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ABSTRACT
In this paper, we present a datacenter interconnction net-
work topology that performs at the minimal cost-latency-
power product point of all Dragonfly routers in our design
space. With a 1.2x cost savings and a 4x power savings
over other Dragonfly designs at a 1.2x performance hit, our
topology and choice of routing function are effective optimal
for a modern datacenter where design choices are centered
around capital and operational expenses.

1. INTRODUCTION
As more and more computing is occuring in larger and

larger clusters, the traffic that flows between the nodes in
the cluster has grown, and the importance of the networks
that connect these nodes has increased drastically. As dis-
cussed in [5], datacenters are prone to network collapses
(TCP incast) when using a standard TCP/IP based net-
working system. This TCP incast problem causes network
bandwidth within the datacenter to fall drastically, causing
user visible application-level latency to decrease. Besides
the TCP incast problem, a TCP/IP based networking so-
lution is suboptimal in datacenters due to the (generally)
short lived traffic flows that run inside the datacenter. Due
to the TCP window’s slow start, short lived flows frequently
do not achieve peak bandwidth and are difficult to model.
[6]

The aforementioned problems with the TCP/IP stack in
datacenters has driven research into the design of special
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purpose interconnection networks for data centers, similar
to those in a conventional supercomputer. Although the
design of a custom interconnection network may be more
expensive than the implementation of a normal network us-
ing COTS parts, a well designed interconnection network
can provide substantially improved performance and lower
the power consumed by the network. In this project, we ex-
plored the Dragonfly topology as explained in [7]. Although
most current datacenters use a fat tree topology, the Drag-
onfly topology provides improved cost and increased fault
tolerance due to link redundancy. This is especially signifi-
cant, due to the tree saturation issues that are found in fat
trees. [8]

As mentioned above, we chose a dragonfly based topology
due to it’s improved costs. As discussed in [7], the use of high
radix routers in a dragonfly topology serves to decrease cost
by minimizing global channels, which dominate the costs of
operating a datacenter. While high radix routers had previ-
ously been frowned upon because they increased the length
of the longest link in the datacenter, improvements in fiber
optics technology have made long, high speed links feasi-
ble. [9] Besides the improvements in high speed links that
have made high radix networks possible, datacenter topol-
ogy research had been constrained to TCP/IP networking.
Although TCP/IP is commonly used, it has large faults.
Some of the seminal datacenter networking papers acknowl-
edge that one of the significant reasons to choose a fat tree
topology is that it allows for preventing loops from occuring
with TCP/IP traffic. [3][11]

2. DESIGN OVERVIEW - TOPOLOGY
The state-of-the-art topology deployed in large-scale data

centers today is the fat tree [2, 3, 4]. The reason behind this
implementation is simplicity and good load balancing prop-
erties due to randomized routing. However, fat tree topolo-
gies are by no means the optimal for large-scale systems. In
this work we implement a dragonfly topology to improve the
network’s latency by reducing the number of hops between
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Figure 1: The topology of one group. Each row is
comprised by 9 racks, and the whole group has 18
racks. Each square represents one rack, and each
square with a dot, is a rack with a router. Routers
are shared among neighboring racks, as shown in
Figure 3.
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Figure 2: The floorplan of the datacenter, with each
component representing 9 racks.

any two nodes, and the Total Cost of Ownership by reduc-
ing the number of optical cables used to connect different
groups.

In this section, we present the design overview of our net-
work, the layout of the data center as well as the configura-
tion of the topology in terms of endpoints per router, routers
per group and total number of groups in the system.

For our network configuration we have chosen to imple-
ment a topology that promotes energy and cost consider-
ations to a first-order design constraint. We try to mini-
mize the use of expensive optical cables, and maintain a low
number of routers to reduce energy dissipation, and cost.
Although this design will experience lower performance com-
pared to networks that optimize strictly for throughput and
latency, we have seen that quantifying the price of efficiency
offers useful insight in provisioning trade-offs which are im-
portant challenges in current data centers. In Section 6, we
perform a comparative study between different configura-
tions in terms of Performance/Watt and Performance/$. In
that study our configuration ranks among the top designs
when the figure of merit is not strictly performance, but
power and cost as well.

Based on our topology, each group is comprised of 18
racks, with 9 racks in each of two rows (Figure 3. Each
rack has 32 nodes, and each router services 71 endpoints
(p=71). This means that in each group there are 8 routers

Router #0 Router #1 Router #2 Router #3 

Figure 3: Router sharing across different racks.
Nodes of the same color are serviced by the same
router.

