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Abstract

Stream processors are high-performance programmable
processors optimized to run media applications. Recent
work has shown these processors to be more area- and
energy-efficient than conventional programmable architec-
tures. This paper explores the scalability of stream archi-
tectures to future VLSI technologies where over a thousand
floating-point units on a single chip will be feasible. Two
techniques for increasing the number of ALUs in a stream
processor are presented: intracluster and intercluster scal-
ing. These scaling techniques are shown to be cost-efficient
to tens of ALUs per cluster and to hundreds of arithmetic
clusters. A 640-ALU stream processor with 128 clusters and
5 ALUs per cluster is shown to be feasible in 45 nanome-
ter technology, sustaining over 300 GOPS on kernels and
providing 15.3x of kernel speedup and 8.0x of application
speedup over a 40-ALU stream processor with a 2% degra-
dation in area per ALU and a 7% degradation in energy
dissipated per ALU operation.

1. Introduction

Modern VLSI technology enables chips with Teraops/s
of arithmetic performance [13] but only a few GWords/s
of external bandwidth. As VLSI technology scales, this
gap between arithmetic capability and bandwidth contin-
ues to widen. Arithmetic performance (Number of ALUs
× frequency) increases by 70% each year while off-chip
bandwidth increases by only 25% [4, 20]. Global on-chip
bandwidth also increases more slowly than arithmetic per-
formance.

The large and growing gap between arithmetic perfor-
mance and bandwidth has led to a performance gap between
general-purpose and special-purpose processors. Because
they are limited by bandwidth, general-purpose micropro-
cessors [9, 19] devote only a small fraction of their die area
to arithmetic units, and hence have a relatively low peak
performance. Special-purpose processors, such as graph-

ics chips [13], on the other hand, exploit locality in their
fixed applications to reduce bandwidth demands and thus
efficiently exploit hundreds of arithmetic units, devoting a
much larger fraction of their die area to arithmetic.

Stream processors [8] close this gap between special-
purpose and general-purpose processors, offering high
performance without sacrificing programmability. Like
special-purpose processors, stream processors exploit local-
ity in the application to reduce bandwidth demands. Ex-
pressing the application as a stream program exposes ker-
nel locality and producer-consumer locality. A bandwidth
hierarchy of local register files, a global stream register
file, and memory, exploits this exposed locality by keep-
ing most data movement (over 90%) local, and requiring
only a small fraction (≤ 1%) of bandwidth to access mem-
ory. This bandwidth efficiency enables stream processors
to efficiently make use of large numbers of arithmetic units.
The Imagine stream processor, for example, uses 48 32-bit
FPUs organized into eight SIMD clusters of 6 FPUs.

In this paper we explore the feasibility of scaling stream
processors to thousands of ALUs. We develop a cost model
that estimates the area, delay, and energy of a stream pro-
cessor as a function of C the number of clusters and N
the number of ALUs per cluster. We use these models to
evaluate intercluster scaling (increasing C) and intracluster
scaling (increasing N ). Our analysis shows that scaling to
hundreds of clusters with tens of ALUs per cluster incurs
only modest penalties for energy and area. For example, a
640-ALU C = 128 N = 5 stream processor requires only
2% more area per ALU and only 7% more energy per ALU
operation than a 40-ALU C = 8 N = 5 stream processor.

We also study performance on a set of media applica-
tions as N and C are scaled. Our experiments show that
kernel inner-loop performance improves nearly linearly up
to 1280 ALUs and at a slightly lower rate on applications
with fixed dataset sizes. A C = 128 N = 10 processor
achieves a speedup of 27.9x and 10.0x on the harmonic
mean of 6 kernels and 6 applications. Kernel inner-loop
performance scaling suggests that even larger application
speedups would be achieved if dataset size was scaled with
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Figure 1. FFT as a stream program

the number of ALUs.
Background and analytical VLSI cost models for stream

processors are provided in Sections 2 and 3. The costs and
performance of increasing N and C are then evaluated in
Sections 4 and 5.

2. Background

Stream processing provides performance approaching
special-purpose processors without sacrificing programma-
bility [8, 16]. With stream processing, applications are ex-
pressed as stream programs, exposing the locality and par-
allelism inherent in media applications. A stream proces-
sor can then efficiently exploit the exposed locality with a
bandwidth hierarchy of register files and can exploit the ex-
posed parallelism with SIMD arithmetic clusters and multi-
ple arithmetic units per cluster.

