
Communication Scheduling

Peter Mattson, William J. Dally, Scott Rixner, Ujval J. Kapasi, John D. Owens
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

{pmattson, billd, rixner, ujk, jowens} @ cva.stanford.edu

ABSTRACT
The high arithmetic rates of media processing applications require
architectures with tens to hundreds of functional units, multiple
register files, and explicit interconnect between functional units
and register files. Communication scheduling enables scheduling
to these emerging architectures, including those that use shared
buses and register file ports. Scheduling to these shared intercon-
nect architectures is difficult because it requires simultaneously
allocating functional units to operations and buses and register file
ports to the communications between operations. Prior VLIW
scheduling algorithms are limited to clustered register file architec-
tures with no shared buses or register file ports. Communication
scheduling extends the range of target architectures by making
each communication explicit and decomposing it into three com-
ponents: a write stub, zero or more copy operations, and a read
stub. Communication scheduling allows media processing kernels
to achieve 98% of the performance of a central register file archi-
tecture on a distributed register file architecture with only 9% of
the area, 6% of the power consumption, and 37% of the access
delay, and 120% of the performance of a clustered register file
architecture on a distributed register file architecture with 56% of
the area and 50% of the power consumption.

1. INTRODUCTION
Media processing applications, such as video compression and
decompression, image synthesis, and image understanding,
demand very high arithmetic rates. Currently, these applications
demand from 1010 to 1011 operations per second [5]. As these
applications become more sophisticated, even higher rates are
expected. To achieve these high arithmetic rates, processor archi-
tectures with tens to hundreds of functional units are required.

The dominant cost in such an architecture is interconnect between
functional units, not computation or storage. Traditionally, every
functional unit input or output is connected by a dedicated bus to a
dedicated register file port of a central register file as shown in
Figure1. The central register file scales poorly with large numbers
of functional units [1][2][11] because each register contains an
implicit interconnect from every functional unit output to every
functional unit input. For N functional units, the area of a central
register file grows as N3, the power dissipation as N3, and the
access delay as N3/2 [15].

To build an efficient architecture with tens to hundreds of func-
tional units, the implicit interconnect of a central register file needs
to be replaced with multiple register files and external interconnect
managed by the compiler. A clustered register file architecture,
which divides the functional units into clusters and provides each
cluster with its own register file as shown in Figure2, is one step in
this direction. However, each functional unit input or output is still
connected by a dedicated bus and register file port to the cluster
register file, which contains implicit interconnect between all func-
tional units in the cluster. The compiler must insert copy opera-
tions to move values between cluster register files across a set of
global buses. The non-zero latency of these copy operations
decreases performance.

In the most efficient multiple register file architectures, functional
unit inputs and/or outputs are connected directly to multiple regis-
ter files using shared buses and register file ports as shown in
Figure3. These architectures replace most or all implicit intercon-
nect inside the register files with explicit interconnect managed by
the compiler. Since functional units can read from and/or write to
multiple register files directly, the performance impact of copying
values between register files is significantly reduced.

Scheduling to these shared interconnect architectures is difficult
because the compiler must simultaneously allocate many interde-
pendent resources: the functional units on which the operations
take place, the register file(s) to stage intermediate values through,
and the shared interconnect to transfer the values between func-
tional units and register files. Each of these resource allocation

FIGURE 1. Central register file

FIGURE 2. Clustered register files

FIGURE 3. Multiple register files with shared
interconnect

shared buses

shared buses

steps is dependent on the others. For example, efficiently selecting
a register file and allocating interconnect to communicate a value
from the operation that computes it to an operation that uses it
depends on which functional unit both operations are scheduled
on. Thus, the scheduler cannot select a register file or allocate
interconnect when scheduling the first of the two communicating
operations. However, if the scheduler does not allocate intercon-
nect until scheduling the second operation, other communications
may occupy all of the required interconnect during the interim
making it impossible to schedule the operation.

Most prior VLIW scheduling algorithms [1][4][6][12][13] are
restricted to architectures in which each functional unit input or
output is connected by a dedicated bus and register file port to one
register file. All operations scheduled on the functional unit must
read values from and write values to that register file. The com-
piler can schedule operations without allocating shared intercon-
nect, then insert copy operations that take place on dedicated copy
units to move values between register files. Some VLIW schedul-
ing algorithms [3][7][14][17] target specific architectures that
allow limited access to multiple register files by overprovisioning
interconnect to avoid resource conflicts.

Communication scheduling is a new component of VLIW schedul-
ing that enables scheduling to a large class of architectures in
which each functional unit input or output is connected to multiple
registers files by shared buses and register file ports. Communica-
tion scheduling selects register files and allocates interconnect
incrementally as each operation is scheduled. When the first of two
communicating operations is scheduled, communication schedul-
ing tentatively allocates interconnect to write the value to or read
the value from a register file. Communication scheduling may
change the initial allocation as other operations are scheduled.
When the second operation is scheduled, communication schedul-
ing selects a register file to stage the value through and allocates all
shared interconnect.