(a=8), and the total number of groups is 177 (g=177). Fi-
nally, the radix of the router that we use is k=100, out of
which 71 links are devoted to the intra-group electrical con-
nections, 7 to the routers of the same group, and 22 to the
inter-group optical links. Routers within a group are shared
across racks in a way that strives to keep the distance from
any node to its router as uniform as possible, in an effort to
minimize the variability of latency across nodes of a group.
Figure 3 shows this design, where nodes of different color
are serviced by different routers. This scheme is symmetric
every 8 racks, and although not currently adopted in data
centers, could assist with network latency variability, which
is a significant challenge for large-scale systems.

One disadvantage of this configuration is the oversubscrip-
tion of the connections to the optical cables, i.e. if more than
22 endpoints simultaneously need to communicate to exter-
nal groups, the optical links will become congested. De-
screasing the size of the groups and as a result increasing
the number of optical links is expected to solve this prob-
lem, although at the cost of a higher power consumption and
TCO. All connections within a group are performed via elec-
tric links, and any router can communicate with any other
router in the same group with a single electric wire, without
repeaters, based on the Manhattan distance (i.e. no diag-
onal wires crossing the isles). One additional optimization
that can be deployed for cost optimality is replacing some
of the optical wires with electrical. Given the maximum
length of electric wires without the use of repeaters (5m),
neighboring groups of up to two groups away can be con-
nected solely using electric wires, thus significantly reducing
the dominant cost factor, which is the number of optical
links in the system.

3. ROUTING
In determining the routing function that we wanted to

implement, we considered Minimal (MIN), Uniform Glob-
ally Adaptive Load-Balanced routing (UGAL), Progressive
Adaptive Routing (PAR), and Piggyback (PB). With an
unbalanced offered load on different parts of the network
due to hotspot traffic and varying sizes of packets, the rout-
ing function needed to be adaptive, which eliminated MIN.
UGAL is a less adaptive routing scheme than PAR, so the
limited extra cost of implementing PAR made it more at-
tractive.Choosing between PAR and PB was determined by
ease of implementation in the simulator: PAR was reason-



ably straightforward to implement while PB required sig-
nificant changes to the routers. These led to PAR being
selected as our routing function.

3.1 Progressive Adaptive Routing
PAR aims to route traffic along the shortest, least con-

gested path to the destination. At every hop in the source
group, the congestion along the minimal path is evaluated
against congestion along a non-minimal path. The non-
minimal path is determined by choosing an intermediate
node (in line with Valiant’s algorithm) to route to before
routing to the destination. When the minimal path has
greater congestion than the non-minimal path, the packet
is diverted along the non-minimal path. From this decision
point, the packet will route minimally to the intermediate
node and then minimally to the destination node. Thus, at
each router within the source group, the current route can
be re-evaluated to determine the best overall route for the
packet.

3.2 Implementation
At each router, when a head flit is being routed, its source

group is compared against the current router’s group. If
they are equal and the packet is being routed minimally,
then the packet originated from the current group and the
router can decide whether to route the packet minimally or
non-minimally.

Routing non-minimally requires an intermediate node to
route through, as per Valiant’s algorithm, so a random node
in the network is chosen as the intermediate. The number
of hops to reach the destination by routing through the in-
termediate node, along with the queue length for routing to
the intermediate node at the router are compared to those
for continuing to route minimally:

HopCountmin ∗QueueLengthmin <=

HopCountnon−min ∗QueueLengthnon−min + Threshold

(1)

Given that the apparent congestion for routing through
the intermediate node is less than the congestion encoun-
tered routing minimally, non-minimal routing begins. Once
a packet starts routing non-minimally, it cannot switch back
to minimal routing, so loops can’t be created. But once a
packet has an intermediate node chosen, it will be routed
minimally to that node, and then routed minimally to the
destination from there.

3.2.1 Virtual Channels
There are four virtual channels used in our implementa-

tion of PAR to avoid deadlock. These are labeled in Figure
4 for reference.

