for that processor and reduces the total number re-

quired. However, the choice of which kernels to time-multiplex is a fundamentally

difficult problem as it is not independent of the choice of parallelization in the first

place. For example, it may be better to parallelize a kernel more than is required to

meet the real-time requirements in order to enable time-multiplexing it with another

kernel, the combination of which may result in increased utilization and/or reduced

communications.

The “greedy merge algorithm” presented here is a simple greedy algorithm for

finding a reasonable set of kernels to time-multiplex given a fixed initial parallelization.

This algorithm examines neighboring kernel groups in the application graph and

merges the ones with the lowest utilization if their combined utilization does not

exceed 100% of the processor CPU or memory.

The greedy merge algorithm starts by building a set of 1:1 candidate kernel groups

that map each kernel to its own group. It then loops over the candidate groups,

starting with the group with the lowest utilization. For each candidate group, the

132 CHAPTER 8. TIME MULTIPLEXING

neighboring groups in the application graph are identified. The neighboring groups

are then sorted in order of increasing CPU utilization, and the algorithm merges

the candidate with the neighbor with the lowest CPU utilization whose combined

grouping does not exceed either the CPU or memory limitations of the processor. If

a valid merging is found, the old candidate and neighbor groups are removed from

the set of candidates, and the new merged group is added. If a group’s utilization

exceeds a threshold (95% for these examples) of the CPU or memory it is removed

from the set of candidates. If a group can not be merged with any of its neighbors, or

has no neighbors, it is removed from the set of candidates as well. Buffers connected

directly to application DataInputs are not considered for merging because they must

immediately buffer the input data to insure the DataInput does not stall and drop

data. Time-multiplexing these buffers can result in other kernels being executed on

that processor when a DataInput generates data, which causes the input data to

be dropped. The algorithm terminates when there are no more candidate/neighbor

merge pairs to consider. The result of applying this algorithm to the programs in

Figure 8.1 are shown in Figure 8.3.

8.3 Results

8.3.1 Greedy Mapping Results

The results of applying the greedy merge algorithm are shown in Figure 8.3. The cor-

responding utilizations for these programs are shown in in Figure 8.4. The utilization

for the “Small/Slow” and “Big/Fast” programs increased from 20% to 37% and 32%

to 63%, with the greedy merge algorithm, respectively. Both of these applications

have their utilization limited by only considering neighboring kernel groups to merge.

The “Small/Slow” program has so few kernels to start with, so the two non-merged

input buffers significantly decrease the average utilization. The “Big/Fast” program

is limited by the inability to merge kernel groups across the convolution kernels due

to their high inherent utilization. In this case, choosing a different initial paralleliza-

tion which reduced the utilization for the convolution kernels might have allowed

8.3. RESULTS 133

conv5x5

subtract
input.out to conv3x3.in

(1x1)[1,1]-->(3x3)[1,1] (0)
buffer[24x6]()

conv3x3 conv3x3.out to offset(in0).in
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[22x6]()
offset(in0)

(0,0)[1,1,1,1] down2x2 Output
subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[20x4]()

input.out to conv5x5.in
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[24x10]()

Input

(a) “Small/Slow” program from Figure 7.8

conv3x3.out to offset(in0).in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()

Join

Join Split

conv3x3.out to offset(in0).in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()

conv3x3_1

offset(in0)
(0,0)[1,1,1,1]

subtract

conv5x5_2

Join

input.out to conv5x5.in_1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

Join

conv3x3_0

Split

conv3x3_2

Join
input.out to conv3x3.in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

input.out to conv5x5.in_0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()
Split

input.out to conv5x5.in_2
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[18x10]()

conv5x5_3

down2x2 Output
subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[44x4]()

conv5x5_4

input.out to conv3x3.in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()
Split

conv5x5_1

Split

conv5x5_0

Input

(b) “Big/Fast” program from Figure 7.11

Figure 8.3: Greedy kernel mapping
The results of the greedy kernel mapping algorithm when applied to the programs
from Figure 8.1 are shown. Coefficient inputs are not shown for simplicity.

the time-multiplexing to merge the convolution kernels. Alternatively allowing non-

neighboring kernel groups to merge or changing the round-robin data distribution

would have improved utilization.

8.3.2 General Results

The results of applying the program dataflow analysis, inset and buffer insertion,

parallelization, and greedy time-multiplexing discussed in this thesis are shown for

a range of programs in Figure 8.5. The new programs introduced here, “Parallel

Buffer” and “ConvAB”, are shown in Figure 8.6 along with the details of the time-

multiplexing for the “Bayer” and “Histogram” programs. The “Parallel Buffer” pro-

gram tests the buffer kernel parallelization for improved data reuse that was discussed

in Section 7.6.1. “ConvAB” is a test case for the Split/Join distribution mentioned

in Section 7.6.2. The “Bayer Fast” and “Histogram Fast” programs are versions of

the “Bayer” and “Histogram” programs, respectively, where the input rate has been

roughly doubled.

134 CHAPTER 8. TIME MULTIPLEXING

0% 25% 50% 75% 100%

[[conv3x3 to offset(in0)][down2x2][subtract to down2x2][offset(in0)][subtract]]

[Convolution: conv3x3]

[Convolution: conv5x5]

[Buffer: input.out to conv3x3.in]

[Buffer: input.out to conv5x5.in]

Average

[[coeff->conv3x3 Replicate (3)][conv3x3_0]]

[[coeff->conv5x5 Replicate (5)][conv5x5_0]]

[[conv3x3 to offset(in0)][conv3x3 Join][conv3x3 to offset(in0) split]]

[[down2x2][subtract.out to down2x2.in][conv5x5->out Join (5)][subtract]]

[[in->conv3x3 Split][input to conv3x3 join][input to conv3x3.in_0]]

[[in->conv5x5 Split][input to conv5x5 join][input to conv5x5.in_2]]

[[input.out to conv3x3.in_1][input.out to conv3x3.in split (2)]]

[[input.out to conv5x5.in_0][input.out to conv5x5.in split (3)]]

[[offset(in0)][conv3x3 to offset(in0) join][conv3x3 to offset(in0).in_0]]

[Convolution: conv3x3_1]

[Convolution: conv3x3_2]

[Convolution: conv5x5_1]

[Convolution: conv5x5_2]

[Convolution: conv5x5_3]

[Convolution: conv5x5_4]

[Buffer: input.out to conv5x5.in_1]

Average

S
m

a
ll
 S

lo
w

B
ig

 F
a
s
t

Run Token Read ReadToken Write WriteToken InputWait OutputWait

S
m

a
ll

 S
lo

w
B

ig
 F

a
s
t

Figure 8.4: Greedy mapping utilization

On average, the time-multiplexing selected by the greedy merging algorithm re-

sulted in a 1.5× improvement in processor utilization, including the overhead for

cooperative scheduling of the multiplexed kernels. This improvement was greatest

for the “Big/Slow” program (2.1×) and smallest for the “Histogram Fast” program

(1.1×). These results correlate closely to prevalence of high-utilization computation

kernels to low-utilization kernels in the applications. The “Big/Slow” program (Fig-

ure 7.10) has only four computation kernels (two of which, “subtract” and “down2x2”,

do very little), but eight buffers and six split/join kernels. By time-multiplexing these

together it is able to reduce the number of processors required from 19 to nine. Con-

versely, the “Histogram Fast” program only saves one of its nine processors when

time-multiplexed, but because four of the original nine were already running high-

utilization computation kernels, it still maintains a high utilization. Given this high

sensitivity to the constitution of the program, the average improvement shown here

8.3. RESULTS 135

should be quoted with care.

0%

25%

50%

75%

100%

1:1 GM 1:1 GM 1:1 GM 1:1 GM 1:1 GM 1:1 GM 1:1 GM 1:1 GM 1:1 GM 1:1 GM 1:1 GM

Bayer Bayer Fast Histogram Histogram

Fast

Parallel

Buffer

ConvAB Small Slow Small Fast Big Slow Big Fast Average

Run Token Read ReadToken Write WriteToken

Figure 8.5: Average utilization for näıve (1:1) and greedy (GM) mappings

The average utilization is shown across a variety of test programs for the 1:1 kernel-
to-processor mapping and the greedy merge.

However, Figure 8.5 is most significant because it validates the analyses and trans-

formations presented in this thesis. By showing these results across a range of pro-

grams, it can be seen that this approach is general enough to handle a range of

programs and can automatically adjust to varying input constraints. The programs

shown here range in size from only 11 kernels in the “Histogram” program to more

than 50 in “Bayer Fast”, demonstrating that the approach scales to many tens of pro-

cessors. The correctness of the “Histogram” application demonstrates the usefulness

and capabilities of the data dependency edges and ControlTokens discussed in Chap-

ter 4. The “fast” versions of the test programs and the four “Small/BigSlow/Fast”

test programs all demonstrate the ability of this system to automatically adapt the

program to changes in input rate requirements, by appropriately propagating infor-

mation through the application and the parallelization.