In particular, communication scheduling enables scheduling to a
distributed register file architecture that offers better performance
and lower area, power consumption, and register file access delay
than a clustered register file architecture. In a distributed register
file architecture each functional unit input is connected to the sin-
gle read port of a dedicated register file and all functional unit out-
puts are connected by shared buses to the single shared write port
of each register file. Such an architecture with N arithmetic units
has area that grows as N2, power dissipation that grows as N2, and
delay that grows as N [15]. For a distributed register file architec-
ture with 12 functional units, communication scheduling allows
media processing kernels to achieve 120% of the performance of a
clustered register file architecture with the same twelve functional
units, or 98% of the performance of a central register file architec-
ture. However, the distributed register file architecture requires
only 56% as much area and 50% as much power as the clustered
register file architecture, or 9% as much area and 6% as much
power as a central register file architecture.

This paper describes how communication scheduling enables
scheduling for shared interconnect architectures. Section2 pre-
sents a motivating example. Section3 presents an overview of
communication scheduling. Section4 describes communication
scheduling in detail. Section5 presents and discusses our results.
Section6 and Section7 discuss prior and future work, respec-
tively. Section8 summarizes our conclusions.

2. MOTIVATING EXAMPLE
Scheduling the code fragment shown in Figure4 to the architecture
shown in Figure5 demonstrates that a conventional scheduler can-
not schedule to an architecture with shared interconnect. Though
simple and purposefully non-optimal, the architecture includes all
of the features of a multiple register file architecture with shared

interconnect that require communication scheduling. Each adder
output and the load/store unit output is connected by a shared bus
to two register files. Both of the shared buses can drive the shared
write port of the center register file.

Figure6 shows an incomplete and incorrect schedule1 produced by
a conventional scheduler that does not allocate shared intercon-
nect. The schedule in Figure6 is incomplete because it does not
specify which output drives each shared bus or which bus drives
the shared register file port on each cycle. It is incorrect because
operation 1 and operation 2 both need to write to the same register
file using the same bus in order to allow operation 4 to occur on the
next cycle. This problem demonstrates that scheduling operations
and allocating interconnect cannot be performed independently.

Figure7 shows a schedule produced by a scheduler that uses com-
munication scheduling to allocate shared interconnect. Construct-
ing the schedule in Figure7 provides examples throughout the rest
of this paper.

1: a = load ...
2: b = ... + ...
3: c = ... + ...
4: ... = a + b
5: ... = a + c

FIGURE 4. Example code fragment

FIGURE 5. Example architecture

1. For illustrative purposes, all operations have unit latency.

FIGURE 6. Schedule without allocation of shared
interconnect

ADD0 L/S ADD1

output can
drive either

or both buses

either bus
can drive

shared port

either output
can drive

shared bus

2: a =
load ...

3: c =
... + ...

1: b =
... + ...1

Functional Unit

ADD0 L/S ADD1

5: ... =
a + c

4: ... =
a + b

2

C
yc

le

3. OVERVIEW
A VLIW scheduler assigns each operation to a functional unit and
schedules it on a particular cycle; communication scheduling allo-
cates the interconnect resources the operation uses to read its oper-
ands and write its result. Communication scheduling allocates
resources such that the result of an operation is accessible to all
operations that use that result as an operand. To achieve this objec-
tive, communication scheduling assigns each communication
between operations to a route between the functional units that
perform those operations as depicted in Figure8.

A communication is a scheduler abstraction for the use of the
result of one operation as an operand of another operation. A com-
munication exists from the write operation that computes a result
to each read operation that could use the result as an operand. If
multiple operations could use the result as an operand, or one oper-
ation could use the result as multiple operands, then a separate
communication exists for each such read operand. If an operation
could use one of several results as an operand due to different con-
trol flows then a separate communication exists for each such
result.

A route defines the resources used to transfer a value from a func-
tional unit output to a functional unit input. A route consists of
resources to write the value to a register file from the functional
unit that computes it, resources to read it from a register to the

functional unit that uses it, and, if necessary, copy operation(s) to
move the value between register files.

The motivating example contains four communications as shown
in Figure9 and four routes, one for each communication, as shown
in Figure10. For example, operation 1 computes the value a,
which is used by operation 4 and operation 5. There are two com-
munications from operation 1, one to operation 4 and one to opera-
tion 5, each of which is assigned to a route.

4. COMMUNICATION SCHEDULING

4.1 Use in a scheduler
A VLIW scheduler with communication scheduling operates by
scheduling an operation on a cycle and assigning it to a functional
unit, then allowing communication scheduling to accept or reject
the placement. Figure11 presents a flow graph of a scheduler that
includes communication scheduling. This scheduler is loosely
based on the algorithm presented in [13], but communication
scheduling can be integrated into other algorithms. The algorithm
selects an operation and schedules it on the first possible cycle. It
then assigns the operation to an available functional unit and
attempts communication scheduling. If communication scheduling
succeeds, the operation is scheduled. If communication scheduling
fails, the scheduler assigns the operation to a different functional
unit, or delays it until a later cycle, until it succeeds.

4.2 Algorithm
Communication scheduling composes a route for each communi-
cation as shown in Figure12. The write stub consists of the func-
tional unit output, bus, and register file write port allocated to write
the result. The write stub is allocated on the cycle that the writing

FIGURE 7. Schedule with allocation of shared
interconnect

FIGURE 8. Communication scheduling assigns each
communication to a route

2: a =
load ...

1: b =
... + ...1

Functional Unit

5: ... =
a + c

4: ... =
a + b3

ab

a c

ADD0 L/S ADD1

a =
copy a

3: c =
 ... + ...