Within the source group, packets are routed minimally on
VC0. When packets begin to be routed non-minimally, they
switch to VC1. This prevents packets that are routed back
along the same path from deadlocking the network. As pack-
ets are routed to the intermediate node, they use VC1, and
when packets arrive at the intermediate node, they switch
to use VC2. All packets being routed to their destination
minimally use VC2. Thus, when minimally routed packets
leave their source group, they route via VC2 on the optical
cable. When packets reach the destination group, they swap
to route on VC3, since they have crossed the network date-

Src Dst
VC0 VC2
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VC2

VC3

VC3

Source Group Destination Group

Intermediate 
Group

Figure 4: PAR routing using 4 virtual channels.
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Figure 5: Average packet latency across various
threshold values.

line. From then on, within the destination group, packets
are routed minimally on VC3.

This scheme allows packets being routed minimally and
non-minimally to be on separate virtual channels, eliminat-
ing the threat of deadlock.

3.2.2 Threshold
Figure 11 shows the effect on average packet latency with

varying threshold in all routers across the system. With very
low thresholds, packet latency increases due to many packets
being routed non-minimally when congestion isn’t very bad.
By increasing the threshold, packet latency drops until a
threshold value of 85. Further increasing the threshold skews
the decision towards minimal routing, at which point latency
plateaus (beyond 100 in Figure 11).

The latency flattens out past 1 threshold of 100 due to
our topology. Since we are bandwidth constrained between
groups, queues for optical links become congested and pack-
ets are misrouted. But all of the optical link queues in the
group are congested, so mis-routing packets increases the
hop count without decreasing the latency. Packets will face
similar congestion at the next router and won’t have bene-
fited from being misrouted. Thus, as the threshold increases,
biasing the decision towards minimal routing, most pack-
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Figure 6: Number of packets generated in the net-
work on a per-cycle basis.

ets are routed minimally unless congestion is very lopsided
within a router.

The only downside of setting the threshold very high is
that it doesn’t allow for significant backpressure. With chang-
ing traffic patterns, the router will be slow to switch from
minimal to non-minimal routing, increasing the latency of
some packets. But the provided traffic patterns are reason-
ably well-behaved, so backpressure isn’t a critical issue faced
by the network.

4. TRAFFIC MANAGEMENT
The main focus of the implementation coding of the sim-

ulator was to correctly handle traffic management. This
section explains our implementation approach to generating
the desired mix of network traffic.

4.1 Packet Injection and Ejection
At every cycle, each node attempts to send a packet to

the network. A node successfully sends its packet when it
has fewer than four request packets in flight and when no
outstanding replies are pending to be serviced. These con-
dictions avoid congesting the network when older packets
in the network have not yet been serviced, hence avoiding
instability. Figure 6 confirms the stability of our network
by showing the relatively constant rate of packet genera-
tion over time. Although the rate of generation fluctuates
between cycles, the overall amount of traffic generated is
bounded, ensuring that the network doesn’t generate more
traffic than it can process. The flow diagram on Figure 7
describes illustrates a simplistic version of our generation
scheme.

The four traffic patterns outlined in the project disctip-
tion (Uniform, HotSpot, Bad Dragon, and Uniform) are im-
plementatecd using four traffic classes. The combination of
these traffic patterns allowed us to model a realistic network
traffic pattern for our experiments. We use a flit and packet
size of 100B for all of the traffic classes, and number of pack-
ets generated by each traffic pattern depend on the actual
message size.
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Figure 7: Traffic management flow control diagram
(simplified) basis.

Sice RPC require 500 100B message packets to be sent, we
implemented a feedback system that enables sending 100B
packets over 500 cycles. If an RPC message is generated by
a node, that node will stop issuing new message types until
all the 500 packets are successfully injected into the network.
Then, the node generates a new message with the probabil-
ities outlined in the projet description. Packet destinatoins
are chosen based on the traffic pattern determined by their
message type. For instance, if a message type turns out to
be adverserial RPC, it will assigned as a HotSpot message
class and a HotSpot traffic generator determines the packet
destination. Once the message type and the destination of
the packet are determined, the packet is sent over the net-
work.

4.2 HotSpot
Our implemetation of the HotSpot traffic generator as-

sumes 10 fixed endpoints as the HotSpot nodes. Once a
message type is set to be RPC Adverserial, its destination
is automatically set to be one of the 10 HotSpot noeds that
are present in the network. To model the entire network, we
chose to have one of our HotSpot nodes in one of the groups
that we are simulating and leave the other nine outside of
the cloud. This way we ensure that one of the two simulated
groups has hotspot traffic while the other one does not.