2.1. Stream Programming

Media applications contain abundant parallelism and are
compute intensive. Rixner studied application characteris-
tics of four media applications: a stereo depth extractor, a
video encoder/decoder, a polygon renderer, and a matrix
QR decomposition [16]. On these applications, he mea-
sured ratios of arithmetic operations to inherent memory
references of 57.9 to 473.3 and showed that they contain
a large amount of data-level parallelism.

These applications are naturally cast as stream programs.
A stream program organizes data as streams and computa-
tion as a sequence of kernels. A stream is a finite sequence
of related elements. Each stream element is a record, such
as a 21-word triangle, or single-word RGBA pixels. A ker-
nel reads from a set of input streams, performs the same
computation on all elements of a stream, and writes a set
of output streams. FFT as an example stream program
is shown in Figure 1. In this diagram, arrows represent
streams and circles represent kernels, in this case one stage
of a FFT.

Stream programs expose the locality and parallelism in
the algorithm to the compiler and hardware. Two key
types of locality are exposed: kernel locality and producer-
consumer locality. Kernel locality refers to intermediate
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Figure 2. Stream Processor Block Diagram

data values that are live for only a short time during ker-
nel execution, such as temporaries during an FFT butterfly
computation. Producer-consumer locality refers to streams
produced by one kernel and consumed by subsequent ker-
nels. Finally, parallelism is exposed because a kernel typi-
cally executes the same kernel program on all elements of
an input stream. By casting media applications as stream
programs, hardware is able to take advantage of the abun-
dant parallelism, computational intensity, and locality in
media applications.

2.2. Stream Architecture

An example stream architecture with eight arithmetic
clusters is shown graphically in Figure 2. A stream proces-
sor runs as a co-processor with a host executing scalar code.
Instructions sent to the stream processor from the host are
sequenced through a stream controller. The stream regis-
ter file (SRF) is a large on-chip storage for streams. The
microcontroller and ALU clusters execute kernels from a
stream program. As shown in Figure 3, each cluster consists
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of ALUs fed by 2 local register files (LRFs) each, external
ports for accessing the SRF, and an intracluster switch that
connects the outputs of the ALUs and external ports to the
inputs of the LRFs. In addition, there is a scratchpad (SP)
unit, used for small indexed addressing operations within
a cluster, and an intercluster communication (COMM) unit,
used to exchange data between clusters. Imagine is a stream
processor recently designed at Stanford University that con-
tains 6 floating-point ALUs per cluster (3 adders, 2 multi-
pliers, and 1 divide-square-root unit) and eight clusters [8],
and was fabricated in a CMOS technology with 0.18 micron
metal spacing rules and 0.15 micron drawn gate length.

Stream processors directly execute stream programs.
Streams are loaded and stored from off-chip memory into
the SRF. SIMD execution of kernels occurs in the arithmetic
clusters. For each iteration of a loop in a kernel, C clus-
ters will read C elements in parallel from an input stream
residing in the SRF, perform the exact same series of com-
putations as specified by the kernel inner loop, and write
C output elements in parallel back to an output stream in
the SRF. Kernels repeat this for several loop iterations until
all elements of the input stream have been read and oper-
ated on. Data-dependent conditionals in kernels are han-
dled with conditional streams which, like predication, keep
control flow in the kernel simple [7]. However, conditional
streams eliminate the extra computation required by predi-
cation by converting data-dependent control flow decisions
into data-routing decisions.

Stream processors exploit parallelism and locality at
both the kernel level and application level. During kernel
execution, data-level parallelism is exploited with C clus-
ters concurrently operating on C elements and instruction-
level parallelism is exploited by VLIW execution within the
clusters. At the application level, stream loads and stores
can be overlapped with kernel execution, providing more
concurrency. Kernel locality is exploited by stream pro-
cessors because all temporary values produced and con-
sumed during a kernel are stored in the cluster LRFs with-
out accessing the SRF. At the application level, producer-
consumer locality is exploited when streams are passed be-
tween subsequent kernels through the SRF, without going
back to external memory.