2

a ab

C
yc

le

write operation

read operation

result

operand

co
m

m
un

ic
at

io
n

write operation

read operation

ro
ut

e

FIGURE 9. Communications in motivating example

FIGURE 10. Routes for communications in
motivating example

1: a = load ... 2: b = ... + ... 3: c = ... + ...

4: ... = a + b 5: ... = a + c

1 2 3 4

1: a =
load ...

2: b =
... + ...

1

Functional Unit

5: ... =
a + c

4: ... =
a + b

3

ab

a c

ADD0 L/S ADD1

a =
copy a

3: c =
 ... + ...

2

a ab

C
yc

le

1

2

3

41

1

operation completes. The read stub consists of the register file read
port, bus, and functional unit input allocated to read the operand.
The read stub is allocated on the cycle that reading operation
issues. If the write stub and read stub access the same register file,
they form a route. Otherwise, one or more copy operations are
used to move the value from one register file to another to connect
the stubs and form a route.

Figure13 shows the write stub, read stub, and copy operation that
compose the route for the communication of a from operation 1 to
operation 4 in the motivating example.

Communication scheduling composes routes such that stubs on the
same cycle do not conflict. Read stubs for different operands or
write stubs for different results conflict if they use the same
resource, such as a functional unit input or output, bus, or register
file port. An operand can only be read from one register file, so
two read stubs for the same operand conflict if they are not identi-
cal. A result can be written to multiple register files, so two write
stubs for the same result only conflict if they write to the same reg-
ister file using different buses or register file ports.

Communication scheduling composes a non-conflicting route for
each communication incrementally as each of the two communi-
cating operations are scheduled as shown in Figure14. When the

first communicating operation is being scheduled, the communica-
tion is opening: communication scheduling determines the valid
stubs and selects a stub that does not conflict with other stubs on
the same cycle. Often, other operations are scheduled before the
second operation is scheduled. As each such operation is sched-
uled, communication scheduling may change the stub assigned to
the open communication to allow stubs to be found for other com-
munications. When the second communicating operation is being
scheduled, the communication is closing: communication schedul-
ing tries to find a write stub and a read stub that access the same
register file to form a route. If necessary, it inserts and schedules
copy operations to connect the stubs and form a route. Once a
communication has been assigned to a route it is closed and the
stubs and any copy operations that compose the route cannot be
changed.

FIGURE 11. Scheduler flow graph

FIGURE 12. Composition of a route

Tentatively schedule operation
on first possible cycle

Tentatively assign operation to
that functional unit

Attempt communication
scheduling

Is there an untried available
functional unit that can perform

the operation?

Did communication scheduling
succeed?

Yes

Yes No

No

Are there any unscheduled
operations?

Yes No

Operation is scheduled!

Tentatively schedule operation
on next cycle

Select an operation

write operation

read operation

ro
ut

e

output

read port

input

write port

bus

bus

w
rite

stub
read
stub

write operation

read operation

result

operand

co
m

m
un

ic
at

io
n

co
p

y
operation(s)

copy operation

FIGURE 13. Composition of route for
communication of a from operation 1 to operation 4

opening open

closing closed

FIGURE 14. Incremental composition of a route

1: a =
load ...

1

Functional Unit

4: ... =
a + b

3

a

ADD0 L/S ADD1

a =
copy a

2

a

C
yc

le

write
stub

read
stub

copy
operation

current
operation

unscheduled
operation

scheduled
operation

unscheduled
operation

scheduled
operation

current
operation

scheduled
operation

scheduled
operation

4.3 Implementation
To implement this process, communication scheduling performs
the following steps for each operation o, described in detail in the
remainder of this section:

1. determine the valid read stubs for each communication
to o and the valid write stubs for each communication
from o

2. find a non-conflicting permutation of read stubs for com-
munications to operations on the cycle o issues on

3. find a non-conflicting permutation of write stubs for
communications from operations on the cycle o com-
pletes on

4. for each closing communication, if the read stub and
write stub form a route then assign the communication to
that route

5. for each closing communication, if the read stub and
write stub do not form a route then insert and attempt to
schedule copy operation(s) to connect the stubs

Step 1. Determine valid stubs
First, communication scheduling determines the valid read stubs
for each communication to the current operation, and the valid
write stubs for each communication from the current operation. A
read stub connects a read port of a register file to an appropriate
input of the functional unit that the current operation is assigned to.
A write stub connects the output of the functional unit that the cur-
rent operation is assigned to the write port of a register file. For a
communication from operation o1 to operation o2, zero or more
copy operations can be used to move a value from any register file
written to by a valid write stub for o1 to any register file read from
by a valid read stub for o2, regardless of which functional units the
operations are assigned to.1

Figure15 shows the valid write stubs, and Figure16 shows the
valid read stubs, for the communication of a from operation 1 to
operation 4 in the motivating example. Zero or more copy opera-
tions can be used to connect any write stub in Figure15 to any read
stub in Figure16.

Step 2. Find permutation of read stubs
Second, communication scheduling attempts to find a permutation
of read stubs for the set of communications to all operations that
issue on the same cycle as the current operation, Cto, such that the
stubs do not conflict. (Cto includes all communications to the cur-
rent operation.) Since communication scheduling can't change the
read stub assigned to a closed communication, it removes all
closed communications from Cto. It eliminates all valid stubs for
the remaining communications that conflict with any read stub
assigned to a closed communication. Communication scheduling
then attempts to find a valid stub for each communication remain-
ing in Cto. It can choose any stub for each open communication,
but tries to choose a read stub for each closing communication that
forms a route. When selecting a read stub for a closing communi-
cation c from a scheduled operation os, communication scheduling
also attempts to find a permutation of write stubs for communica-
tions to operations that complete on the same cycle as os such that
the write stub for c accesses the same register file as the read stub
and forms a route.

