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Abstract—Operand register files are small, inexpensive register files
that are integrated with function units in the execute stage of the pipeline,
effectively extending the pipeline operand registers into register files.
Explicit operand forwarding lets software opportunistically orchestrate
the routing of operands through the forwarding network to avoid writing
ephemeral values to registers. Both mechanisms let software capture
short-term reuse and locality close to the function units, improving energy
efficiency by allowing a significant fraction of operands to be delivered
from inexpensive registers that are integrated with the function units. An
evaluation shows that capturing operand bandwidth close to the function
units allows operand registers to reduce the energy consumed in the
register files and forwarding network of an embedded processor by 61%,
and allows explicit forwarding to reduce the energy consumed by 26%.

Index Terms—energy efficient register organization, operand registers,
explicit operand forwarding, embedded processor

I. INTRODUCTION

ENERGY consumption in processors is dominated by communi-

cation, specifically data and instruction movement, not com-

putation. Consequently, even low-power programmable processors

consume significantly more energy than dedicated fixed-function

hardware, which allows the communication of data between function

units to be aggressively optimized. This is particularly problematic in

embedded systems because performing common operations, such as

fixed-point arithmetic and logic operations, is inexpensive compared

to delivering data and instructions to the function units. The register

file alone can account for 16% of the energy consumed in an

embedded processor, and 42% of the datapath energy [3]. The situ-

ation does not improve with advances in semiconductor technology:

communication benefits less than computation from improvements in

semiconductor technology, and the interconnect-dominated register

files and buses that deliver instructions and data to the function units

will continue to consume an increasing fraction of the energy.

This paper describes a register organization that uses operand

registers and explicit operand forwarding to reduce the energy

consumed staging operands in registers. Operand registers extend a

conventional register organization with small, distributed sets of in-

expensive general-purpose registers, each of which is integrated with

a single function unit in the execute stage. The shallow, inexpensive

register files that implement the operand registers effectively extend

the pipeline registers that precede the function units into small register

files, preserving the low access energy of the pipeline registers while

satisfying a greater fraction of operand references. This lets software

capture short-term reuse and instruction-level producer-consumer

locality near the function units. Explicit operand forwarding lets

software control the routing of operands through the forwarding

network so that ephemeral values need not be written to registers.

Both mechanisms increase software control over the movement of

operands between function units and register files. An evaluation

demonstrates that operand registers reduce the energy consumed in

the register files and forwarding network of an embedded processor

by 61% and explicit forwarding reduces the energy consumed by

26%. Significantly, less energy is consumed staging the operands
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Fig. 1. The address register file (ARF) and data register file (DRF) are tiny
(4-entry) register files that are integrated with the function units. The load-
store unit LSU executes memory operations and simple arithmetic operations.
The arithmetic and logic unit ALU executes simple and complex arithmetic
instructions. Reference filtering reduces demand for operand bandwidth at the
general-purpose register file, which allows the number of ports to be reduced.

to an instruction in operand registers than is consumed performing

common fixed-point arithmetic operations.

Explicit operand forwarding and operand registers are described

in the following section, which is followed by an evaluation of how

these mechanisms reduce the energy consumed delivering operands.

We consider related work and then conclude.

II. REGISTER ORGANIZATION AND COMPILATION

The function unit and register organization of the embedded processor

used in the evaluation are illustrated in Fig. 1. The LSU performs

memory operations, such as load and store; the ALU performs

complex arithmetic operations, such as shift and multiplication. Both

function units perform simple arithmetic operations; consequently,

many common instructions may execute in either function unit.

The processor has been designed in a 45 nm CMOS process. The

process has been tailored for low-power applications, and provides

transistors with thick gate oxides to reduce leakage. Table I lists

the energy consumed performing basic arithmetic operations and

transferring operands and results between function units and register

files. The energy is derived from HSPICE simulations that include

device and interconnect capacitances that were extracted after layout.

Observe that less energy is consumed performing a 32-bit addition

than reading an operand from the 32-entry general-purpose register

file.