136 CHAPTER 8. TIME MULTIPLEXING

Join merge Outputhist_1

input.out to hist.in
(10x1)[10,1]-->(1x1)[1,1] (0)

buffer[20x1]()
Split

hist_0

hist_2Input

(a) “Histogram” program greedy mapping

conv5x5_1
bo1

(1x1)[1,1]-->(1x1)[1,1] (0)
buffer[8x3]()

b1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[12x10]()

b0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[12x10]()
conv5x5_0Split bo0

(1x1)[1,1]-->(1x1)[1,1] (0)
buffer[8x3]()

Join Output

Input

(b) “Parallel Buffer” program greedy mapping

Split Join

Join

Join

Join

input.out to convA.in_0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[22x10]()

Join convB_1

Join

SplitSplit
input.out to convA.in_1

(1x1)[1,1]-->(5x5)[1,1] (0)
buffer[22x10]()

Join convB_0

convA_0

Join

convA_3

Join convB_2 Output

Split
convA.out to convB.in_0

(1x1)[1,1]-->(5x5)[1,1] (0)
buffer[20x10]()

convA_2 Split Split
convA.out to convB.in_1

(1x1)[1,1]-->(5x5)[1,1] (0)
buffer[20x10]()

convA_1

Input

(c) “ConvAB” program greedy mapping

bayer.out to hG.bayerIn
(1x1)[1,1]-->(6x2)[2,2] (0)

buffer[20x4]() hG

Split

h.RGBout to offset(vRGBIn).in_1
(6x2)[6,2]-->(7x3)[1,1] (0)

buffer[24x7]()

h.RGBout to offset(vRGBIn).in_0
(6x2)[6,2]-->(7x3)[1,1] (0)

buffer[24x7]()

Join

Split

h.RGBout to hDiff.RGBIn
(6x2)[6,2]-->(3x1)[3,1] (0)

buffer[42x5]()

h.RGBout to offset(hRGBIn).in_0
(6x2)[6,2]-->(7x3)[1,1] (0)

buffer[24x7]()

h.RGBout to offset(hRGBIn).in_1
(6x2)[6,2]-->(7x3)[1,1] (0)

buffer[24x7]()
Join

offset(h-bayerIn)
(0,0)[2,0,2,0]

offset(h-bayerIn).out to h.h-bayerIn
(1x1)[1,1]-->(4x4)[2,2] (0)

buffer[16x8]()
Split

h_2

h_0

h_1

hGrad_3

Join

offset(hRGBIn)
(0,0)[3,1,3,1]

hGrad_0

hGrad_2

bayer.out to offset(h-bayerIn).in
(1x1)[1,1]-->(5x1)[1,1] (0)

buffer[6x1]()

hGrad_1

Join

select Output

Split
hG.hGout to h.h-hGIn

(1x2)[1,2]-->(2x4)[1,2] (0)
buffer[8x8]()

hGrad_4

offset(vRGBIn)
(0,0)[3,1,3,1]

hDiff

Split

hGrad_5

hDiff.gammaBetaOut to hGrad.GammaBetaIn
(2x1)[2,1]-->(6x3)[2,1] (0)

buffer[28x6]()

offset(hRGBIn).out to select.hRGBIn
(1x1)[1,1]-->(3x1)[3,1] (0)

buffer[6x1]()

offset(vRGBIn).out to select.vRGBIn
(1x1)[1,1]-->(3x1)[3,1] (0)

buffer[6x1]()

Input

(d) “Bayer” program from Figure 7.7(b)

Figure 8.6: More greedy kernel mappings
These mappings correspond to the remaining applications in Figure 8.5.

8.4. DISCUSSION 137

8.4 Discussion

The greedy merge algorithm presented here implements a simple heuristic (merge

the two kernel groups with the lowest utilization first) to select kernels to time-

multiplex. Despite this simplicity, it provides a significant improvement in utilization

over a simple 1:1 kernel-to-processor mapping. The resulting low overall utilization,

however, is partially a result of the simplicity of the algorithm. In particular, the

inability of the greedy merge algorithm to change the initial parallelization based on

the time-multiplexing limits its ability to explore the potential mapping space.

The problem of time-multiplexing kernels on processors is a fundamentally hard

one that has been explored in detail in the Raw backend for StreamIt [15, 16]. The

StreamIt compiler takes a more sophisticated approach by trying to determine the

correct degree of parallelism to enable the right amount of kernel fission to achieve

the highest possible utilization. This differs from the problem here in that the min-

imum degree of parallelism is not dictated by the real-time constraints. However,

StreamIt’s approach of integrating the decision as to how much a kernel should be par-

allelized with the decision as to with which other kernels it should be time-multiplexed

provides the benefit that more possible mappings can be explored. The algorithm

presented here does not reevaluate the initial parallelization while determining the

time-multiplexing.

The concept of kernel merging is similar to time-multiplexing and has been ex-

plored in both ArrayOL [4] and StreamIt. When merging kernels the functionality

of the kernels is combined into one larger kernel, with the time-multiplexing of the

different kernel operations implicit in the static merging of their code. Kernel merg-

ing has the benefit of removing the need to cooperatively schedule time-multiplexed

kernels, but it has the downside that the buffering between the kernels must be stat-

ically determined as well. For example, merging kernels with 3× 3 and 5× 5 inputs

would require determining the number of iterations of both kernels that consume and

produce the same amount of input, and statically replicating the kernels appropri-

ately to meet them. The result would be a single kernel that would execute on each

138 CHAPTER 8. TIME MULTIPLEXING

iteration some number of both sub-kernels in a static manner. For the more com-

plex input and output patterns allowed by ArrayOL, finding such mergings has been

shown to be decidedly non-trivial. StreamIt fusses kernels in this manner whenever

it can profitably do so and statically bound the buffer size required between them.

In addition to fusing kernels, StreamIt took kernel merging one step further by

implementing a linear state space analysis of the kernels to determine if their internal

computations can be profitably merged [1]. Such analysis is only applicable to kernels

of a particular form, but when it can be applied it enables merging kernels in the most

efficient manner possible.

The Greedy Merge Algorithm

The greedy merge algorithm presented here is greedy in the sense that it takes the

first valid choice each time. This simplifies implementation and provides for a very

fast runtime, but is quite likely to get caught in local minima. The implementation of

the algorithm relies on accurate static estimates3 of the CPU and memory utilization

of each kernel, and the monotonic behavior of merged kernels. (E.g., if the CPU

or memory utilization of two merged kernels decreased in merging them this greedy

approach would be less likely to find the best match without examining all of its

neighbors.)

This algorithm has two significant limitations that appear in the results presented

here. The first is the limitation of only considering neighboring kernel groups for

merging. This prevents merges across kernels with high utilization such as the convo-

lution kernels in the “Big/Fast” and “Small/Slow” programs. The second limitation

is in not changing the initial parallelization to make the time-multiplexing more effi-

cient. This is particularly a problem for the parallelization of kernels where the even

round-robin distribution of work results in a lower utilization across the computation

kernels. This effect can be seen in the “Big/Fast” application. The “conv3x3” kernel

requires 2.25 processors to meet its required rate. This forces the parallelization to

allocate 3 processors to ensure the real-time requirements are met, which reduces

3The estimates provided by the compiler for runtimes appear to be accurate to within 5% of the
actual runtimes

8.4. DISCUSSION 139

the average utilization to only 75% with a round-robin distribution of work. If a

non-round-robin distribution were chosen that sent 44% of the data to the first two

parallelized kernels, the third kernel would have a utilization of only 13%, which

might make it a much better candidate for time-multiplexing with other kernels.

The algorithm further avoids time-multiplexing buffers that immediately follow

a DataInput. If such “inflexible” buffers are time-multiplexed, the cooperative na-

ture of the scheduling can prevent them from running for long enough to cause the

application to miss an input, and thereby not meet its real-time requirement. This

can significantly reduce the average utilization for programs with few kernels, such as

the “Small/Slow” program. Indeed, Figure 8.3(a) suggests that if the initial buffers

were not explicitly excluded from merging, the greedy merge algorithm would have

merged one of them with the “conv3x3” kernel, thereby removing the processor with

the lowest utilization.

To make this approach more accurate it would be important to include the bene-

fit of placing two kernels on the same processor. This would be seen through the

reduction in communications costs between two processors, and is not visible in

a non-placed simulation. However, because this algorithm only considers merging

neighboring groups in the application, each merging will reduce the net communi-

cations between processors and replace it with a local memory transfer or pointer

exchange.