Step 3. Find permutation of write stubs
Third, communication scheduling analogously attempts to find a
permutation of write stubs for all communications from operations
that complete on the same cycle as the current operation, Cfrom . If
communication scheduling cannot find permutation of read stubs
or a permutation of write stubs, the current operation must be
rescheduled.

In the motivating example, communication scheduling finds differ-
ent permutations of write stubs for the communications from oper-
ations on cycle 1 as each of the first two operations are scheduled.
Communication scheduling chooses the permutation of write stubs
shown in Figure17 when operation 1 is scheduled, then changes to
the permutation shown in Figure18 when operation 2 is scheduled.
Operation 3 cannot be scheduled on cycle 1 because a permutation
of write stubs cannot be found due to stub conflicts as shown in
Figure19.

Step 4. Assign routes
Fourth, communication scheduling examines each closing commu-
nication and assigns a route if possible. If the read stub and write

1. AppendixA describes the class of copy-connected architec-
tures that support this use of copy operations.

FIGURE 15. Valid write stubs

1: a =
load ...

1

ADD0 L/S ADD1

1: a =
load ...

1

ADD0 L/S ADD1

1: a =
load ...

1

ADD0 L/S ADD1

1: a =
load ...

1

ADD0 L/S ADD1

FIGURE 16. Valid read stubs

FIGURE 17. Permutation of write stubs when
scheduling operation 1

4: ... =
a + b

3
4: ... =
a + b

3

1: a =
load ...

1

ADD0 L/S ADD1

stub access the same register file and form a route, communication
scheduling immediately assigns the communication to that route.

When scheduling operation 4 in the motivating example, the write
stub and a read stub form a route for the closing communication of
b from operation 2, so communication scheduling immediately
assigns it to that route as shown in Figure20. The stubs for the
closing communication of a from operation 1 do not form a route.

Step 5. Insert copy operations
Fifth, communication scheduling inserts and attempts to schedule a
copy operation to connect the stubs and form a route for each
remaining closing communication. Inserting a copy operation is
equivalent to the code transformation shown in Figure21.

Effectively, this transformation splits the original communication
into two communications, one from the write operation to the copy
operation, and one from the copy operation to the read operation as
shown in Figure22. Communication scheduling then calls on the
scheduler to schedule the copy operation.

The copy operation is scheduled just like any other operation,
except that it must be scheduled on a cycle in the copy range of the
original communication. If the write operation is before the read
operation in the same basic block, the copy range is all cycles
between the cycle on which the write operation completes and the
cycle on which the read operation issues. Otherwise, the copy
range is all cycles in the write operation's basic block after the
write operation completes. These two cases are shown in
Figure23. Multiple operations can compute a result that is used as
an operand by the same read operation depending on control flow.
Copy operations are conservatively restricted to the write opera-
tion’s basic block so that they do not overwrite the result of the
other write operations.

FIGURE 18. Permutation of write stubs when
scheduling operation 2

FIGURE 19. Operation 3 cannot be scheduled due
to stub conflicts

FIGURE 20. Route for communication of b from
operation 2 to operation 4

1: a =
load ...1

ADD0 L/S ADD1

2: b =
... + ...

1: a =
load ...

3: c =
... + ...

1

ADD0 L/S ADD1

2: b =
... + ...

1: a =
load ...

2: b =
... + ...1

Functional Unit

4: ... =
a + b3

b

ADD0 L/S ADD1

3: c =
 ... + ...

2

b

C
yc

le

stubs form
a route

stubs do
not form a

route

x = ...
...
... = x ...

x = ...
x’ = copy x
...
... = x’ ...

FIGURE 21. Copy operation code transformation

FIGURE 22. A copy operation effectively splits
original communication into two communications

same block different block

FIGURE 23. Copy ranges based on location of read
operation

write operation

read operation

write operation

read operation

copy operation

or
ig

in
al

 c
om

m
un

ic
at

io
n

tw
o

co
m

m
un

ic
at

io
ns

write
operation

1

2

3

read
operation

5

C
yc

le

C
o

p
y ran

g
e

4

Basic block 2

write
operation

1

2

1

read
operation

2

C
yc

le C
o

p
y ran

g
e3

C
yc

le

Basic block 1

Basic block 2

Communication scheduling treats the copy operation just like any
other operation, so communication scheduling can recursively
insert additional copy operations as needed.

Returning to the motivating example, the stubs for the closing
communication of a from operation 2 to operation 4 do not form a
route, so communication scheduling inserts and attempts to sched-
ule a copy operation as shown in Figure24.

Communication scheduling succeeds if it finds a permutation of
write stubs and a permutation of read stubs, and assigns each clos-
ing communication to a route. If communication scheduling fails,
any routes assigned to communications to/from the current opera-
tion are unassigned, and any copy operations are unscheduled. The
scheduler then reschedules the operation and attempts communica-
tion scheduling again. Once all operations have been scheduled
successfully, communication scheduling has assigned all commu-
nications to routes.