The data in media applications that exhibits kernel lo-

cality and producer-consumer locality also has high data
bandwidth requirements when compared to available off-
chip memory bandwidth. Stream processors are able to
support these large bandwidth requirements because their
register files provide a three-tiered data bandwidth hierar-
chy. The first tier is the external memory system, optimized
to take advantage of the predictable memory access patterns
found in streams [17]. The available bandwidth in this stage
of the hierarchy is limited by pin bandwidth and external
DRAM bandwidth. Typically, during a stream program, ex-
ternal memory is only referenced for global data accesses
such as input/output data. Programs are strip-mined so that
the processor reads only one batch of the input dataset at
a time. The second tier of the bandwidth hierarchy is the
SRF, which is used to transfer streams between kernels in
a stream program. Its bandwidth is limited by the avail-
able bandwidth of on-chip SRAMs. The third tier of the
bandwidth hierarchy is the cluster LRFs and the intracluster
switch between the LRFs which forwards intermediate data
in a kernel between the ALUs in each cluster during kernel
execution. The available bandwidth in this tier of the hierar-
chy is limited by the number of ALUs one can fit on a chip
and the size of the intracluster switch between the ALUs.

The peak bandwidth rates of the three tiers of the data
bandwidth hierarchy are matched to the bandwidth demands
in typical media applications. For example, the Imagine
processor contains 40 fully-pipelined ALUs and provides
2.3 GB/s of external memory bandwidth, 19.2 GB/s of SRF
bandwidth, and 326.4 GB/s of LRF bandwidth. There-
fore, Imagine supports a ratio of ALU operations to mem-
ory words referenced of 28. However, as mentioned above,
some media applications have over 400 inherent ALU op-
erations per memory reference. As VLSI capacity contin-
ues to scale at 70% annually and as memory bandwidth
continues to increase at 25% annually, this suggests that
stream processors with thousands of ALUs could provide
significant speedups on media applications without becom-
ing memory bandwidth limited. The remainder of this paper
will explore the feasibility and performance of such proces-
sors.

2.3. Related Work

Other researchers have investigated programmable ar-
chitectures for media processing that scale to many ALUs
per chip. Vector microprocessors [10, 22] directly exploit
data parallelism by executing vector instructions such as
vector adds or multiplies out of a vector register file. This
differs from stream processors, which execute VLIW in-
structions from a kernel in a SIMD fashion out of a SRF
and contain LRFs to store intermediate results. Several au-
thors have analyzed the VLSI costs of components of vec-
tor microprocessors as the number of functional units per



vector lane is increased [2, 10, 18]. Kozyrakis also ana-
lyzed the natural vector lengths in media benchmarks and
the performance of vector microprocessors as the number
of FUs per vector lane are increased [11]. However, to our
knowledge, no previously published studies explore VLSI
costs or performance as vector microprocessors are scaled
to greater than 8 or 16 vector lanes. Other related work in-
cludes approaches where stream programs are mapped to
on-chip processor arrays [3, 12, 21] and investigations into
the impact of technology scaling on general-purpose micro-
processors [1].

3. VLSI Cost Models

Not only do stream processors naturally exploit the par-
allelism and locality in media applications, but they are
also area- and energy-efficient, primarily due to their reg-
ister file structure. Stream processors partition their regis-
ter file along three dimensions. The first partition is in the
SIMD dimension, supporting multiple arithmetic clusters.
The next partition is in the instruction-level dimension with
one two-ported LRF per ALU input within in the arithmetic
clusters. Finally, the SRF is separated from the LRFs in
order to allow for staging of streams between memory and
kernels. Each of these partitionings provides a benefit in
area and energy efficiency with a small performance degra-
dation. In total, when compared to a 48-ALU processor
with a single unified register file, a C = 8 N = 6 stream
processor takes 195 times less area, 430 times less energy,
and has only a 8% performance degradation [18]. This im-
proved VLSI efficiency enables stream processors to scale
to thousands of ALUs per processor. In this section, we
present analytical models for the area, delay, and energy of
a stream processor as a function of the number of clusters
C and ALUs per cluster N .

The area, delay, and energy of the basic building blocks
of a stream processor and other parameters that will be used
throughout the paper are presented in Table 1. The first sec-
tion of parameters includes measurements from a prototype
Imagine stream processor [8]. Key building blocks include
four types of on-chip memory (SRAMs, LRFs, SPs, and
streambuffers), ALUs, and wires. Listed values are pro-
cess independent. Energy values are normalized to Ew, the
wire propagation energy per wire track (0.093 fJ in 0.18
micron technology1). Measured delays for on-chip wire
propagation and key gates which will be used to construct
large switches are presented in fan-out-of-4 inverter delays
(FO4s), a process-independent measure of device speed. As
technology scales, wire propagation velocity v0 stays rela-
tively constant with optimal repeatering [5]. A clock cy-
cle of 45 FO4s, measured from the Imagine stream proces-

1Calculated from an assumed wire capacitance of 0.26 fF per micron
including repeater capacitance [5] with a 25% 1-to-0 transition probability.