Chapter 9

Conclusions

As architectures with tens to hundreds of processor cores become more common, pro-

gramming approaches will need to automatically handle the parallelization of com-

putation across the cores and, more critically, the streaming of data through them in

order to achieve decent utilization. To this end, this thesis has introduced a statically

parameterized streaming language and compiler framework for analyzing and map-

ping real-time embedded applications to many-core architectures, and demonstrated

the correctness and effectiveness of this approach with a variety of test programs.

The language presented here implements a variety of features to improve the flex-

ibility of stream programming, thereby making it easier to write and analyze such

programs. The three major additions are: 1) the use of two-dimensional data to

make image processing easier and enable the automatic analysis and buffering of

two-dimensional data, 2) the use of control tokens to integrate control flow within a

streaming model in a manner that is both flexible and analyzable, and 3) the addi-

tion of data dependency edges to explicitly specify the degree of parallelism allowed,

thereby enabling the merging of serial and parallel computations without compromis-

ing the ability of the compiler to analyze the program. Taken together, these features

make for a more intuitive and powerful programming model than previous streaming

languages.

The compiler framework utilizes the static parameterization of the application

140

141

data movement and resource requirements to enable powerful automatic manipula-

tions. These include data insetting or zero-padding to correct intuitive, but inconsis-

tent, application descriptions, insertion and sizing of two-dimensional circular buffers

to interface kernels with different data shape requirements, and parallelization with

appropriate data distribution and collection to meet real-time requirements. These

transformations are enabled by a series of dataflow analyses which propagate the

application’s input size and rate through the application to determine the required

processing rate of each kernel.

This complete process is shown in Figures 9.1 through 9.8. The simplified ap-

plication description is shown in Figure 9.1 with the details of the parameterized

inputs and outputs shown in Figure 9.2. The dataflow analysis for data insetting and

buffering is shown in Figure 9.3, with the results from automatically inserting buffers

and insets displayed in Figure 9.4. The fully valid application after inset and buffer

insertion is shown with a complete dataflow analysis in Figure 9.5. This analysis

is then used to parallelize the application to meet the required input rates, as seen

in Figure 9.6. The kernels from the parallelized application are then grouped for

time-multiplexing to increase utilization (Figure 9.7), and the results from the final

cycle-accurate simulation are shown in Figure 9.8.

Input

conv3x3

conv5x5

subtract down2x2 Output

3x3 Coeff

5x5 Coeff

Figure 9.1: Input: Simple program representation

Input out
(1x1)[1,1]

in
(3x3)[1,1]
[1.0,1.0]

in
(5x5)[1,1]
[2.0,2.0]

conv3x3 out
(1x1)[1,1]

coeff
(3x3)[3,3]
[1.0,1.0]

in0
(1x1)[1,1]
[0.0,0.0]

conv5x5 out
(1x1)[1,1]

coeff
(5x5)[5,5]
[2.0,2.0]

in1
(1x1)[1,1]
[0.0,0.0]

subtract out
(1x1)[1,1]

in
(2x2)[2,2]
[0.0,0.0]

down2x2 out
(1x1)[1,1]

in
(1x1)[1,1]
[0.0,0.0]

Output

3x3 Coeff out
(3x3)[3,3]

5x5 Coeff out
(5x5)[5,5]

Figure 9.2: Input: Full parameterized program representation

142 CHAPTER 9. CONCLUSIONS

Input
[48x48@1x1 per 16c]

out
(1x1)[1,1]

in
(3x3)[1,1]
[1.0,1.0]

in
(5x5)[1,1]
[2.0,2.0]

conv3x3 out
(1x1)[1,1]

coeff
(3x3)[3,3]
[1.0,1.0]

in0
(1x1)[1,1]
[0.0,0.0]

conv5x5 out
(1x1)[1,1]

coeff
(5x5)[5,5]
[2.0,2.0]

in1
(1x1)[1,1]
[0.0,0.0]

subtract out
(1x1)[1,1]

in
(2x2)[2,2]
[0.0,0.0]

down2x2 out
(1x1)[1,1]

in
(1x1)[1,1]
[0.0,0.0]

Output

3x3 Coeff
[3x3@3x3 per 1c]

out
(3x3)[3,3]

5x5 Coeff
[5x5@5x5 per 1c]

out
(5x5)[5,5]

loadCoeff:It:1x1@1/s:
init:((It:0x0@?/s:))

runConvolve:It:44x44@28/s:

init:((It:0x0@?/s:))
consume:It:23x23@7/s:

Image: 3.0x3.0
It:1x1@1/s:

<out:(1,1)[0,0,0,0]>

Image: 46.0x46.0
It:46x46@28/s:

<out:(1,1)[2,2,2,2]>

Image: 48.0x48.0
It:44x44@28/s:

<out:(1,1)[2,2,2,2]>

Image: 3.0x3.0
It:1x1@1/s:

<out:(1,1)[1,1,-1,-1]>

Image: 44.0x44.0
It:44x44@28/s:

<out:(1,1)[2,2,2,2]>
Image: 23.0x23.0

It:23x23@7/s:
<out:(1/2,1/2)[2,2,2,2]>

init:((It:0x0@?/s:))
runDownsample:It:23x23@7/s:

Image: 5.0x5.0
It:1x1@1/s:

<out:(1,1)[0,0,0,0]>

Image: 46.0x46.0
It:46x46@28/s:

<out:(1,1)[1,1,1,1]>

Image: 48.0x48.0
It:48x48@28/s:

<out:(1,1)[0,0,0,0]>

Image: 44.0x44.0
It:44x44@28/s:

<out:(1,1)[2,2,2,2]>

Image: 23.0x23.0
It:23x23@7/s:

<out:(1/2,1/2)[2,2,2,2]>

Image: 46.0x46.0
It:23x23@7/s:

<out:(1,1)[2,2,2,2]>
INVALID: Input "in1" to method "subtract" of kernel "subtract" is not consistent with input "in0": It:46x46@28/s: != It:44x44@28/s: (rates:28.0, 28.0)
Input "in1" to method "subtract" of kernel "subtract" has an inconsistent inset for output passing through "out[1.0,1.0]" : (1,1)[1,1,1,1] != (1,1)[2,2,2,2]

init:((It:0x0@?/s:))
subtract:It:46x46@28/s:

Image: 48.0x48.0
It:46x46@28/s:

<out:(1,1)[1,1,1,1]>

Image: 5.0x5.0
It:1x1@1/s:

<out:(1,1)[2,2,-2,-2]>

loadCoeff:It:1x1@1/s:
init:((It:0x0@?/s:))

runConvolve:It:46x46@28/s:

Image: 46.0x46.0
It:46x46@28/s:

<out:(1,1)[1,1,1,1]>

Figure 9.3: Step 1: Partial dataflow analysis for inset/buffer insertion

Input

input.out to conv3x3.in
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[48x6]()

input.out to conv5x5.in
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[48x10]()

conv3x3
conv3x3.out to offset(in0).in
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[46x6]()

conv5x5

subtract
subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[44x4]()
down2x2 Result

3x3 Coeff

5x5 Coeff

offset(in0)
(0,0)[1,1,1,1]

Figure 9.4: Step 2: Automatic insertion of buffers and insets for correctness

Input
[48x48@1x1 per 16c]

out
(1x1)[1,1]

in
(1x1)[1,1]
[0.0,0.0]

in
(1x1)[1,1]
[0.0,0.0]

conv3x3 out
(1x1)[1,1]

coeff
(3x3)[3,3]
[1.0,1.0]

in
(3x3)[1,1]
[1.0,1.0]

in
(1x1)[1,1]
[0.0,0.0]

conv5x5 out
(1x1)[1,1]

coeff
(5x5)[5,5]
[2.0,2.0]

in
(5x5)[1,1]
[2.0,2.0]

in1
(1x1)[1,1]
[0.0,0.0]

subtract out
(1x1)[1,1]

in0
(1x1)[1,1]
[0.0,0.0]

in
(1x1)[1,1]
[0.0,0.0]

down2x2 out
(1x1)[1,1]

in
(2x2)[2,2]
[0.0,0.0] in

(1x1)[1,1]
[0.0,0.0]

Output

3x3 Coeff
[3x3@3x3 per 1c]

out
(3x3)[3,3]

5x5 Coeff
[5x5@5x5 per 1c]

out
(5x5)[5,5]

offset(in0)
(0,0)[1,1,1,1]

out
(1x1)[1,1]

in
(3x3)[1,1]
[1.0,1.0]

input.out to conv3x3.in
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[48x6]()

out
(3x3)[1,1]

input.out to conv5x5.in
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[48x10]()

out
(5x5)[1,1]

conv3x3.out to offset(in0).in
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[46x6]()

out
(3x3)[1,1]

subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[44x4]()

out
(2x2)[2,2]

init:((It:0x0@?/s:))
consume:It:22x22@28/s:

init:((It:0x0@?/s:))
consumeEOF:It:1x1@28/s:
runBuffer:It:48x48@28/s:

consumeEOL:It:1x48@28/s:

init:((It:0x0@?/s:))
consumeEOF:It:1x1@28/s:
runBuffer:It:46x46@28/s:

consumeEOL:It:1x46@28/s:

runReduction:It:44x44@28/s:
init:((It:0x0@?/s:))

init:((It:0x0@?/s:))
consumeEOF:It:1x1@28/s:
runBuffer:It:48x48@28/s:

consumeEOL:It:1x48@28/s:

Image: 5.0x5.0
It:1x1@1/s:

<out:(1,1)[0,0,0,0]>

Image: 48.0x48.0
It:44x44@28/s:

<out:(1,1)[0,0,4,4]>

Image: 44.0x44.0
It:44x44@28/s:

<out:(1,1)[2,2,2,2]>

Image: 46.0x46.0
It:46x46@28/s:

<out:(1,1)[1,1,1,1]>

Image: 46.0x46.0
It:44x44@28/s:

<out:(1,1)[2,2,2,2]>

Image: 48.0x48.0
It:48x48@28/s:

<out:(1,1)[0,0,0,0]>

Image: 44.0x44.0
It:44x44@28/s:

<out:(1,1)[2,2,2,2]>

Image: 48.0x48.0
It:46x46@28/s:

<out:(1,1)[0,0,2,2]>

init:((It:0x0@?/s:))
subtract:It:44x44@28/s:

Image: 22.0x22.0
It:22x22@28/s:

<out:(1/2,1/2)[2,2,2,2]>

Image: 44.0x44.0
It:22x22@28/s:

<out:(1,1)[2,2,2,2]>

Image: 44.0x44.0
It:44x44@28/s:

<out:(1,1)[2,2,2,2]>

Image: 44.0x44.0
It:44x44@28/s:

<out:(1,1)[2,2,2,2]>

Image: 48.0x48.0
It:48x48@28/s:

<out:(1,1)[0,0,0,0]>

Image: 44.0x44.0
It:22x22@28/s:

<out:(1,1)[2,2,2,2]>
loadCoeff:It:1x1@1/s:

init:((It:0x0@?/s:))
runConvolve:It:44x44@28/s:

init:((It:0x0@?/s:))
consumeEOF:It:1x1@28/s:
runBuffer:It:44x44@28/s:

consumeEOL:It:1x44@28/s:

Image: 3.0x3.0
It:1x1@1/s:

<out:(1,1)[0,0,0,0]>

Image: 44.0x44.0
It:44x44@28/s:

<out:(1,1)[2,2,2,2]>Image: 48.0x48.0
It:44x44@28/s:

<out:(1,1)[2,2,2,2]>

Image: 3.0x3.0
It:1x1@1/s:

<out:(1,1)[1,1,-1,-1]>

Image: 44.0x44.0
It:44x44@28/s:

<out:(1,1)[2,2,2,2]>
Image: 22.0x22.0
It:22x22@28/s:

<out:(1/2,1/2)[2,2,2,2]>

init:((It:0x0@?/s:))
runDownsample:It:22x22@28/s:

Image: 46.0x46.0
It:44x44@28/s:

<out:(1,1)[1,1,3,3]>

Image: 46.0x46.0
It:46x46@28/s:

<out:(1,1)[1,1,1,1]>

Image: 48.0x48.0
It:46x46@28/s:

<out:(1,1)[1,1,1,1]>

Image: 5.0x5.0
It:1x1@1/s:

<out:(1,1)[2,2,-2,-2]>

loadCoeff:It:1x1@1/s:
init:((It:0x0@?/s:))

runConvolve:It:46x46@28/s:

Image: 48.0x48.0
It:48x48@28/s:

<out:(1,1)[0,0,0,0]>

Figure 9.5: Step 3: Dataflow analysis for automatic parallelization

Input

Split

Split subtract
subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[44x4]()
down2x2 Output

3x3 Coeff Replicate

5x5 Coeff Replicate

offset(in0)
(0,0)[1,1,1,1]

input.out to conv3x3.in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

input.out to conv3x3.in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

Join Split

input.out to conv5x5.in_0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

input.out to conv5x5.in_1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

input.out to conv5x5.in_2
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[18x10]()

Join Split

conv3x3_0

conv3x3_1

conv3x3_2

Join Split

conv5x5_0

conv5x5_1

conv5x5_2

conv5x5_3

conv5x5_4

Join

conv3x3.out to offset(in0).in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()

conv3x3.out to offset(in0).in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()
Join

Figure 9.6: Step 4: Automatic parallelization to meet real-time constraints

143

input.out to conv3x3.in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

Join

Split

input.out to conv3x3.in_0
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[25x6]()

down2x2 Output
subtract.out to down2x2.in
(1x1)[1,1]-->(2x2)[2,2] (0)

buffer[44x4]()
Join subtract

conv5x5_2

conv5x5_1

conv5x5_3

conv3x3_2

Join

Split

conv5x5_0

conv5x5_4

Join
input.out to conv5x5.in_2
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[18x10]()

Replicate

conv3x3_1
offset(in0)

(0,0)[1,1,1,1]Join
conv3x3.out to offset(in0).in_0

(1x1)[1,1]-->(3x3)[1,1] (0)
buffer[24x6]()

input.out to conv5x5.in_1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()

Replicate conv3x3_0

input.out to conv5x5.in_0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[19x10]()
Split

Split

conv3x3.out to offset(in0).in_1
(1x1)[1,1]-->(3x3)[1,1] (0)

buffer[24x6]()
Split

Input

3x3 Coeff

5x5 Coeff

Figure 9.7: Step 5: Automatic time-multiplexing to increase utilization

Figure 9.8: Step 6: Simulated application execution

The data movement model presented here simplifies application analysis and ma-

nipulation by assuming a scan line ordering of both incoming data and execution and

two-dimensional windowed reuse patterns. This approach works well for data-parallel,

and therefore order-agnostic, image processing algorithms. For algorithms that re-

quire arbitrary scatter/gather data access, column ordering, or higher-dimensional

data, this parameterization and its associated analyses are of limited value. In these

cases, the programmer must configure the data movement and parallelization, but

such applications can still be implemented within the provided framework. This can

be done either manually be instantiating appropriate kernels or automatically by

writing a parallelization algorithm which the compiler can then use. Either way, the

framework is capable of incorporating, and subsequently placing, kernels that do not

144 CHAPTER 9. CONCLUSIONS

adhere to the basic scan line ordering of the system, but it is unable to analyze and

manipulate them for automatic parallelization.

However, the Achilles heel of this work is its reliance on a static parameterization

of an application’s processing rates and sizes. While this enables straightforward cal-

culation of the required computation rates and buffer sizes in the application, it limits

the applicability of the language to less regular applications. The general problem of

resource allocation to meet real-time resources constraints under variable workloads

is non-trivial, and fundamentally requires either provisioning resources for the worst

case or provisioning for some statistical guarantee with explicit exception handling.

This work takes the former approach as all rate information is static. To enable pro-

visioning for a statistical guarantee, the system must be able to handle the infrequent

cases where the computation or storage requirements exceed those allocated. Such

event handling requires that the runtime system generate appropriate exceptions and

that the programmer handle them as needed. The addition of this statistical approach

to this framework would significantly increase the system’s applicability, but reduce

its analyzability.

In conclusion, the language presented here is a practical and flexible approach

to enabling the automatic mapping of applications to many-cored architectures. The

success of this approach stems from exposing the static requirements of each kernel to

the compiler in a parameterized method that enables straightforward analysis of the

data movements and computation requirements, and using an underlying data model

that imposes a simple processing order. Structuring the programming system in this

manner avoids the difficulty of extracting the data movement and computation kernels

from arbitrary code (e.g., the analysis of imperative code) and the complexity of hav-

ing to determine the correct ordering as well (e.g., finding the optimal transformations

to apply). By simplifying these two tasks, the problem of efficiently manipulating and

mapping an application can be more readily addressed as demonstrated in this work.

Appendix A

Placement

Once the application is parallelized, placement on the processor array can be achieved

by using simulated annealing [29] with an appropriate cost function that takes into

account the communications cost for a given placement. This procedure can be

applied to a variety of different time-multiplexings (e.g., mappings of multiple kernels

to the same processor) to choose the end result with the lowest overall cost.

A.1 Simulated Annealing

Simulated annealing is the process of applying random changes to a system and

accepting changes that produce worse system costs with a progressively decreasing

likelihood. This approach attempts to avoid local minima by allowing the system

sufficient flexibility to make “bad” choices at the beginning, which should allow it

to move far enough to escape local minima. As the simulation progresses, fewer and

fewer “bad” choices are allowed, thereby encouraging the system to settle down into

a final form, and explore the remaining local optimizations.