As you will see in the next section, including HotSpot
nodes in the cloud creates extra complications that required
us to think more carefully about how the cloud latency can



be calculated.

4.3 Slicing
To slice a netowrk topology, one should take into account

the accuracy of the slice in representing the true character-
istics of the network. We assumed the number of possisle
nodes that can be simulated in a reasonable time is about
1000 (1% of the entire network size). We started off by
taking a full group (with 8 routers and 568 endpoints) and
54 other groups, each with only router ndoes present for
simulation (no endpoint nodes). While we believed this ap-
proach reflect a very accurate model of the network, we soon
discovered the extreme complexity of implementing such a
structure in code given the time we had. As a result, we
came up with a simpler topology slice model that can rep-
resent the network within our 1000 node simulation budget;
we chose to model two groups and a cloud node as it is shown
on Figure 9. Below is the description of how we constructed
the cloud network.

To construct the sliced topology, we need 1950 optical
links in total, and 56 electrical links per group (112 in total)
to connect the routers only. We also need a total of 1136
electrical links to connect the endpoints to their respective
router. The algorithm below guarantees that the network is
fully connected:

• Connecting Local Routers (Electrical) - Figure 8:

– If my router ID is < destination router ID: con-
nect my link ID to the link ID of the destintion
router that satisfies dest link ID = my router ID.

– If my router ID is > destination router ID: con-
nect my link ID to the link ID of the destintion
router that satisfies dest link ID = my router (ID-
1).

• Connecting Global Link (Optical) - Figure 9: All op-
tical links are connected to the cloud node while the
link-ID=799 on router 7 is connected to link 1599 of
router 15.

4.4 Cloud Abstraction
Ideally, to calculate the cloud response time latency we

would measure the average traffic latency of a packet to be
twice the latency of a packet going from one node on to
an optical link (t node-to-optical-link). This latency value
includes an estimate of the routing, wiring, and queueing
latecy. While this approach can give a reasonalble estimate
of latency for UR traffic, we belive that it is not effective
when multiple traffic patterns are present in the network.
This estimate becomes even worse when one of the traffic
patterns is HotSpot. Our solution for getting accurate la-
tency results is to dynamically update the average latency
of packets going from any node in the slice to any optical
link (e.g. take the latency average every 20 cycles). This
latency value takes into account the hotspot traffic latency
(present in one of the two groups in the slice). Depending
on the intensity of Hotspot traffic in the network, the cloud
average response time varies. For this project the HotSpot
traffic turned out to be not hot enought to make a large
impact on the overall latency of the packets traversing the
entire data-center.
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Figure 8: Intera-group router link connection exam-
ple basis.
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Figure 9: Inter-group router link connections basis.
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Figure 10: Trace of average latency for the four dif-
ferent classes of packets.

The second issue associated with the cloud network is re-
lated to deciding on how to send packets in and out of the
cloud. Four different traffic scenarios are possible: send-
ing packets to the slice (from the cloud), receiving packets
from the slice and replying to them, sending packets non-
minimally from a slice node to another slice node via the
cloud node, and sending packets non-minimally from the
cloud to the cloud via an intermediate slice node.

Transmitting packet:

• From the cloud to the slice: In this case, packets are
sent to the cloud and their reply is returned according
to the latency protocol described above. The prob-
ability of sending a packet to the slice is about 99%
indicatin the need for accurate measurement of the re-
ply message latencies from the cloud.

• From the slice to the cloud: As mentioned previously,
the radix of the cloud is 350. This means that the
traffic manager attempts to inject up to 350 packets
from the cloud into network every cycle. Of all the
injected packets from the cloud, only 1% of them are
actually destined to the group in the slice that they
are injected into.

• From cloud to cloud node via the slice: The remain-
ing 99% of the packets injected by the cloud are non-
minimally routed and their destination is the cloud.
When a non-minimal packet is injected into a slice,
the packet will take two optical hop and one local hop
to return to the cloud.

• From slice to slice via the cloud: less than 1% of the
time packets are routed non-minimally from a slice
node to another slice node. The amount of time the
cloud waits to reply to the sender is 2xt node2opt− link.
The amount of time the cloud waits to before it injects
the packet to the destination group/router is 2xt node2optlink
+ t local − hop&routing. t local-hop&routing is the
routing latency + local link hop latency in the net-
work. This value can also be meaured the same way
t node2optlink is measured.
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Figure 11: Total number of packets in flight over the
simulation, broken down by packet class.