4.4 Stub Permutation Search
The number of permutations of valid stubs for a set of communica-
tions is exponential with the number of communications. How-
ever, the permutation search does not need to examine all
permutations. The search is sufficient if:

• It can find a read/write stub for all communications to/
from an operation in the absence of other communica-
tions

• It can always find a permutation of stubs for a given set
of communications if it ever finds a permutation of stubs
for that set of communications (i.e. it is repeatable)

The first requirement ensures that an operation can always be
scheduled, even if only by scheduling it to issue and complete on
cycles without any other scheduled operations. The second
requirement ensures that, once an operation has been scheduled it
will remain possible to find a permutation of stubs for the cycles

on which it issues and completes, even if only by scheduling no
additional operations on those cycles.

One search algorithm that meets these requirements orders the
communications, then finds the first stub for each communication
that does not conflict with the stub found for a previous communi-
cation. If all stubs for a communication conflict with stubs found
for a previous communications, the search falls backs to the first
such communication and chooses a new stub. The search termi-
nates when a stub has been found for each communication or after
an arbitrary, relatively large, number of partial permutations have
been tried. With this algorithm, the order of communications is
important. If the stub required to form a route for a closing com-
munication conflicts with the stub found for a previous communi-
cation then that stub will not be chosen and a route will not be
formed. Thus, all closing communications are ordered before all
open or opening communications. Closing communications are
ordered by smallest copy range first, so that the communications
with the fewest of cycles to schedule copy operations on have pref-
erence in choosing stubs to form routes.

4.5 Algorithm Completion
Communication scheduling always completes, but requires back-
tracking to handle a rare special case. The requirements placed on
the stub permutation search guarantee that a stub can be found for
each communication, but do not guarantee that a pair of stubs can
be found that access the same register file. One or more copy oper-
ations may be required to move the communicated value between
register files. In most cases, delaying the second communicating
operation to be scheduled will cause the copy range for the trouble-
some communication to grow. Eventually, it will be possible to
schedule the copy operation(s). However, if the write operation is
in a different basic block than the read operation then the copy
range is equal to the cycles in that basic block after the write oper-
ation. If the write operation is scheduled first, the read operation
can be delayed indefinitely without increasing the copy range. If it
proves impossible to schedule the required copy operations regard-
less of how the read operation is scheduled, the scheduler must
backtrack to the write operation’s basic block and force the write
operation to be scheduled earlier to increase the copy range.

4.6 Scheduler Optimizations
The scheduler influences the efficiency of communication sched-
uling. The order in which the operations are scheduled determines
the order in which communication scheduling assigns communica-
tions to routes, and thus controls which communications receive
preferential allocation of resources. The heuristic the scheduler
uses to assign operations to functional units affects how many
copy operations are required and the performance impact of those
copy operations.

The scheduler schedules operations along the critical path first so
that communication scheduling assigns communications between
those operations to routes early, providing them with preferential
allocation of interconnect resources and, if necessary, functional
units for performing copy operations. In particular, operations are
scheduled in operation order, rather than cycle order. Consider a
“critical communication” between two adjacent operations on the
critical path, o1and o2. Using cycle order, the scheduler schedules
o1 then as many operations as possible on the current cycle before
moving on to the next cycle. Those additional operations may
occupy the interconnect resources needed to find an efficient route
for the critical communication. When attempting to schedule o2 on
the next cycle, communication scheduling may be forced to delay
it to insert a copy operation. Other operations that can be sched-
uled on that cycle may occupy all functional units that could per-
form the copy operation, causing o2 to be delayed even further.
Using operation order, after scheduling o1 the scheduler immedi-

FIGURE 24. Route for communication of a from
operation 1 to operation 4

1: a =
load ...

2: b =
... + ...1

Functional Unit

4: ... =
a + b

3

b
a

ADD0 L/S ADD1

3: c =
 ... + ...2

ab

C
yc

le a =
copy a

copy
operation
completes

route

ately schedules o2 on the next cycle and communication schedul-
ing assigns the critical communication to an efficient route.

The scheduler uses an heuristic that includes low communication
cost to assign operations to functional units. Communication cost
reflects the likelihood that assigning an operation to a specific
functional unit will require copy operations, and the likelihood that
those copy operations will increase schedule length. An operation
can only induce copy operations for open communications to oper-
ations on the cycle it issues and from operations on the cycle it
completes. Communication cost is calculated from an estimate of
the number of copy operations required and the size of the copy
range for each such open communication, as shown in equation 1.

(1)

Communication scheduling can be used to estimate the number of
required copy operations by finding a permutation of stubs for the
open and closing communications in Cto and Cfrom as though the
operation were assigned to the functional unit in question, then
counting the number of stubs that cannot form a route without a
copy operation regardless of which functional units the unsched-
uled operations are assigned to. The copy range for each open
communication is estimated by assuming that all unscheduled
operations are scheduled on the earliest possible cycle.

5. RESULTS AND DISCUSSION
Communication scheduling was tested on four variants of the
Imagine Stream Processor [16], a high-performance media proces-
sor, as shown in Figures 25-27.

Each variant has a different register file architecture: central regis-
ter file shown in Figure25, clustered register file (2 and 4 clusters)
shown in Figure26, and distributed register file shown in
Figure27. In the distributed register file architecture, each func-
tional unit output can drive any one of ten global buses, and each
register file input can be driven by any one of those buses.