145

146 APPENDIX A. PLACEMENT

A.2 Cost Function

To implement simulated annealing, a cost function and a perturbation function must

be provided. For the problem of placing kernels (or groups of time-multiplexed ker-

nels) on processor tiles, the perturbation function is simply randomly changing the

placements by some amount. The cost function, however, is more complicated.

For this application, the cost function looks only at the communications as the

computation is fixed by the particular parallelization provided to the placement mod-

ule. The communications cost is determined by the application analysis which de-

scribes the amount of data sent over each edge in the application graph. From this,

the cost of a given placement can be determined by computing how far the data must

move given the physical location of each kernel, and the routing resources between

its source and destination.

For this work, the cost function included two different communications networks

on the processor array. A local communications path provided cheap access to nearest

neighbors, while a global communications network was more expensive, but provided

arbitrary connectivity. The global network’s cost included an initial startup cost,

and then a per-hop cost along the dimension-ordered route between the source and

destination. Such a cost function encourages the placement of kernels with significant

producer-consumer locality close to one another. The cost function could be further

extended to model the effect of interfering traffic from other communications if the

particularities of the routing on the processor array were sufficiently well known.

A.3 Results

The simulated annealing was implemented by using the Graphviz dot [17] graph

layout program to produce an initial layout for a variety of time-multiplexings of

kernels. These initial layouts were then annealed for a fixed amount of time. The

results from this process are shown in Figure A.4, with the initial placements in

Figure A.3. Figures A.1 and A.2 show the initial and post-annealing placements for

A.3. RESULTS 147

0
bay

3
hG

1
vG

0
vG

1
hG

0
hG

2
hG

3
(diff

2
(d ff)

3
(v diff)

1
(v diff)

0
(v diff)

2
(h d ff)

0
D v

0
v

1
(h diff)

0
(h diff)

1
(hD h (v h se lect)

0
(hD h (vD h e lect)

2
hoose

3
cho se

1
choose

0
choose

0
ut

Figure A.1: Initial kernel placements for
Bayer demosaicing before annealing

3
hG

0
hG

2
(h+ d iff)

3
(h d iff)

1
vG

0
ba

0
vG

2
hG

1
(hD h+ (vD h se ec t)

3
(v d iff)

0
hD v

0
vD v

0
(v+ d iff)

2
choo e

3
choose

2
diff)

0
(hD h+ (vD h se ec t)

1
(v+ d iff)

0
out

0
(diff)

1
choose

0
choose

1
hG

1
(h+ d iff)

Figure A.2: Final kernel placements for
Bayer demosaicing after annealing

the Bayer demosaicing application. Simulations were based on un-placed applications,

as discussed in Appendix B.

148 APPENDIX A. PLACEMENT

Figure A.3: Initial JPEG kernel placements before annealing

Figure A.4: JPEG kernel placements after annealing

Appendix B

Simulator Implementation

The simulator was designed to provide a functionally correct execution of the appli-

cations with as little effort as possible. By using the native reflection and thread

capabilities of the language, it was possible to implement a “cycle-accurate” and

highly flexible simulator without needing any hardware emulators or external com-

pilers. This design incurred the tradeoff that performance is limited by the reflection

capabilities of the language and the thread synchronization performance of the sys-

tem.

B.1 Functional Simulation via Threads

The functional simulator is implemented by mapping each computation kernel (in-

cluding Buffer kernels, DataInput, DataOutput, and Split/Join kernels) to their own

thread. The run loop for each thread simply checks the inputs to determine if a

valid combination of data or ControlTokens has arrived to fire a method, and, if so,

it invokes the method. Methods are invoked using the built-in reflection facilities of

the underlying language. This enables kernels to be written specifying the name of

the method to execute as a string, which the runtime can then use to lookup the

corresponding method and execute it. By specifying methods so, their description

can further be used for the data analysis which operates on the same description used

by the runtime system.

149

150 APPENDIX B. SIMULATOR IMPLEMENTATION

The Inputs and Outputs for kernels are implemented with blocking queues, which

cause the thread attempting to read or write them to block, if they are empty or

full, respectively, until the queue is appropriately serviced. The thread’s run method

detects if a ControlToken has been received but not processed and handles moving it

to the method’s Outputs.

This approach places the burden of tracking the internal kernel state on the un-

derlying OS thread implementation, thereby making it trivial for a kernel to block

trying to write an output without halting the simulation. While this greatly simpli-

fies writing the simulator, it incurs the enormous performance penalty of relying on

system/library thread synchronization primitives to orchestrate the execution.

By itself this implementation is functionally correct. Applications run “freely”,

with kernels blocking when they have no available data, and stalling when the down-

stream kernels are not ready. Applications that do not deadlock will execute correctly

in this model, but applications that do deadlock may exhibit inconsistent, and dif-

ficult to debug, behavior. This is due to the “functional” nature of the simulation

wherein each kernel’s execution time and order depends on the system’s scheduling

of its thread. This invariably leads to different execution orders on each run, which

complicates debugging.

B.2 “Cycle-accurate” Simulation

The functional thread-based simulation approach is easy to implement and can demon-

strate the correctness of an application. However, it is inadequate for debugging as it

does not produce reproducible execution orders, and does not provide accurate utiliza-

tion information as each thread is scheduled and executed arbitrarily by the system.

To address both of these issues, the simulator was made to be “cycle-accurate” by

adding a single global barrier that synchronizes each kernel thread on each virtual

clock cycle.

By using a global clock barrier, the simulator can ensure that the program executes

consistently as a fixed set of operations will occur between each clock, regardless of

how the operating system schedules the individual threads. Further, by modifying

B.3. ENABLING TIME-MULTIPLEXING 151

the run loop of each kernel to specify that its thread should wait for a given number

of cycles after each method invocation, methods can effectively simulating “running”

for arbitrary lengths of time. However, some work must be done to ensure this

illusion. When a method executes it fires on a given cycle, but effectively executes

instantly as the global clock can not advance until the method returns. This means

that any outputs that are written are written in that initial cycle, even if the method

is scheduled to take multiple cycles. To ensure correct operation, the Inputs and

Outputs are modified such that they will block if the data written into them is not

valid at the time it is accessed.

This approach enables a “cycle-accurate” simulation, where the cycle count for

each operation can be programmatically defined by the simulator. In addition to

reproducibility, this provides significant flexibility over a micro-architectural simula-

tor in that any aspect of a kernel can be set to take zero cycles to analyze its effect

on the application performance. However, this approach does require that the ker-

nel and simulator programmers enter appropriate values for all operations to obtain

reasonable results.

B.3 Enabling Time-multiplexing

Adding the ability to simulate multiple kernels running in the same execution con-

text requires that each kernel’s thread run method be augmented to yield control

to a cooperative scheduler after each method invocation. This was accomplished by

defining a cooperative thread scheduler which uses a synchronization lock to cause

the time-multiplexed threads to wait until the currently executing one yields. At that

point it then enables the next appropriate thread and allows it to continue. Between

each thread switch, the cooperative thread scheduler waits for the global clock barrier

to ensure consistent execution.

152 APPENDIX B. SIMULATOR IMPLEMENTATION

B.4 Parameters

The simulator used for this work makes several assumptions about data transport

times. The most significant is that data transfers between Inputs and Outputs are

assumed to take zero cycles. This does not accurately reflect the performance of any

realistic communications architecture, but provides a good abstraction for analyzing

the raw performance of an application independent of its physical placement. The

most significant effect that is hidden by this assumption is the centralized nature

of the Split/Join kernels may saturate the available communications bandwidth. In

order to more accurately estimate the communications latency, a full placement for the

application and a detailed communications architecture description would be required.

The simulator further models the time to move data from Input and Output

buffers as taking only one cycle. This is reasonable if the buffers are local to the

processors and the transfer is merely a pointer change rather than a buffer copy.

Cooperative scheduling for time-multiplexing kernels on the same processor is

modeled to take one cycle per scheduling iteration, regardless of whether a kernel

method is invoked. For back-to-back invocation, this incurs an overhead of one cycle

per multiplexed kernel, which is not unrealistic for a hardware-assisted implementa-

tion.