5. COMPARATIVE DESIGN ANALYSIS:
QUANTIFYING THE PRICE OF EFFICIENCY

5.1 Comparison of Performance/Watt and Per-
formance/$ between Different DC Network
Configurations

In Section 2 we presented the topology implemented in the
current design. We discussed the advantages and disadvan-
tages of this decision in terms of performance and efficiency
and provided some reasoning as to why it was preferred over
other configurations.
The scope of this Section is to perform a comparison between
different configurations (e.g. topology, routing) in terms of
Performance/Watt and Performance/$ and to provide in-
sight in the trade-off between performance, efficiency. In
order to do this, we perform an exhaustive simulation of all
dragonfly network configurations that adhere to the design,
cost and power constraints of the assignment and plot the
ranking of each network design in terms of Latency over
Power and Latency over Cost.

All simulations are run for 1 million cycles using virtual-
cut through flow control, fully simulating around 1100 nodes
in the Datacenter. These nodes are divided across a differ-
ent number of groups, depending of the configuration that
is simulated. The configuration of the network: the (a, p, g)
parameters and the routing algorithm vary across different
designs.
Additionally evaluating alternative flow control techniques,
as well as a comparison between dragonfly and the previ-
ously state-of-the-art DC network, i.e. Fat Tree, is deferred
to future work.

We calculate the power consumption and cost for the sys-
tem for each configuration based on the provided guidelines.
Figure shows how each configuration ranks in terms of Per-
formance and Efficiency. The y-axis represents latency in
ms and the x-axis power consumption in MW.

Figure 12 shows how the different configurations rank in
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Figure 12: Performance over Watt comparison between different network configurations (topology and rout-
ing).

terms of latency over power consumption. The optimal
points in the plot are the ones in the bottom left corner
near the pareto-optimal curve, while the worst ones are the
ones in the top right one. Our configuration ranks among
the best for Latency/Watt (highlighted region), although
more power hungry configurations (e.g. (a, p, g) = (30,
15, 331)) achieve lower latency. Also, although designs that
use PAR tend to have lower latency than those with either
MIN or UGAL routing functions, it is the configuration of
the topology than mainly affects latency here (almost an
over of magnitude difference between the weights of topol-
ogy and routing in latency). There are some configurations
that achieve lower latency per Watt than our network, and
that brings up the issue of oversubscribing the optical links
in the system. If we retune our design tohave slightly fewer
endpoints per node, and more routers per group we expect
a shift towards the bottom side of this graph. The best
configuration for performance and power is (34, 34, 86) us-
ing PAR. We observe that, as expected designs with many
routers per group tend to have lower latencies, but increased
power, while networks with few routers per group experience
lower performance.

We note here that the power shown in the graph is cal-
culated and not simulated, therefore it does not account for
any impact the routing decision might have on energy con-
sumption, i.e. configurations that only differ in routing will
have the same power budget.

Similarly for cost, in Figure 13 we show how latency ranks
for different designs over the deployment cost of the network.
Based on the provided guidelines, networks with high power
consumption tend to have high cost as well, therefore the
similarities between the two graphs are expected. There are
however a few outliers, e.g. while cost increases monotoni-

cally as we increase the number of routers per group, power
consumption experiences some unpredictability in its behav-
ior.
Again, our design ranks highly on the performance-cost plane
(highlighted region), with few designs achieving better per-
formance, TCO trade-offs by reducing the number of end-
points per router, e.g. (34, 34, 86). Designs with high num-
bers of routers per group achieve significantly better perfor-
mance - and reliability - but are severely hurt in the cost
aspect.

5.2 Performance Predictive Scheme based on
Linear Regression

In this Section we propose a performance predictive scheme
that allows estimating the performance of a network config-
uration without actually deploying it, either in simulation
or in actual implementation. Our scheme is based on sim-
ple linear regression and uses the data of the previous study
as the training set to predict the performance of an un-
known topology. For example, if we have simulated a set
of networks (with different design parameters (a, p, g) and
different routing algorithms, or flow-control techniques) we
can extract the feature vector from these parameters and
use the data as a training set to estimate the performance
and/or efficiency and cost of a different configuration.
In our current evaluation, we collect statistics for latency
over a long simulation period for a large number of different
configurations, and use the configuration parameters, along
with the routing and flow-control techniques, as the features
that train the linear regression. The benefit of this scheme,
apart from the insight it provides for different network con-
figurations, is the ability to predict the performance (in ei-
ther throughput or latency) of a new configuration without
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Figure 13: Performance over TCO comparison between different network configurations (topology and rout-
ing).