Table 1. Summary of Parameters

Param Value Description
ASRAM 16.1 Area of 1 bit of SRAM used for

SRF or Microcontroller (grids)
ASB 2161.8 Area per SB width (grids)
wALU 876.9 Datapath width of an ALU (tracks)
wLRF 437.0 Datapath width of 2 LRFs (tracks)
wSP 708.9 Scratchpad datapath width (tracks)

h 1400 Datapath height for all cluster com-
ponents (tracks)

v0 1400 Wire propagation velocity in tracks
per FO4 inverter delays [5]

tcyc 45 FO4s per clock
tmux 2 Delay of 2:1 mux in FO4s
Ew 1 Normalized wire propagation en-

ergy per wire track
EALU 2.0 × 106 Energy of ALU operation (normal-

ized to Ew)
ESRAM 8.7 SRAM access energy per bit (nor-

malized to Ew)
ESB 1936 Energy of 1 bit of SB access (nor-

malized to Ew)
ELRF 8.9 × 105 LRF access energy (normalized to

Ew)
ESP 1.6 × 106 SP access energy (normalizd to Ew)
T 55 Memory latency (cycles)

b 32 Data width of the architecture
GSRF 0.5 Width of SRF bank per N (words)
GSB 0.2 Average number of SB accesses per

ALU operation in typical kernels
GCOMM 0.2 COMM units required per N

GSP 0.2 SP units required per N
I0 196 Initial width of VLIW instructions

(bits)
IN 40 Additional width of VLIW instruc-

tions per NFU

LC 6 Initial number of cluster SBs
LO 6 Required number of non-cluster

SBs
LN 0.2 Additional SBs required per N
rm 20 SRF capacity needed per ALU

for each cycle of memory latency
(words)

ruc 2048 Number of VLIW instructions re-
quired in microcode storage

C — Arithmetic clusters
N — Number of ALUs per cluster



Table 2. Kernel Inner Loop Characteristics

Kernel ALU SRF Intercluster SP
Ops Accesses Comms Accesses

Blocksad 59 28 (0.47) 10 (0.17) 4 (0.07)
Convolve 133 14 (0.11) 5 (0.04) 2 (0.02)

Update 61 4 (0.07) 16 (0.26) 32 (0.52)
FFT 145 64 (0.44) 40 (0.28) 72 (0.50)

DCT 150 16 (0.11) 7 (0.05) 32 (0.21)

sor, was used. Typical microprocessors designed with cus-
tom methodologies have clock cycles closer to 20 FO4s [1].
Adapting the cost analysis to results for custom processors
will be addressed in Section 4. The second section of values
were empirically determined from the inner loop character-
istics of a variety of key media processing kernels. These
characteristics are shown in Table 2 with the number of
accesses per ALU operation shown in parentheses. Based
on these inner loop characteristics, reasonable values for
GSRF , GSB , GSP , and GCOMM were used to make sure
that application performance was not affected.

3.1. Stream Processor Cost Models

The total area and energy of a stream processor is subdi-
vided into the SRF, the microcontroller, the C SIMD arith-
metic clusters, and the intercluster switch. Other compo-
nents such as the stream controller and memory system are
not scaled with the number of ALUs and contribute a small
constant factor to total area, so are not considered in this
study. Analytical cost models for the SRF, microcontroller,
clusters, and switches are presented in Table 3. The first
section contains dependent variables used for clarity, fol-
lowed by formulae for area, delay, and energy. These mod-
els have been adapted from formulae presented by Rixner
et al. on the Stream/SIMD/DRF register organization [18].
However, Rixner et al. only considered the register files and
the switches between register files and fixed C at 8 in their
analysis. In this paper, we extend the models to include the
microcontroller, intercluster switches, and scratchpad units.