All four architectures include the same mix of four load/store (l/s)
units and twelve functional units: six adders, three multipliers, a
divider, a permutation unit (pu), and a scratchpad (sp). For consis-
tency, the clustered architecture is modeled with special “copy
units” driving the global buses between register files. All func-
tional units in the distributed register file architecture except the
scratchpad unit implement the copy operation.

Figures 25-27 also depict the area, power, and register file access
delay for each of three register file architectures estimated using
the methods described in [15]. These figures show that more,
smaller register files significantly reduce area, power consump-
tion, and access delay.

requiredCopies
1 copyRange+

communications
∑

FIGURE 25. Central register file architecture

FIGURE 26. Clustered register file architecture (four clusters shown, with two cluster division)

FIGURE 27. Distributed register file architecture

+ + * /+ * pu sp+ + + * l/s l/s l/s l/s

0 0.25 0.5 0.75 1

Delay

Power

Area

+ + * l/s pu sp+ * / l/s + + * l/s + l/s

two cluster division

copy copy copy copy

0 0.25 0.5 0.75 1

Delay

Power

Area

+ + + * * / pu sp l/s l/s l/s l/s+ + + *

0 0.25 0.5 0.75 1

Delay

Power

Area

Table1 presents the graphics, image processing, signal processing,
and sorting kernels used to evaluate communication scheduling.
All kernels were written in a limited subset of C. Each kernel con-
sists of a short preamble followed by a single software-pipelined
[9] loop.

Since kernel performance is dominated by the loop, speedup was
calculated as the inverse of the schedule length of that loop nor-
malized to the schedule length for the central register file architec-
ture. Figure28 shows the speedup for each kernel on each of the
four register file architectures.

Figure29 shows the overall speedup for the four architectures, cal-
culated by taking the geometric mean of the individual kernel
speedups.

These results demonstrate that communication scheduling enables
effective scheduling to an architecture in which each functional
unit input or output can be connected to multiple register files
using shared buses and register file ports. In evaluating these
results, it is important to distinguish between the target architec-
ture, the scheduling algorithm, and communication scheduling.

The target architecture places an upper bound on performance,
reachable with optimal scheduling. This upper bound is deter-
mined by the mix of functional units, the number of cycles a func-
tional unit requires to perform an operation, and the limitations of
the register file topology. Since this paper evaluates communica-
tion scheduling and not register file architectures, the mix of func-
tional units and operation latency (including register file access
time) is the same for all architectures. In reality, a multiple register
file architecture could support many more functional units with the
same area and power. Further, due to lower register file access
time, a multiple register file architecture would offer lower opera-
tion latency than a central register file architecture. The results
given in this paper do not include these advantages. Thus, the
upper bound on performance for any multiple register file architec-
ture is equal to or lower than the upper bound for performance on a
central register file architecture. The upper bound for each multiple
register file architecture depends on limitations of the register file
topology.

The scheduling algorithm alone determines how close this archi-
tectural upper bound is approached on a central register file archi-
tecture. Communication scheduling is irrelevant for a central
register file architecture, so much of the influence of the schedul-
ing algorithm is factored out by normalizing the result for the
scheduling algorithm with communication scheduling on a multi-
ple register file architecture to performance of the same scheduling
algorithm on a central register file architecture.

Previous scheduling algorithms have incorporated support for
clustered register file architectures. However, each standard func-
tional unit in a clustered register file architecture can only read
from and write to its own cluster register file. Thus, any interclus-
ter communication requires a copy operation. The results show that
these copy operations impact performance. The overall speedup
for both clustered architectures is 0.82. Almost all kernels experi-
ence some performance degradation, and the minimum speedup is
0.56.

TABLE 1. Evaluation kernels

Name Description

DCT Discrete Cosine Transform: Transforms an 8x8
matrix of 16-bit fixed-point numbers.

FFT Fast Fourier Transform: Performs a 1024-point
floating-point FFT.

FFT-U4 FFT with the inner loop unrolled four times.

FIR-FP Finite-Impulse-Response Filter: 56-tap floating-
point FIR filter.

FIR-INT FIR with 16-bit integer coefficients and data.

Block Warp Performs a 3-D perspective transformation used
for point-sample rendering [8].

Block
Warp-U2

Block Warp with the inner loop unrolled twice.

Triangle
Transform

Performs a 3-D perspective transformation on a
stream of triangles.

Sort Sorts 32 elements into an ordered set.

Merge Merges two streams of sorted elements into a
single sorted stream.

FIGURE 28. Kernel Speedup vs. Register File
Architecture

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Central Clustered (2) Clustered (4) Distributed

Register File Architecture

K
er

n
el

 S
p

ee
d

u
p

FFT-U4 FFT Triangle Transform
DCT Merge Block Warp-U2
FIR-FP FIR-INT Block Warp
Sort

FIGURE 29. Overall Speedup vs. Register File
Architecture

0 . 0 0

0 . 2 0

0 . 4 0

0 . 6 0

0 . 8 0

1 . 0 0

1 . 2 0

Register File Architecture

O
ve

ra
ll

S
p

ee
d

u
p

1.00 0.82 0.82 0.98

Central Clustered (2) Clustered (4) Distributed

Communication scheduling works for architectures in which each
functional unit can read from or write to multiple register files
using shared interconnect, such as a distributed register file archi-
tecture. The results show that a scheduler with communication
scheduling applied to a distributed register file architecture yields
performance that is comparable to a single register file architec-
ture. The overall speedup for a distributed register file architecture
is 0.98. Seven out of the ten kernels evaluated have the same per-
formance on a distributed register file architecture as on a central
register file architecture, and the minimum kernel speedup is 0.91.