IEEE Computer Architecture Letters

Posted to the IEEE & CSDL on 7/29/2009
DOI 10.1109/L-CA.2009.45 1556-6056/09/$25.00 © 2009 Published by the IEEE Computer Society

Authorized licensed use limited to: Stanford University. Downloaded on September 21, 2009 at 17:18 from IEEE Xplore.  Restrictions apply. 



A. Explicit Operand Forwarding

Consider the following code and the corresponding instruction se-

quence generated during compilation.

int x = a + b - c;
add %r5 = %r2 + %r3;
sub %r1 = %r5 - %r4;

The compiler-introduced temporary assigned to register %r5 is de-

livered by the forwarding network, but register %r5 is unnecessarily

written when the code executes. Register %r5 simply establishes a

name that allows the forwarding logic to detect that the result of the

add instruction must be forwarded to the sub instruction. Writing

the intermediate result to the register file consumes more energy

than performing the operation that produced it: the 32-bit addition

consumes 0.52 pJ; writing the result back to the register file consumes

1.45 pJ. Furthermore, this use of register %r5 unnecessarily increases

register pressure.

Explicit operand forwarding lets software orchestrate the routing

of operands through the forwarding network so that ephemeral

values need not be written to registers. Explicit operand forwarding

introduces the concept of a forwarding register to provide an explicit

name for the result of the last instruction that a function unit executed.

Forwarding registers establish architectural names for the physical

pipeline registers residing at the end of the execute (EX) stage.

Software uses forwarding registers as operands to explicitly forward

the result of a previous instruction, and directs the result of an

operation to a forwarding register to indicate that the result should not

be written to the register file. Revisiting the example, the following

code sequence explicitly forwards the result of the add operation

through forwarding register %t0, which is associated with the ALU.

int x = a + b - c;
add %t0 = %r2 + %r3;
sub %r1 = %t0 - %r4;

Forwarding registers retain the result of the last instruction that

wrote the execute (EX) pipeline register. To preserve the registers,

datapath control logic clock-gates the pipeline registers during inter-

locks and when NOPs execute. This allows operands to be explicitly

forwarded between instructions that execute multiple cycles apart

when intervening instructions do not update the physical registers

used to communicate the operands [8]. The results of load instructions

cannot be explicitly forwarded because load values do not traverse

the pipeline registers at the end of the execute (EX) stage; instead,

architectural registers retime load values arriving from memory.

Processors with deeper pipelines generally need more registers to

cover longer operation latencies. Explicit forwarding can be extended

for deeper pipelines by establishing additional explicit names for the

results of recently executed instructions that are available within the

forwarding network. However, the pipeline registers that stage the

forwarded operands are not conventional architectural registers and

may be difficult to preserve when interrupts and exceptions occur.

When interrupts are not a concern, the compiler can be directed to

disallow the explicit forwarding of operands between instructions that

may cause exceptions.

B. Operand Registers

Operand registers are implemented as very small register files that are

integrated with the function units in the execute stage of the pipeline.

This allows operand registers to provide the energy efficiency of

explicit forwarding while preserving the behavior of general-purpose

registers. Operand registers let software explicitly capture short-term

reuse and locality close to the function units. Like explicit operand

forwarding, operand registers reduce the fraction of the operand band-

width that reaches the general-purpose register file. This improves

TABLE I
ENERGY CONSUMED BY COMMON OPERATIONS

Arithmetic Operations Relative Energy
32-bit addition 520 fJ 1×
16-bit multiply 2,200 fJ 4.2×

General-Purpose Register File — 32 words (4R+2W)

32-bit read 830 fJ 1.6×
32-bit write back 1,450fJ 2.8×

General-Purpose Register File — 32 words (2R+2W)

32-bit read 800 fJ 1.5×
32-bit write back 1,380fJ 2.7×

Operand Register File — 4 words (2R+2W)

32-bit read 120 fJ 0.2×
32-bit write back 540 fJ 1.0×

Forwarding Register — 1 word (1R+1W)

32-bit forward 530 fJ 1.0×
Data Cache — 2K words (1R+1W) [8-way set-associative with CAM tags]