A grid floorplan of arithmetic clusters shown in Figure 4
is assumed. The SRF is partitioned into C banks, where
each bank corresponds to an element from a stream that a
cluster will read during SRF reads and writes. The only
communication between the clusters or SRF banks is in the
memory system ports to the SRF (not shown) and the inter-
cluster switch, with buses and cross-point switches repre-
sented as lines and dots in Figure 4.
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Figure 4. Chip Floorplan

3.1.1 Stream Register File

The area of the SRF, ASRF , contains two components: the
stream storage and the SBs. The SRF is used to stage
streams being passed between kernels. A SB automatically
prefetches sequential data for its associated stream out of
the stream storage. All SBs share a single port into the
stream storage, allowing that single port to act as many log-
ical ports. The stream storage is a large single-ported on-
chip SRAM, organized as rmTN blocks of C banks, for a
total capacity of rmTNC words. This capacity is necessary
to cover external memory latency. In a fixed technology,
since the area and access energy of the stream storage grow
linearly with the capacity, both the area and energy grow
linearly with the number of ALUs in a stream processor.

Each SB contains storage for two blocks of the SRF to
act as a double-buffer for covering the latency of block reads
and writes from the stream storage. Each SRF bank has a
block width of GSRF Nb, requiring 2GSRF Nb bits of stor-
age per SB. A total of NSB streambuffers are required for a
given stream processor configuration. As shown in Table 3,
three factors determine the total number of SBs. LO SBs
are required for memory, host, and microcontroller trans-
fers. LC cluster SBs are required to provide an ample num-
ber of input and output streams for typical kernels. Finally,
as N increases, more bandwidth is often required between
some of the SBs and the ALUs. This is accounted for with a
third term, LNN . Input or output streams with multi-word
records that require more bandwidth must be split into mul-
tiple streams and utilize these additional SBs to keep from
becoming a performance bottleneck2. Asymptotically, the

2Splitting multi-word-record streams into multiple streams was done
by hand to optimize performance for the experiments in Section 5.



Table 3. Summary of Stream Processor VLSI Costs

Element Equation
COMMs per cluster NCOMM = GCOMMN
SPs per cluster NSP = GSP N
FUs per cluster NFU = N + NSP + NCOMM

Cluster SBs NCLSB = LC + LNN
Total SBs NSB = LO + NCLSB

External Cluster Ports Pe = NCLSB

Total Area ATOT = CASRF + AUC + CACLST + ACOMM

SRF Bank Area ASRF = rmTNASRAMb + (2GSRF N)NSBASBb

Microcontroller Area AUC = ruc(I0 + INNFU )ASRAM + (INNFU )
√

ASRF + ACLST + ACOMM

Cluster Area ACLST = NFUwLRF h + NwALUh + NSP wSP h + ASW

Intracluster Switch Area ASW = NFU (
√

NFUb)(2
√

NFUb + h + 2wALU + 2wLRF )+√
NFU (3

√
NFUb + h + wALU + wLRF )Peb

Intercluster Switch Area ACOMM = CNCOMMb
√

C(NCOMMb
√

C + 2
√

ACLST + ASRF )
Intracluster Wire Delay tintra =

√
NFU (h + 2

√
NFUb + wALU + wLRF +

√
NFUb)/v0 + tmux(log2

√
NFU +

√
NFU )

Intercluster Wire Delay tinter = tintra + 2
√

CACLST + CASRF + ACOMM/v0 + tmux(log2

√
CNCOMM +

√
C)

Total Energy ETOT = CESRF + EUC + CECLST + GCOMMNCbEinter

SRF Bank Energy ESRF = rmTNbESRAMGSB/GSRF + (GSBNb)(ESB + Eintra/2)
Microcontroller Energy EUC = ruc(I0 + INNFU )ESRAM + (INNFU )Ew(

√
C
√

CASRF + CACLST + ACOMM )
Cluster Energy ECLST = NFUELRF + NEALU + NSP ESP + NFUbEintra

Intracluster Comm Energy Eintra = Ew(
√

NFU (h + 2
√

NFUb) + 2
√

NFU (wALU + wLRF +
√

NFUb))
Intercluster Comm Energy Einter = Ew(2

√
C)(

√
ACLST + ASRF + NCOMMb

√
C)

area of the SBs grows with N2, but for N < 64, the linear
term accounts for the majority of the area. The energy dissi-
pated in the SBs is related to the number of SB accesses per
ALU operations, GSB . Half of the accesses are assumed to
be reads and require a traversal of the intracluster switch.