B.5 Application Correctness

While not technically part of the simulator, the verification of the application’s cor-

rectness is an essential part of the simulator. The correctness is verified automatically

in through comparison of outputs to known correct values and automatic detection

of input stalls. For the majority of the test applications presented here, MATLAB

simulations were run to compute the expected final and intermediate outputs for the

application. These outputs were verified by inserting additional DataOutputVerifiers

which compare their received outputs to the results calculated by the MATLAB sim-

ulations. (See Figure B.1.) Additional runtime checks are made to verify that the

DataInputs to the application are always able to send their data to the downstream

B.6. SIMULATION TRACES 153

Input

Verify:bayerIn Verifyier[20x20]
matlab/bayer_split/bayerIn.txt

bayer.out to hG.bayerIn
(1x1)[1,1]-->(6x2)[2,2] (0)

buffer[20x4]()

bayer.out to offset(h-bayerIn).in
(1x1)[1,1]-->(5x1)[1,1] (0)

buffer[6x1]()

hG

Verify:hG_out[8x20]
matlab/bayer_split/hGout.txt

hG.hGout to h.h-hGIn
(1x2)[1,2]-->(2x4)[1,2] (0)

buffer[8x8]()

h

Verify:h_out[42x18]
matlab/bayer_split/RGBout.txt

h.RGBout to hDiff.RGBIn
(6x2)[6,2]-->(3x1)[3,1] (0)

buffer[42x5]()

h.RGBout to offset(hRGBIn).in
(6x2)[6,2]-->(7x3)[1,1] (0)

buffer[42x7]()

h.RGBout to offset(vRGBIn).in
(6x2)[6,2]-->(7x3)[1,1] (0)

buffer[42x7]()

hDiff

Verify:hDiff_out[28x18]
matlab/bayer_split/gammaBetaOut.txt

hDiff.gammaBetaOut to hGrad.GammaBetaIn
(2x1)[2,1]-->(6x3)[2,1] (0)

buffer[28x6]()
hGrad

select

Verify:hGrad_out[24x16]
matlab/bayer_split/HGradientOut.txt

Verify:result[36x16]
matlab/bayer_split/finalRGBOut.txt

offset(h-bayerIn)
(0,0)[2,0,2,0]

offset(h-bayerIn).out to h.h-bayerIn
(1x1)[1,1]-->(4x4)[2,2] (0)

buffer[16x8]()

offset(hRGBIn)
(0,0)[3,1,3,1]

offset(hRGBIn).out to select.hRGBIn
(1x1)[1,1]-->(3x1)[3,1] (0)

buffer[6x1]()

offset(vRGBIn)
(0,0)[3,1,3,1]

offset(vRGBIn).out to select.vRGBIn
(1x1)[1,1]-->(3x1)[3,1] (0)

buffer[6x1]()

Figure B.1: Bayer application with output verification

kernels on-time. This ensures that the input data is never stalled, which, in the

application’s steady-state, indicates that it is meeting its real-time requirements.

B.6 Simulation Traces

The output of the simulator is viewed through a trace viewer application (Figure B.2)

which displays the execution state for each processor simulated. For time-multiplexed

applications, multiple kernels show up on a given line, but for non-time-multiplexed

kernels each line represents a separate kernel. The traces display the state of the

processor in a color-coded fashion as described in Figure B.3.

154 APPENDIX B. SIMULATOR IMPLEMENTATION

Figure B.2: Simulation timeline viewer application

B.6. SIMULATION TRACES 155

Figure B.3: Simulation timeline key
Run (green bar) indicates a kernel is executing. Idle (green line) indicates the pro-
cessor is not running anything. InputWait (red line) and OutputWait (yellow bar
with black line) indicate a kernel is waiting to either read from its input or write to
its output. These occur when the Input buffer is empty or the Output buffer is full.
Read (magenta bar) and write (cyan bar) indicate time spent accessing the Input
and Output buffers, respectively. ReadToken (dark magenta bar) and WriteToken
(dark cyan bar) indicate time spent reading and writing ControlTokens, respectively.
Verified (white bar) and Failed (red bar with yellow edges) indicate the completion
status of an application when simulated with DataOutputs that compare the results
to known values.

Appendix C

Future Work

C.1 Variable Rates and Sizes

One of the most severe limitations of the block-parallel approach presented here,

and sdf-like approaches in general, is their insistence on statically known rates and

data sizes. While such data does enable simple and accurate compiler analyses, it

also limits the general applicability of the programming system. This limitation

is particularly apparent in applications that deal with variable data sizes (such as

variable numbers of motion vectors in video compression) or variable computation

rates (such as different runtimes for the encodings of different symbols). The issue of

variable rates and sizes comes into play in two areas: static application analysis and

dynamic resource allocation.

Static Application Analysis with Variable Rates and Sizes

Implementing static application analysis with variable rates and sizes involves re-

placing the known distinct size and rate values used in the data analysis with a

representation of their variable nature. For example, the computation cycles required

for a kernel method might be replaced with a distribution representing the frequency

with which the kernel takes a given number of cycles. Similarly, the output size for an

encoding kernel might be represented with a distribution that tells the frequency with

156

C.1. VARIABLE RATES AND SIZES 157

which a given number of outputs are generated. These distributions could be sim-

ple averages, parameterized Gaussians, or discrete distributions acquired from profile

analysis. The application analysis would then need to convolve these distributions

to propagate the information through the application, and the calculation of the re-

quired resources at a given point would then need to be done by integrating along

the distribution to the desired level of certainty. For example, if the programmer

requests 95% assurance of meeting the real-time constraints, the appropriate distri-

bution would be integrated to 95%, and that value would be used for determining the

amount of resources to allocate.

In addition to calculating the required resources, the runtime system would need to

provide a means to generate and process exceptions for the (hopefully rare) occasions

when the allocated computation or storage resources are insufficient. Handling these

exceptions can be difficult as the exceptions themselves require resources, and it is

likely that the appropriate action can not be taken at the level of the individual

kernels, but must instead be taken at a higher level in the application. Adding these

capabilities to the system presented here would complicate the analysis (as it is no

longer static), and require explicit out-of-band (and hence unanalyzable) exception

handling, but would enable a much broader range of applications.

Dynamic Resource Allocation

The other side to variable computation rates and data sizes is the desire to dynam-

ically allocate resources to meet the dynamic resource demands. As a given number

of resources must be allocated to meet the real-time constraints in the first place,

the utility of this capability is largely due to its ability to take advantage of very-low

power states which may take a long time to enter and exit, and not its potential to

reduce the absolute resource requirements. If the runtime can determine that the cur-

rent dynamic load will not require the use of some resources for an extended period

of time it can afford the time to suspend them and resume them as needed.

158 APPENDIX C. FUTURE WORK

C.2 Phased Computation

Many application workloads consist of distinct phases which are dynamically deter-

mined, but statically bound. Such an example would be a color copier which analyses

each page it processes and applies different image processing techniques based on the

content of a page. While the application would spend a fixed amount of processing

resources per image, the type of processing done would vary dynamically. To effi-

ciently integrate this type of processing into the system presented here, it would be

necessary to enable the programmer to specify which segments of an application were

dynamically executed, and how their resources are interrelated. The compiler sys-

tem could then analyze these segments and determine the resources required for the

worst-case without over-provisioning for segments which would never need to execute

concurrently. The problem of mapping a program with such dynamic execution styles

could be tackled by developing a range of static mappings for each of the expected dy-

namic workloads and then choosing the correct one at runtime, or by using a dynamic

runtime environment that swaps in-and-out pre-determined application segments as

needed.

C.3 Dynamic Data Fetch

The ability to gather (and scatter) dynamic data is critical for many applications.

The canonical image processing example is a motion vector search where each motion

vector determines the location in the current and previous frame to be fetched for the

beginning of the search. Unfortunately, data-dependent fetches, by their nature, are

almost always unanalyzable by a static compiler. The best approach for dealing with

such references is to use a hardware or software data cache, and to try and buffer

enough requests to cover the memory fetch latency with computation.

So while such references are not likely to be analyzable, they can certainly be

integrated into the type of system described here. For example, a motion vector

search might contain an image fetch kernel which would take in the motion vector to be

processed and would then access the memory containing the image data. The kernel’s

C.4. MERGING BUFFERS AND KERNELS 159

output would be the vector and the search image data, which could then be distributed

to multiple search kernels to execute the search. This would enable the motion vector

search to fit into a block-parallel framework quite cleanly, as the compiler would

simply be unaware of the unanalyzable data transfers. (When mapping the kernels to

processors, however, it would be important to take this data transfer into account.)

Such an approach could be extended by allowing the image fetch kernel to choose

where to send each motion vector so as to maximize the data reuse within the search

kernels, with minimal modification to the analyses presented here.

C.4 Merging Buffers and Kernels

The differencing program example discussed ad nauseum in previous chapters (Fig-

ures 4.3 and 6.1), is an excellent example of an application which can be dramatically

improved by the merging of buffers and kernels. In this case, all three of the com-

putation kernels are affine functions of the input data, which means they could be

reduced to one kernel, and have all internal buffering eliminated. Furthermore, the

two buffers required to supply the 3×3 and 5×5 convolutions from the 1×1 DataIn-

put are clearly redundant: the 5 lines of input data held by the buffer for the 5 × 5

convolution kernel clearly subsumes the 3 lines in the buffer for the 3× 3 kernel.