32-bit load 10,100 fJ 19.4×
32-bit store 14,900 fJ 28.6×

energy efficiency: the small operand register files are inexpensive

to access, and the 0.2 pJ cost of traversing the forwarding network

and pipeline register preceding the execute (EX) stage is avoided. For

example, delivering two operands from a general-purpose register file

and writing back the result consumes 3.1 pJ, which exceeds the 2.2 pJ

consumed by a 16-bit multiplication; using operand registers to stage

the operands and result consumes only 0.78 pJ, which is close to the

0.52 pJ consumed by a 32-bit addition. Accessing the operand register

files in the execute (EX) stage may contribute to longer critical path

delays. However, the operand register read occurs in parallel with

the activation of the forwarding network, and much of the operand

register file access time is covered by the forwarding of operands

from the write-back (WB) stage. Regardless, register organizations

using operand registers require fast, and consequently small, operand

register files to avoid creating critical paths in the execute stage.

Each operand register is assigned to a single function unit, and

only its associated function unit can read it. The function units can

write any register, which allows the function units to communicate

through operand registers or the more expensive backing registers.

This organization allows software to keep a significant fraction of

the operand bandwidth local to the function units, to place operands

close to the function unit that will consume them, and to keep

data produced and consumed on the same function unit local to

the function unit. Furthermore, reference filtering by the operand

registers reduces demand for operand bandwidth from the shared

general-purpose registers, which allows the number of read ports

to the general-purpose register file to be reduced without adversely

impacting performance. This makes the general-purpose register

file smaller and shortens its bit-lines, reducing its access costs by

decreasing the bit-line capacitance switched during read and write

operations. It also reduces the cost of updating a register because

fewer access devices contribute to the capacitance internal to each

register.

C. Compilation

Explicit operand forwarding and operand registers require additional

compiler passes and optimizations. An explicit operand forwarding

compiler pass can be implemented as a peephole optimization per-

formed after instruction scheduling and register allocation. However,

the pass is better performed between instruction scheduling and

register allocation to avoid allocating registers to variables that can

be explicitly forwarded. Typically, variables that can be explicitly

forwarded are also ideal candidates for operand registers and will dis-

place other variables competing for operand registers; consequently,

performing an explicit forwarding pass before register allocation
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x.re = a.re * b.re - a.im * b.im;
x.im = a.re * b.im + a.im * b.re;
t1 = load [a.re]; [defs=1 uses=2 life=8 int=0.38]
t2 = load [a.im]; [defs=1 uses=2 life=8 int=0.38]
t3 = load [b.re]; [defs=1 uses=2 life=7 int=0.43]
t4 = load [b.im]; [defs=1 uses=2 life=5 int=0.60]
t5 = mult t1 * t3; [defs=1 uses=1 life=2 int=1.00]
t6 = mult t2 * t4; [defs=1 uses=1 life=1 int=2.00]
t7 = sub t5 - t6; [defs=1 uses=1 life=1 int=2.00]
[x.re] = store t7;
t8 = mult t1 * t4; [defs=1 uses=1 life=2 int=1.00]
t9 = mult t2 * t3; [defs=1 uses=1 life=1 int=2.00]
t10 = add t8 + t9; [defs=1 uses=1 life=1 int=2.00]
[x.im] = store t10;
; data-vars = [t10 t9 t7 t6 t8 t5 t4 t3 t2 t1]
; address-vars = [a b x ]

Fig. 2. Operand Intensity. The code computes the product of two complex
values. The order in which variables are assigned registers is listed at the
bottom. Data register candidates t10, t9, t7, and t6, which are prioritized
because they have the greatest operand intensity, could be explicitly forwarded.

allows more variables to be assigned to operand registers and achieves

better operand register utilization.

Registers are allocated using a conventional register allocator that

accounts for the restricted connectivity between the register files and

function units. Variables that are read by instructions that execute

on different function units are assigned to general-purpose registers.

The compiler preferentially schedules dependent instructions on the

same function unit to expose opportunities for using the local operand

registers to stage intermediates between dependent instructions.