3.1.2 Microcontroller

The microcontroller, listed next in Table 3, provides stor-
age for the kernels’ VLIW instructions, and sequences and
issues these instructions during kernel execution. The mi-
crocode storage is a large single-ported memory. With a
small amount of speedup on this single port, kernels can
be loaded before they are used, and separate write and read
ports are not needed. The microcontroller area is comprised
of the microcode storage area and area for control wire dis-
tribution between the microcontroller and the clusters. The
microcode storage requires ruc VLIW instructions for ker-
nel storage in typical applications. Although as is shown
in Section 5, increasing N results in higher inner-loop per-
formance, the number of instructions in a kernel stays rel-
atively constant with N since more loop unrolling is often
used with higher N to provide more ILP and because loop
prologues and epilogues in kernels are critical-path limited,
not arithmetic-bandwidth limited. The width of each VLIW

instruction is given by I0 + INNFU bits. I0 bits are re-
quired for microcontroller instruction sequencing, condi-
tional stream instructions, immediate data, and for interfac-
ing with the SRF. IN bits per ALU per cluster are required
to encode ALU operations, to control LRF read and writes,
and to control the intracluster switch. Area and energy for
distributing the instructions from the microcode storage to
the grid of clusters is accounted for in the second term in
both formulae in Table 3. In addition, repeaters and pipeline
registers are required within the cluster grid for more in-
struction distribution, but this area is accounted for in the
area measured for the components in Table 1.

3.1.3 Arithmetic clusters

Each cluster is comprised of area devoted to the LRFs,
ALUs, a scratchpad, and the intracluster switch. This
switch is a full crossbar that connects the outputs of the
FUs and the streambuffers to the inputs of the LRFs and the
streambuffers. In this paper, the ALUs are assumed to be
arranged in a square grid as shown in Figure 5, where each
row contains a bus for each ALU output in that row and each
column contains a bus for each LRF input in that column.
The row-column intersections contain program-controlled
cross-point switches that connect rows to columns. This
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grid structure minimizes the area and wire delay of the
intracluster switch when the number of ALUs per cluster
is large3. The area devoted to the intracluster switch in-
cludes wire tracks for the wires and repeaters in the rows
and columns of the grids and the cross-points between the
rows and columns, as shown in Figure 5. Additional area for
the external ports from the cluster streambuffers is included
as well. The intracluster wire delay is also presented in Ta-
ble 3. Its first term models the worst-case wire propagation
delay incurred in the intracluster switch (width + height of
a cluster)/v0 and a term for the logic delay through the cross
points. The logic delay includes a

√
NFU :1 mux for each

row-column to select which ALU to read from on that row,
followed by an additional 2:1 mux delay at each additional
row in the column to choose between the current row or
the adjacent rows. As N increases, the VLSI costs of the
arithmetic clusters are dominated by the N

3/2
FU term in the

intracluster switch area.

3.1.4 Intercluster Switch

The final component of the stream processor area is the
intercluster switch, shown in Figure 4. Each cluster has
NCOMM buses it broadcasts to in the rows and NCOMM

buses it reads from in the columns. Since each cluster can
only access stream elements from its SRF bank, the inter-
cluster switch allows kernels that aren’t completely data
parallel to communicate data with each-other without go-
ing back to memory. It is also used by conditional streams
to route data to and from the SRF [7]. A two-dimensional
grid structure similar to the intracluster switch is also as-
sumed for the floorplan of the arithmetic clusters. This lay-
out minimizes the area, delay, and energy overhead of the
intercluster switch when the number of arithmetic clusters
becomes large. Each cluster has NCOMM buses it writes to

3For smaller numbers of ALUs per cluster, a linear floorplan has com-
parable area and delay, but for simplicity, only grid floorplans are consid-
ered in this study.

in each row and reads from in each column, so there is a bus
width of NCOMMb

√
C between each arithmetic cluster. As

shown in ECOMM , on average, GCOMMNC intercluster
communications will occur for every NC ALU operations,
where each intercluster communication switches the capac-
itance for a bus in its row and in its destination’s column.

4. VLSI Cost Evaluation

In this section, the area, delay, and energy costs of in-
creasing the number of ALUs in a stream processor will be
evaluated using the models presented above. The two scal-
ing methods that will be explored are intracluster scaling,
increasing the number of ALUs per arithmetic cluster, and
intercluster scaling, increasing the total number of arith-
metic clusters.