Communication scheduling does not require backtracking to
schedule any of the evaluation kernels on the distributed register
file architecture, demonstrating the infrequency of the special case
described in Section4.5.

6. RELATED WORK
Previous scheduling algorithms have concentrated on scheduling
operations on cycles and assigning them to functional units (or
clusters). Most scheduling algorithms assign operations to func-
tional units and schedule operations on cycles using separate
phases [1][4][6][10][12]. Usually, each operation is first assigned
to a functional unit. Operations are then assigned to cycles using a
top-down or bottom-up traversal of an acyclic version of the data
dependency graph. The earliest cycle each operation can be issued
on is the cycle after the last operation it is dependent on completes.
However, the multi-phase approach requires that an operation be
delayed to a later cycle if an assigned functional unit is occupied,
even if another suitable functional unit is available. Unified Assign
and Schedule (UAS) [13] assigns operations to functional units
and cycles in a single phase. UAS attempts to assign each opera-
tion to the earliest possible cycle. If any functional unit that can
perform the operation is available on that cycle, UAS provisionally
assigns the operation to that functional unit then tries to schedule
copy operations. UAS only delays an operation to a later cycle if it
is unable to schedule copy operations for all available functional
units.

Some scheduling algorithms target specific architectures that take
incremental steps beyond a clustered register file architecture. Dis-
tributed modulo scheduling [7], another single-phase scheduling
algorithm, targets a clustered register file architecture that places
special communication queue register files between clusters (“dis-
tributed” does not refer to a distributed register file architecture).
The polycyclic compiler [14] targets an architecture that allows
functional units to read from/write to multiple register files, but
provides a dedicated register file between every functional unit
output and every functional unit input to avoid resource conflicts.
The Cydra5 compiler [3] targets an architecture in which each
functional unit input can read from multiple register files, but pro-
vides each input with a dedicated bus and a dedicated register file
port to access each register file. The TMS320C6x compiler [17]
targets an architecture with two cluster register files that includes a
small number of cross-cluster buses, but it still provides each func-
tional unit input and output with a dedicated bus and register file
port to access its cluster register file to guarantee a conflict-free
way to read operands and write results.

7. FUTURE WORK
The implementation of communication scheduling described in
this paper does not consider register allocation. When communica-
tion scheduling assigns a communication to a route through a spe-
cific register file, it implicitly allocates a register in that register
file. Register file overflows can be handled with a post pass that
inserts additional copy operations to “spill” values into other regis-
ter files by copying each value out of the overflowing register file
just after it is computed and copying it back in just before use.
However, an improved form of communication scheduling would

use an estimate of the number of registers implicitly allocated in
each register file to influence routing decisions.

Communication scheduling supports a very large range of register
file architectures, and additional work outside of the scope of this
paper is needed to evaluate those architectures. This paper presents
a specific distributed register file architecture that demonstrates the
effectiveness of communication scheduling, but other architectures
may yield even better results.

8. CONCLUSIONS
Communication scheduling enables scheduling to architectures in
which functional units are connected to multiple register files by
shared buses and register file ports. Scheduling to these shared
interconnect architectures is difficult because it requires simulta-
neously allocating functional units to operations and buses and
register file ports to the communications between operations.
Communication scheduling solves this problem by making each
communication explicit and incrementally composing it from three
components: a write stub, zero or more copy operations, and a read
stub. When the first operation is scheduled, the first stub is tenta-
tively allocated. When the second operation is scheduled, both
stubs are allocated and any required copy operations are scheduled.
This composition allows the communicating operations to be
scheduled independently while ensuring that the interconnect
resources will be available to complete the communication.

Communication scheduling is a general technique that can be
implemented as part of a variety of scheduling algorithms and
applied to a large class of shared of architectures. Communication
scheduling can be added to a scheduler simply by allowing com-
munication scheduling to accept or reject each operation place-
ment. Communication scheduling is not architecture specific. It
can be used to explore novel register files architectures without
implementing a custom compiler for each architecture.

Shared interconnect architectures are required to efficiently sup-
port the ever-increasing number of functional units demanded by
media processing applications. Communication scheduling allows
media processing kernels to achieve 98% of the performance they
would get with a central register file on a distributed register file
architecture that requires only 9% of the area, consumes 6% of the
power, and has 37% of the access delay. Clustered register file
architectures are a partial solution for smaller numbers of func-
tional units, but distributed register file architectures offer much
greater benefits as the number of functional units increases. For the
architecture with twelve functional units presented in this paper, a
distributed register file architecture requires 56% as much area and
50% as much power as a clustered register file architecture with
four clusters. For an architecture with forty-eight functional units,
a distributed register file architecture would require 12% as much
area and 9% as much power as a clustered register file architecture
with four clusters.

Acknowledgements
The research described in this paper was supported in part by the
Defense Advanced Research Projects Agency under ARPA order
E254 and monitored by the Army Intelligence Center under con-
tract DABT63-96-C-0037, and in part by Intel Corporation and
Texas Instruments Corporation. Several of the authors are also
supported by National Science Foundation and/or Stanford Gradu-
ate Fellowships. The authors wish to thank the Imagine team and
the many people who helped with this paper.