the overhead of simulating it, or worse implementing it.
This greatly simplifies trimming down the available parame-
ter space, which as shown in Section 6.1 is significantly large,
while providing accurate estimations for the performance of
the system.
We have used our scheme to predict the latency of new
configurations based on the behavior of already simulated
networks and achieve a less than 5% deviation between
predicted and simulated performance in all cases. As our
training set we use all previously simulated configurations,
except for the one currently being evaluated, in order to
ensure that training and testing set are decoupled. Figure
14 shows the comparison between predicted and simulated
performance (latency) for three configurations that we have
evaluated. In all cases the results from the predictive scheme
resemble closely the simulated metrics, which is promising
towards extending this method to a more complete and ro-
bust framework.
As part of future work, we plan to evaluate the sensitivity

of our method in the size and divergence of the training set
(e.g. number of different simulated configurations, number
of samples per configuration) as well as the number and type
of features in the feature vector. As shown in Figure 5 the
feature that affects the results most is the number of end-
points per optical channel, followed by the number of intra-
group router connections. This result makes sense given
that optical channels should not be kept idle, while intra-
group router connections should not be oversubscribed, as
this would result in underutilizing the optical links, which
are the expensive resource in the system. Alternatively, one
can use a scheme like this to predict the optimal configura-
tion for a network given SLAs, or a power and cost budget.
Although getting the exact configuration for the absolute op-
timum is an NP-hard problem, linear regression or more so-
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Figure 15: Performance-power-cost producto for
different network configurations (Topology and
Routing).

phisticated ML schemes, can offer design suggestions within
an error margin of the optimal configuration.

6. FUTURE WORK
Although PAR performs better than MIN or UGAL, pig-

gyback routing (as introduced in [10]) would provide a fur-
ther advantage over PAR. While both our hotspot traffic
and our adversarial traffic pattern wound up being fairly in-
nocuous, it is conceivable that other, more adversarial traffic
distributions could be used in a datacenter using this inter-
connection network.

Since our goal was to optimize datacenter costs, we aimed
to decrease the number of global optical links. Alternatively,
we could have switched from optical links to global metal
links using repeaters. Since this would decouple network
cost from the number of global links, we would likely wind
up with a very different Pareto optimal frontier for our de-
sign space. We chose not to perform a design using global
metal links due to signal integrity concerns (this would have
required the use of repeaters) which would have vastly com-
plicated our process for costing our datacenter.

7. CONCLUSIONS
In this paper, we presented an architecture for a datacen-

ter interconnection network that uses a dragonfly topology
to optimize for cost. Our architecture was designed to op-
timize cost through picking a topology that sits in a flat
plane for cost. After constructing this cost curve, we per-
formed a space exploration to determine which topologies
provided best performance and power efficiency at a given
price. Our design space exploration led to the realization
that our chosen topology is nearly on the optimal frontier
for the performance per cost curve, and is one of the more
power efficient designs. As shown in Figure 15, our design
optimizes the product of latency, power, and cost over all
other network configurations of the exhaustive search ex-
ploration. Since performance is impacted by the balance of
latency over core links and cost is dominated by global link
costs, the lone more cost efficient topology chose to have
larger groups with fewer endpoints per router. This topol-

ogy (41 nodes per router, 18 routers per group, 133 groups)
had a better balance of traffic between local and global in-
terconnects while keeping the number of global links ap-
proximately equal. While this new topology has marginally
better ( 5%) performance-per-cost, it is approximately 30%
less power efficient than our original proposed topology (71
nodes per router, 8 routers per group, 177 groups).

In modern datacenter installations, capital expenditures
and operating costs dominate design choices. By acheiving
near-minimal total component cost in our datacenter and
by achieving a very formidable performance-to-power ratio,
we have designed a topology that is very practical and very
efficient. Although we do not have maximum performance
(based off of the guidelines in [7] as well as our design space
exploration), we achieve a 4x cost improvement and a 1.2x
power efficiency over the maximum performance router for
our topology, and achieve the minimum cost-latency-power
product over all topologies in our design space.
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