Intuitively, the operand bandwidth captured in operand registers

can be increased by allocating operand registers to variables that

are short-lived and to variables that are long-lived and frequently

accessed. The register allocator can identify variables that exhibit

these properties by computing a measure of operand intensity for each

variable. Operand intensity is computed by dividing the aggregate

number of definitions and uses of a variable by its lifetime; when an

access appears inside a loop, the depth of the loop can be used to

weight the access, and the lifetime can be estimated as the number

of instructions at which point the variable is live, as computed by

a conventional live-variable data-flow analysis. An example of the

computation appears in Fig. 2.

III. EVALUATION AND ANALYSIS

The kernels used in the evaluation were written in C and compiled

with the front-end of the LLVM [4] port of GCC. The instruction

selection, instruction scheduling, register allocation, and back-end

optimization passes were implemented for the target architecture,

and use the scheduling and register allocation algorithms described

above. The register allocator actively coalesces variables introduced

by the single static assignment form used in the front-end. The

compiled benchmarks were executed on a cycle-accurate simulator to

collect access statistics from which average operand access energies

are derived (Fig. 3). The 7 embedded kernels used in the evaluation

are: aes, an optimized implementation of the advanced encryption

standard block cipher with 10 rounds and a 128-bit key; conv2d, a

5 × 5 RGB image filter; crosscor, a cross-correlation filter of two

fixed-point signals at 16 discrete time lags; fft, a 1024-point Fast

Fourier Transform of a 16-bit fixed-point real-valued signal; fir,

a 32-tap finite impulse response filter of a 16-bit fixed-point signal;

jpeg, a JPEG image compression routine; rgb2yuv, an RGB to YUV

conversion routine; and viterbi, an implementation of the Viterbi

decoder used in the GSM standard for voice data.

We keep the aggregate number of registers constant by reducing

the number of general-purpose registers available to the compiler

when operand registers are added. Decreasing the capacity of the

general purpose register file reduces the energy expended accessing
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Fig. 3. Breakdown of data access energy. The number of operand registers
per function unit (OR) is shown below each column. (A) automatic forwarding;
(E) explicit forwarding.

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0
Data Cache

General Register

Explicit Forward

Address Register

Data Register

#OR = 0 #OR = 1 #OR = 2 #OR = 3 #OR = 4 #OR = 5 #OR = 6

EA EA EA EA EA EA EA

Fig. 4. Breakdown of data bandwidth. The number of operand registers per
function unit (OR) is shown below each column. (A) automatic forwarding;
(E) explicit forwarding.

it; however, we conservatively exclude reductions in the cost of

accessing the general-purpose register file when its capacity decreases

from our evaluations and analysis to isolate improvements due to the

operand registers. Explicit forwarding and operand registers together

reduce the energy consumed in the registers and forwarding network

by 62% and reduce the average energy consumed by 34%. Most of

the improvement is due to the operand registers. Explicit forwarding

alone reduces the register and forwarding energy 26%, which results

in a 15% reduction in data delivery energy. Operand registers reduce

the energy consumed in the registers and forwarding network by

61%, which corresponds to a 34% reduction in the energy consumed

staging operands.

The breakdown of data bandwidth appears in Fig. 4. Explicit

forwarding alone keeps 29.6% of the bandwidth local to the function

units; providing one operand register per function unit keeps 36.6%
of the bandwidth local. The single operand register configuration

captures a greater fraction of the bandwidth because unrelated

instructions may intervene between the producing and consuming

instructions. The fraction of the operand bandwidth captured in

operand registers increases with the number of operand registers;

with 4 operand registers per function unit, 68.9% of the operand

bandwidth is captured by operand registers, which allows the number

of general-purpose register file read ports to be reduced to two without

affecting performance. Further increasing the number of operand

registers increases bandwidth capture beyond 77.2%, but additional

spills appear in kernels with significant register pressure, such as fft.

These spills appear because communication between the operand

registers and function units is limited.