4.1. Intracluster Scaling

As N increases, the size and bandwidth of the SRF, clus-
ters, micro-controller, and intercluster switch must all in-
crease according to the formulae presented in section 3.
Figure 6 shows the area per ALU for intracluster scaling
with C fixed at 8. Average energy dissipated per ALU op-
eration is shown in Figure 7. Both charts are normalized
to the values for N = 5, the most area- and energy-efficient
configuration. For small N , the overhead from the I0 bits of
microcode storage and the COMM and SP units contributes
to larger area per ALU. The area per ALU then stays within
16% of the minimum up to 16 ALUs per cluster, at which
point the intracluster and intercluster switch start to reduce
the area efficiency. The energy efficiency follows a similar
trend, although by 16 ALUs per cluster the energy per ALU
op has grown to 1.23x of the minimum, due to the intraclus-
ter switch and microcontroller instruction distribution to the
large arithmetic clusters.

The delay of intracluster and intercluster communication
is shown in Figure 8. As N increases, intercluster wire
delay grows considerably. This delay is dominated by the
wire delay between the large clusters. The intracluster de-
lay grows at a lower rate, and includes significant compo-
nents of both logic and wire delay4. As measured from the
Imagine stream processor, a clock cycle of 45 FO4 delays
is assumed, so it is visible from the graph when additional
additional cycles of latencies must be added to instructions
as N is increased. Note that since wire traversal can be
pipelined, operation latency is affected by intracluster scal-
ing, but clock rate is held constant.

4As N increases, the VLIW compiler could exploit locality in the
placement of operations onto the ALUs so that most communications
would take place in a single clock cycle and only rarely will data have
to be communicated all the way across the cluster. However, this com-
piler optimization was not available at the time of this study, so was not
considered in the delay analysis.
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4.2. Intercluster Scaling

Compared to intracluster scaling, intercluster scaling in-
curs more modest VLSI costs. Figure 9 shows the area per
ALU as C is increased from 8 to 256, assuming a constant
cluster size of N = 5. The area per ALU is normalized to
the C = 8 N = 5 processor for comparison to stream pro-
cessors feasible in today’s technology. The C = 32 proces-
sor actually has 3% improved area per ALU over the C = 8
processor as the cost of the micro-code storage is amortized
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over more clusters. However at C = 128, the area per ALU
is 2% worse than for C = 8, mostly due to area in the in-
tercluster switch. As shown in Figure 10, energy overhead
grows slightly faster than area. A C = 128 dissipates 7%
more energy per ALU operation than for C = 8.

Switch delays with intercluster scaling are shown in Fig-
ure 11. Intracluster delay stays constant because the size of
each cluster does not change. Increased intercluster delay is
incurred mostly from wire delay and not logic delay, but can
be fully pipelined, leading to increased operation latency.
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4.3. Combined Scaling

By combining intercluster and intracluster scaling, con-
figurations with thousands of ALUs are feasible, as shown
in Figure 12. The area per ALU is graphed for 2, 5, and
16 ALUs per cluster with the number of clusters shown on
the x-axis. These results show that by scaling to N = 5,
or one COMM unit per arithmetic cluster, and then employ-
ing intercluster scaling provides the most area- and energy-
efficient configurations over the range of C from 8 to 128.
However, it is important to note that for each C, the addi-
tional cost of scaling from N = 5 to N = 10 is only 5-11%
and 14-21% worse for area and energy per ALU.

Although the preceding analysis used technology pa-
rameters typical to a less-aggressive standard-cell design
methodology, the results would be similar for a full-custom
design. Full-custom processors have clock cycles of less
than 20 FO4s [1], but also have smaller functional units and
register files, leading to higher absolute performance and
lower absolute area and energy. However, similar results
would be seen for relative area per ALU, energy overhead
per ALU operation, and latency in cycles of intracluster and
intercluster communications. In order to further explore the
tradeoffs between these two scaling techniques, a perfor-
mance analysis is presented in Section 5.

5. Performance Evaluation

Performance was evaluated with six media processing
kernels and applications, summarized in Table 4. Kernels
and applications were written in KernelC and StreamC.
StreamC specifies how streams are passed between ker-
nels. KernelC contains the mathematical operations for the
kernel codes. Each kernel and application was then re-
compiled for different architectures using the compilation
and programming tools developed for the Imagine stream
processor. Kernel inner-loop performance was measured
from static analysis of compiled kernels. Applications were

Table 4. Kernels and Applications

Kernel/APP Data Description
Blocksad 16b Sum-of-absolute differences ker-

nel for image processing
Convolve 16b Convolution filter for image pro-

cessing
Update FP Matrix block update for QRD

FFT FP Radix-4 fast Fourier transform
Noise FP /

32b
Perlin noise function used in pro-
cedural marble shader

Irast FP Triangle rasterizer

RENDER FP /
32b

Polygon rendering of a bowling pin
with a procedural marble shader.