Merging the buffers is fairly straightforward. The result will be a buffer that is

the larger of the two, modulo any differences in input or output step sizes, which

is just a logical extension of the buffer size calculations done in Section 6.1.1. The

buffer implementation becomes more complex as each buffer must now ensure that

all relevant outputs are done with a given piece of data before determining that it is

stale.

Merging of kernels, however, is significantly more difficult. At its simplest, merging

kernels aims to maximize data reuse. For example, merging a 5×5 convolution kernel

with a 3× 3 convolution kernel would result in a kernel that output one 5× 5 result

and three 3 × 3 results on each iteration. In addition, the kernel would have special

behavior at the beginning and end of each line as the horizontal halos differ for the

two kernels. Enumerating the possible ways to merge such kernels is not particularly

160 APPENDIX C. FUTURE WORK

difficult, but doing so will change the rest of the application, making it difficult to

evaluate the benefits of the merge independently. For purely linear kernels, a more

sophisticated approach can be taken to merge their actual computation, as discussed

in [2].

C.5 High-level Blocking

The explicit parameterization of the image size of DataInputs and the data reuse for

all kernels should enable a fairly straightforward high-level blocking of input data into

the available on-chip resources. For example, if an input image is large, a straight-

forward mapping of the application to a processor array may require more on-chip

storage than is available. The compiler can readily re-map the application for a

portion of the input until it determines that the application fits in the available

resources. At that point the edge conditions for each kernel would have to be evaluated

to determine how much data would need to be replicated or stored across each block,

but because all of these values are explicit and parameterized in the application

description, this analysis would be quite straight forward.

C.6 Higher Dimensional Data

The choice to use two-dimensional data for this language was a tradeoff between utility

and complexity. As discussed in this work, mutli-dimensional data is accessed in

one-dimensional streaming languages by requiring the programmer to manually map

the higher-dimensional data into a one-dimensional stream. This manual mapping

increases the complexity of the code and reduces the ability to analyze the use of the

data because it is obfuscated by the manual mapping to and from a higher-dimensional

data set. Conversely, providing a more general facility for accessing n-dimensional

data natively incurs a tremendous overhead in terms of the complexity of the compiler

analyses needed to interpret and manipulate the programs.

Two-dimensional streaming represents a “sweet spot” between the complexity of

fully n-dimensional data and the limitations of one-dimensional data. This choice

C.6. HIGHER DIMENSIONAL DATA 161

makes sense given the large number of algorithms that operate on dense one- and

two-dimensional data sets (virtually all signal and image processing) and the relative

paucity of algorithms operating on dense higher-dimensional data sets. Indeed, most

three-dimensional data sets are so large that they are represented using more complex

structures, such as irregular grids or surfaces, which are not efficiently amenable to

regular dense representation.

The complexity required to support higher dimensional data in this language

would come primarily from the data flow analysis for propagating rates and sizes

and the added overhead of keeping track of data usage in higher-dimensional circular

buffers. Within the confines of maintaining a windowed data access parameterization

(e.g., instead of the more general parameterizations supported by other languages)

this complexity would be manageable, although the benefits might be limited. For

example, the use of a third dimension to store RGB data for image processing adds

very little over providing a separate input for each channel or manually multiplexing

the RGB values in one frame for most uses. Providing an additional dimension

to store previous frames for inter-frame encoding is again of marginal benefit over

manually implementing such buffering in a dedicated kernel. The benefits of a native

higher-dimensional data representation would be most significant when the compiler

analysis could use the description to take advantage of reuse, or combine it with an

automatic high-level blocking to deal with larger data sets.

Appendix D

Thesis Writing Progress

0

50

100

150

January-08 February-08 March-08 April-08 May-08 June-08

Pa
ge

s

CVA Ski Trip
Chapter 8

Chapters 4-6

Draft
Defense Graduation Baby

y = 1.8x
(pages/day)

Figure D.1: Thesis writing progress
This graph is provided for entertainment only; no academic merit or suitability for
any purpose is implied.

162

Bibliography

[1] S. Agrawal, W. Thies, and S. Amarasinghe, “Optimizing stream programs using

linear state space analysis,” in CASES ’05: Proceedings of the 2005 international

conference on Compilers, architectures and synthesis for embedded systems. New

York, NY, USA: ACM, 2005, pp. 126–136.

[2] ——, “Optimizing stream programs using linear state space analysis,” in CASES

’05: Proceedings of the 2005 international conference on Compilers, architectures

and synthesis for embedded systems. New York, NY, USA: ACM, 2005, pp. 126–

136.

[3] A. Amar, P. Boulet, and P. Dumont, “Projection of the Array-OL specification

language onto the kahn process network computation model,” Parallel Archi-

tectures,Algorithms and Networks, 2005. ISPAN 2005. Proceedings. 8th Inter-

national Symposium on Parallel Architectures, Algorithms and Networks, pp. 6

pp.–, 7-9 Dec. 2005.

[4] ——, “Projection of the Array-OL specification language onto the kahn process

network computation model,” INRIA, France, Research Report RR-5515, March

2005. [Online]. Available: http://www.inria.rf/rrrt/rr-5515.html

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of embedded soft-

ware from synchronous dataflow specifications,” J. VLSI Signal Process. Syst.,

vol. 21, no. 2, pp. 151–166, 1999.

163

http://www.inria.rf/rrrt/rr-5515.html

164 BIBLIOGRAPHY

[6] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-

rahan, “Brook for GPUs: stream computing on graphics hardware,” ACM Trans.

Graph., vol. 23, no. 3, pp. 777–786, 2004.

[7] D. Carmean, “Intel Larrabee,” May 2007, presentation at Stanford University,

CS448.

[8] A. Das, W. J. Dally, and P. Mattson, “Compiling for stream processing,” in

PACT ’06: Proceedings of the 15th international conference on Parallel archi-

tectures and compilation techniques. New York, NY, USA: ACM, 2006, pp.

33–42.

[9] E. Demers, “AMD R600,” May 2007, presentation at Stanford University, CS448.

[10] M. Drake, H. Hoffmann, R. Rabbah, and S. Amarasinghe, “MPEG-2 decoding

in a stream programming language,” Parallel and Distributed Processing Sym-

posium, 2006. IPDPS 2006. 20th International, pp. 10 pp.–, 25-29 April 2006.

[11] A. Duller, D. Towner, G. Panesar, A. Gray, and W. Robbins, “picoArray tech-

nology: the tool’s story,” Design, Automation and Test in Europe, 2005. Pro-

ceedings, pp. 106–111 Vol. 3, 7-11 March 2005.

[12] D. Dunn, “Azul plans 48-core processor for 2007,” Informationweek, March 2006.

[13] M. Engels, G. Bilson, R. Lauwereins, and J. Peperstraete, “Cycle-static dataflow:

model and implementation,” Signals, Systems and Computers, 1994. 1994 Con-

ference Record of the Twenty-Eighth Asilomar Conference on, vol. 1, pp. 503–507

vol.1, 31 Oct-2 Nov 1994.

[14] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R. Horn, L. Leem, J. Y.

Park, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia: Programming

the memory hierarchy,” in Proceedings of the 2006 ACM/IEEE Conference on

Supercomputing, 2006.

[15] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained task,

data, and pipeline parallelism in stream programs,” in ASPLOS-XII: Proceedings

BIBLIOGRAPHY 165

of the 12th international conference on Architectural support for programming

languages and operating systems. New York, NY, USA: ACM, 2006, pp. 151–

162.

[16] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A. Lamb,

C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe, “A stream

compiler for communication-exposed architectures,” in ASPLOS-X: Proceedings

of the 10th international conference on Architectural support for programming

languages and operating systems. New York, NY, USA: ACM, 2002, pp. 291–

303.

[17] Graphviz. (2008, March) Graphviz graph vizualization software. [Online].

Available: http://www.graphviz.org/

[18] J. Gummaraju, M. Erez, J. Coburn, M. Rosenblum, and W. J. Dally, “Archi-

tectural support for the stream execution model on general-purpose processors,”

Parallel Architecture and Compilation Techniques, 2007. PACT 2007. 16th In-

ternational Conference on, pp. 3–12, 15-19 Sept. 2007.

[19] J. Gummaraju and M. Rosenblum, “Stream programming on general-purpose

processors,” Microarchitecture, 2005. MICRO-38. Proceedings. 38th Annual

IEEE/ACM International Symposium on, pp. 12 pp.–, 12-16 Nov. 2005.

[20] J. Gustafson, “Using accelerators to escape the shackles of 20th century soft-

ware,” in International Supercomputing Conference, June 2007.

[21] H. P. Hofstee, “Power efficient processor architecture and the cell processor,”

HPCA, vol. 00, pp. 258–262, 2005.

[22] Y. Hoskote, S. Vangal, N. Borkar, and S. Borkar, “Teraflop prototype processor

with 80 cores,” in Hot Chips 19, August 2007.