The reduction in address register bandwidth observed when

operands are explicitly forwarded (Fig. 4) reflects an abundance of

ephemeral intermediate values within address calculations preceding

load and store instructions. The structure of data dependencies and

working sets affects the extent to which code benefits from explicit

forwarding and operand registers, as the aes and rgb2yuv kernels

illustrate. Whereas aes is dominated by long sequences of data-

dependent instructions, rgb2yuv exhibits many short sequences of

instructions with related data-dependencies, and the RGB samples

form a critical working set that can be captured in a small number of
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Fig. 6. Breakdown of rgb2yuv operand (O) and result (R) bandwidth.

registers. Consequently, the aes kernel benefits more from explicit

forwarding, while the rgb2yuv kernel benefits more from operand

registers (Fig. 7). The breakdown of the operand bandwidth illustrates

the differences between the working sets of the two kernels. The

aes kernel lacks small working sets with significant short-term

locality and reuse for the compiler to promote to operand registers;

consequently, operand register bandwidth in aes increases slowly as

additional operand registers are introduced (Fig. 5). Conversely, the

rgb2yuv kernel exhibits an abundance of small, critical working sets

that the compiler is able to capture with a limited number of operand

registers; consequently, operand register bandwidth increases rapidly,

and four data and four address registers are sufficient to capture all the

critical working sets of rgb2yuv. Further increasing the number of

operand registers results in little additional improvement, as only low-

intensity variables are available for promotion to operand registers.

Explicit forwarding and operand registers provide greater benefits

when VLSI technology and design constraints limit the efficiency of

multi-ported register files and memories. For example, memory com-

pilers are rarely designed to generate efficient small memories, which

increases the cost of staging operands in general-purpose registers and

improves the benefits of operand registers and explicit forwarding.

Similarly, standard cell libraries rarely allow wide multiplexers to be

implemented efficiently, which may increase the cost of implementing

operand registers and make explicit forwarding more attractive.

IV. RELATED WORK

Distributed [6], clustered [2], banked [1], and hierarchical [9] register

organizations improve access times and densities by partitioning

registers across multiple register files and reducing the number of

read and write ports to each register file. The number of ports

needed to deliver a certain operand bandwidth can be reduced by

using SIMD register organizations [5] to allow each port to deliver

or receive multiple operands to multiple function units. The hierar-

chical CRAY-1 register organization [7] associates dedicated scalar

and address registers with groups of scalar and address function

units and provides dedicated backing register files to filter spills to

memory. In contrast, operand register files are significantly smaller,

optimized for access energy, and each is integrated with a single

function unit in the execute stage of the pipeline to reduce the

cost of transferring operands between an operand register file and

its dedicated function unit. This allows operand registers to achieve

greater reductions in energy consumption in processors with short
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Fig. 7. Normalized data access energy. (B) baseline; (E) explicit forwarding;
(O) 4 operand registers; (EO) explicit forwarding and 4 operand registers.

operation latencies and workloads with critical working sets and

short-term producer-consumer locality that can be captured in a small

number of registers. Operand registers further differ by allowing

both levels of the register hierarchy to be directly accessed. This

avoids the overhead of executing instructions to explicitly move data

between the backing register files and those accessible by the function

units [9], and avoids the overhead of replicating data in multiple

register files [1].

Horizontally microcoded machines such as the FPS-164 [8] re-

quired that software explicitly route all results and operands between

function units and register files. This work introduces opportunistic

explicit software forwarding into a conventional pipeline, where

automatic forwarding performed by the forwarding control logic

avoids the increase in code size and dynamic instruction counts

needed to explicitly route all data.

V. CONCLUSION

Operand register files are small, inexpensive register files that are

integrated in the execute stage of the pipeline; explicit operand

forwarding lets software opportunistically orchestrate the routing of

operands through the forwarding network to avoid writing ephemeral

values to registers. Both let software capture short-term reuse and

locality in inexpensive registers that are integrated with the function

units. This keeps a significant fraction of operand bandwidth local to

the function units, and reduces the energy consumed communicating

data through registers and the forwarding network by 62%.
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