References:

[1] Capitanio, A., Dutt, N., and Nicolau, A. "Partitioned regis-
ter files for VLIWs: A preliminary analysis of trade-offs."
Proceedings of the 25th Annual International Symposium
on Microarchitecture , Dec., 1992, pp. 292-300.

[2] Colwell, R., Hall, W., Joshi, C., Papworth, D., Rodman, P.,
and Tornes, J. "Architecture and implementation of a
VLIW supercomputer." Proceedings in Supercomputing,
Nov., 1990, pp. 910-919.

[3] Dehnert, J. and Towle, R. "Compiling for the Cydra 5."
Journal of Supercomputing, Jan., 1993, 182-227.

[4] Desoli, G. “Instruction assignment for clustered VLIW
DSP compilers: A new approach.” Technical Report HPL-
98-13, Hewlett-Packard Laboratories, Feb., 1998.

[5] Diefendorff, K. and Dubey, P. “How multimedia work-
loads will change processor design.” Computer, Sept.,
1997, pp. 43-45.

[6] Ellis, J., Bulldog: A compiler for VLIW architectures. Cam-
bridge, MA: MIT Press, 1986.

[7] Fernandes, M., Llosa, J., and Topham, N., "Distributed
modulo scheduling." Proceedings of the 5th Annual Inter-
national Conference on High Performance Computer
Architecture , Jan., 1999, pp. 130-134.

[8] Grossman, J. and Dally, W. "Point sample rendering." Pro-
ceedings of the 9th Eurographics Workshop on Rendering,
June, 1998, pp. 181-192.

[9] Lam, M. “Software pipelining: An effective scheduling
technique for VLIW machines.” Proceedings of the Con-
ference on Programming Language Design and Implemen-
tation, June, 1988, pp. 318-328.

[10] Lowney, P., Freudenberger, S., Karzes, T., Lichtenstein,
W., Nix, R., O’Donnell, J., and Ruttenberg, J. “The Multi-
flow trace scheduling compiler.” Journal of Supercomput-
ing, Jan., 1993, pp. 51-142.

[11] Mangione-Smith, W., Abraham, S., and Davidson, E.
"Register requirements of pipelined processors." Proceed-
ings of the International Conference on Supercomputing,
July, 1992, pp. 260-271.

[12] Nystrom, E., and Eichenberger, A. "Effective cluster
assignment for modulo scheduling." Proceedings of the
31st Annual International Symposium on Microarchitec-
ture, Dec., 1998, pp. 103 - 114.

[13] Ozer, E., Banerjia, S., and Conte, T. "Unified assign and
schedule: A new approach to scheduling for clustered reg-
ister file microarchitectures." Proceedings of the 31st
Annual International Symposium on Microarchitecture,
Dec., 1998, pp. 308-315.

[14] Rau, B., Glaeser, C., and Picard, R., “Efficient code gener-
ation for horizontal architectures: Compiler techniques and
architectural support." Proceedings of the International
Symposium on Computer Architecture , July, 1982, pp. 131-
139.

[15] Rixner, S., Dally, W. J., Khailany, B., Mattson, P., Kapasi,
U. J., and Owens, J. D. "Register organization for media
processing", 6th International Symposium on High-Perfor-
mance Computer Architecture, Jan., 2000, pp. 375-386.

[16] Rixner, S., Dally, W. J., Kapasi, U. J., Khailany, B., Lopez-
Lagunas, A., Mattson, P., and Owens, J. D. "A bandwidth-
efficient architecture for media processing", Proceedings
of the 31st Annual International Symposium on Microar-
chitecture , Dec., 1998, pp. 3-13.

[17] Stotzer, E. and Leiss, E., “Modulo scheduling for the
TMS320C6x VLIW DSP architecture,” Proceedings of the
ACM SIGPLAN 1999 Workshop on Languages, Compilers,
and Tools for Embedded Systems, May, 1999, pp. 28-34.

Appendix A: Copy-connected
architectures
Communication scheduling works for all multiple register file
architectures that are copy-connected. In a copy-connected archi-
tecture, if the result of one operation is to be used as an operand of
another operation, either operation can be assigned independently
to any functional unit that can perform that operation. As long as
the result is written into one of a set of register files specific to the
reading operation and operand, zero or more copy operations can
be used to move the value to a register file from which it can be
read as an operand. More formally, an architecture is copy-con-
nected if:

For any pair of operations, o1 and o2, and a specific operand of o2,
operand, such that the result of o1 can be used as operand of o2, it
is possible to find two sets of register files as a function of o2 and
operand, RFwrite(o2, operand) and RFread(o2, operand), such
that:

• The output of any functional unit that can perform o1 is
connected to at least one register file in RFwrite

• Every input that can be used to read operand by any
functional unit that can perform o2 is connected to at
least one register file in RFread

• Zero or more copy operations can be used to move a
value from any register file in RFwrite to any register
file in RFread

Figure30 graphically depicts this constraint.

FIGURE 30. Graphical depiction of copy-connected
architecture constraint

functional units that can perform o1

functional units that can perform o2

register files in RFread

register files in RFwrite

(zero or more copy operations
to move value from one register file to other)