[23] M. Karczmarek, W. Thies, and S. Amarasinghe, “Phased scheduling of stream

programs,” in LCTES ’03: Proceedings of the 2003 ACM SIGPLAN conference

http://www.graphviz.org/

166 BIBLIOGRAPHY

on Language, compiler, and tool for embedded systems. New York, NY, USA:

ACM, 2003, pp. 103–112.

[24] J. Keinert, C. Haubelt, and J. Teich, “Modeling and analysis of windowed syn-

chronous algorithms,” Acoustics, Speech and Signal Processing, 2006. ICASSP

2006 Proceedings. 2006 IEEE International Conference on, vol. 3, pp. III–III,

14-19 May 2006.

[25] ——, “Simulative buffer analysis of local image processing algorithms described

by windowed synchronous data flow,” Embedded Computer Systems: Architec-

tures, Modeling and Simulation, 2007. IC-SAMOS 2007. International Confer-

ence on, pp. 161–168, 16-19 July 2007.

[26] ——, “Windowed syncrhonous data flow (WSDF),” University of Erlangen-

Nuremberg, Institute for Hardware-Software-Co-Design, Germany, Technical Re-

port 02-2005, 2005.

[27] B. Khailany, W. Dally, U. Kapasi, P. Mattson, J. Namkoong, J. Owens,

B. Towles, A. Chang, and S. Rixner, “Imagine: media processing with streams,”

Micro, IEEE, vol. 21, no. 2, pp. 35–46, Mar/Apr 2001.

[28] B. Khailany, T. Williams, J. Lin, E. Long, M. Rygh, D. Tovey, and W. Daly,

“A programmable 512 GOPS stream processor for signal, image, and video pro-

cessing,” Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical

Papers. IEEE International, pp. 272–602, 11-15 Feb. 2007.

[29] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated

annealing,” Science, Number 4598, 13 May 1983, vol. 220, 4598, pp. 671–680,

1983. [Online]. Available: citeseer.ist.psu.edu/kirkpatrick83optimization.html

[30] T. J. Knight, J. Y. Park, M. Ren, M. Houston, M. Erez, K. Fatahalian, A. Aiken,

W. J. Dally, and P. Hanrahan, “Compilation for explicitly managed memory hi-

erarchies,” in Proceedings of the 2007 ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, 2007.

citeseer.ist.psu.edu/kirkpatrick83optimization.html

BIBLIOGRAPHY 167

[31] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: a 32-way multithreaded

sparc processor,” Micro, IEEE, vol. 25, no. 2, pp. 21–29, March-April 2005.

[32] E. A. Lee, “Mulitdimensional streams rooted in dataflow,” in PACT ’93: Pro-

ceedings of the IFIP WG10.3. Working Conference on Architectures and Com-

pilation Techniques for Fine and Medium Grain Parallelism. Amsterdam, The

Netherlands, The Netherlands: North-Holland Publishing Co., 1993, pp. 295–

306.

[33] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data flow

programs for digital signal processing,” IEEE Trans. Comput., vol. 36, no. 1, pp.

24–35, 1987.

[34] D. Luebke, “The democratization of parallel computing,” November 2007, tuto-

rial: High Performance Computing with CUDA.

[35] P. Mattson, “A programming system for the imagine media processor,” Ph.D.

dissertation, Stanford University, March 2002.

[36] P. Mattson, W. J. Dally, S. Rixner, U. J. Kapasi, and J. D. Owens, “Communi-

cation scheduling,” SIGARCH Comput. Archit. News, vol. 28, no. 5, pp. 82–92,

2000.

[37] E. Murthy, P.K.; Lee, “Multidimensional synchronous dataflow,” Signal Process-

ing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing,

IEEE Transactions on], vol. 50, no. 8, pp. 2064–2079, Aug 2002.

[38] NVIDIA Inc. (2008, January). [Online]. Available: www.nvidia.com

[39] T. M. Parks, J. L. Pino, and E. A. Lee, “A comparison of synchronous and

cycle-static dataflow,” in ASILOMAR ’95: Proceedings of the 29th Asilomar

Conference on Signals, Systems and Computers (2-Volume Set). Washington,

DC, USA: IEEE Computer Society, 1995, p. 204.

[40] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. López-Lagunas, P. R. Matt-

son, and J. D. Owens, “A bandwidth-efficient architecture for media processing,”

www.nvidia.com

168 BIBLIOGRAPHY

in MICRO 31: Proceedings of the 31st annual ACM/IEEE international sympo-

sium on Microarchitecture. Los Alamitos, CA, USA: IEEE Computer Society

Press, 1998, pp. 3–13.

[41] R. Stephens, “A survey of stream processing,” Acta Informatica, vol. 34, pp.

491–541, 1997.

[42] M. Taylor, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Ama-

rasinghe, A. Agarwal, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald,

H. Hoffmann, P. Johnson, and J. Kim, “Evaluation of the raw microprocessor:

an exposed-wire-delay architecture for ilp and streams,” Computer Architecture,

2004. Proceedings. 31st Annual International Symposium on, pp. 2–13, 19-23

June 2004.

[43] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A language for

streaming applications,” in CC ’02: Proceedings of the 11th International Con-

ference on Compiler Construction. London, UK: Springer-Verlag, 2002, pp.

179–196.

[44] W. Thies, M. Karczmarek, J. Sermulins, R. Rabbah, and S. Amarasinghe, “Tele-

port messaging for distributed stream programs,” in PPoPP ’05: Proceedings of

the tenth ACM SIGPLAN symposium on Principles and practice of parallel pro-

gramming. New York, NY, USA: ACM, 2005, pp. 224–235.

[45] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,

M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, “Baring

it all to software: Raw machines,” Computer, vol. 30, no. 9, pp. 86–93, Sep 1997.

[46] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mat-

tina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip interconnection

architecture of the tile processor,” Micro, IEEE, vol. 27, no. 5, pp. 15–31, Sept.-

Oct. 2007.

BIBLIOGRAPHY 169

[47] R. Wilson, “Cisco taps processor array architecture for NPU,” EE Times,

September 2004. [Online]. Available: http://www.eetimes.com/showArticle.

jhtml?articleID=26806315

[48] X. D. Zhang, Q. J. Li, R. Rabbah, and S. Amarasinghe, “A lightweight

streaming layer for multicore execution,” in Workshop on Design, Architecture

and Simulation of Chip Multi-Processors, Chicago, IL, Dec. 2007. [Online].

Available: http://cag.lcs.mit.edu/commit/papers/07/zhang-dascmp07.pdf

http://www.eetimes.com/showArticle.jhtml?articleID=26806315
http://www.eetimes.com/showArticle.jhtml?articleID=26806315
http://cag.lcs.mit.edu/commit/papers/07/zhang-dascmp07.pdf

	Abstract
	Acknowledgements
	Introduction
	The 2D Streaming Model
	Block Programming Example

	Contributions
	Thesis Overview

	Background
	Synchronous Data Flow
	Streaming architectures
	MIT's Raw
	Stanford's Imagine
	Others Streaming Architectures

	Related Work
	StreamIt
	StreamC and KernelC
	Brook
	Sequoia
	Multi-dimensional Synchronous Data Flow
	Summary

	Application Model
	The Application Graph
	Simplified Application Graph
	Full Application Graph
	Building Applications

	Data Model
	Inputs and Outputs
	Tokens
	Implementation
	Potential Optimizations

	Computation Model
	Kernel Examples
	Multiple Inputs
	Multiple Methods
	ControlTokens

	Discussion
	Application Model
	Data Model
	Computation Model
	Scheduling

	Conclusions

	Application Analysis
	Frame Sizes, Frame Rates, and Iteration Sizes
	Data Flow Analysis
	Feedback

	Example
	Discussion

	Buffers and Insets
	Buffers
	Buffer Sizing
	Implementation

	Insets
	Data Flow Analysis for Insets
	Zero Padding

	Automatic Insertion of Buffers and Insets
	Discussion

	Parallelization
	Split/Join Kernels
	Data Parallel Kernels
	Kernels with limited parallelism
	BufferKernels
	Results
	Discussion
	BufferKernel Data Reuse
	Split/Join Inefficiencies
	Analysis
	Other Access Patterns

	Time Multiplexing
	Naïve Mappings
	Greedy Merge Algorithm
	Results
	Greedy Mapping Results
	General Results

	Discussion

	Conclusions
	Placement
	Simulated Annealing
	Cost Function
	Results

	Simulator Implementation
	Functional Simulation via Threads
	``Cycle-accurate'' Simulation
	Enabling Time-multiplexing
	Parameters
	Application Correctness
	Simulation Traces

	Future Work
	Variable Rates and Sizes
	Phased Computation
	Dynamic Data Fetch
	Merging Buffers and Kernels
	High-level Blocking
	Higher Dimensional Data

	Thesis Writing Progress
	Bibliography