DEPTH 16b Stereo Depth Extraction on a
512x384 pixel image [6]

CONV 16b Convolution filter on 512x384
pixel image

QRD FP 256x256 Matrix Decomposition
FFT1K FP 1024-point complex FFT
FFT4K FP 4096-point complex FFT

simulated on a C++ cycle-accurate simulator, holding the
dataset size constant across all stream processor sizes.

Clock rates and external bandwidths typical to 2007
technology were assumed. The targeted process is a 45
nanometer technology, expected to be available around
2007 [20]. In this technology, a 45 FO4 inverter delay clock
period would have a 1GHz processor clock rate. In addi-
tion, a memory system able to provide 16 GB/s of external
memory bandwidth using eight Rambus channels [15] and
a 1GHz host processor issuing stream instructions across a
2GB/s channel were simulated.

5.1. Kernel Performance

Kernel inner-loop performance is an important metric for
predicting application performance. When running typical
media processing applications like DEPTH on the Imagine
stream processor, over 80% of execution time is spent in
kernel inner loops. In order to study the effect of intercluster
and intracluster scaling on kernel inner-loop performance, a
suite of kernels was compiled for various stream processor
sizes. Functional unit latencies were taken from latencies
in the Imagine stream processor and the latencies of com-
munications were taken from the results presented in Sec-
tion 4. In the Imagine design, half of a 45 FO4 cycle was
allocated for intracluster communication delay. Therefore,
in the N = 14 configurations, where more than a half-cycle
is required for intracluster communication, an additional
pipeline stage was added to ALU operations and stream-
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Figure 14. Intercluster Kernel Speedup

buffer reads to cover this latency. Similarly, the COMM
unit operation latency and instruction issue pipeline depth
was determined by the intercluster communication delay.

Kernel inner-loop performance speedups over a C = 8
N = 5 processor with intracluster scaling are shown in Fig-
ure 13. Most kernels have near-linear speedups to N = 10,
because they contain instruction-level parallelism (ILP) and
abundant data-level parallelism that can be converted to
ILP with software pipelining and loop unrolling. Beyond
10 ALUs per cluster, most kernels begin to have smaller
speedups due to limited ILP and increased operation laten-
cies incurred when traversing the larger intracluster switch.

Kernel speedups with intercluster scaling are shown in
Figure 14. As C increases, some kernels such as Noise, are
perfectly data-parallel and contain perfect speedup. Even
kernels such as Irast, which rely heavily on conditional
stream and intercluster switch bandwidth, are able to hide
intercluster switch latency by taking advantage of abundant
data-level parallelism. Based on kernel inner-loop perfor-
mance, intercluster scaling is able to achieve near-linear
speedups when scaling to 128 clusters. Intracluster scaling
is very effective to 5 ALUs per cluster, and begins to trail
off around 10 ALUs to 14 ALUs per cluster, depending on
the specific kernel and the number of clusters.

Table 5. Kernel performance per unit area
Clusters

N 8 16 32 64 128
2 0.138 0.135 0.136 0.132 0.133
5 0.133 0.134 0.135 0.132 0.126

10 0.109 0.111 0.104 0.101 0.095
14 0.065 0.080 0.073 0.072 0.067

5.2 Performance Efficiency

The harmonic mean of kernel inner loop performance per
unit area on the six kernels is shown in Table 5. A pro-
cessor with an area of exactly N ALUs performing N op-
erations per cycle (N GOPS at 1 GHz) would have GOPS
per area of exactly 1.0 in this table. Table 5 shows that
on average across the kernels, configurations with N > 5
have lower performance per unit area due to the intraclus-
ter switch area and poorer kernel inner-loop performance.
In contrast, performance per area is relatively unaffected by
intercluster scaling. Although the C = 8 N = 2 configu-
ration is the most efficient, with performance per area of an
ALU of 0.138, the 640-ALU C = 128 N = 5 processor is
only 9% worse on performance per area while providing a
raw speedup of 33x over the C = 8 N = 2 processor.

5.3. Application Performance

While kernel inner-loop performance suggests achiev-
able speedups if dataset size scaled with machine size, we
also evaluated applications with fixed dataset sizes. The
speedups of various configurations over a C = 8 N = 5
processor are shown in Figure 15. Sustained performance
in GOPS for the C = 8 N = 5 and C = 128 N = 10
processors are also annotated for each application. All ap-
plications except FFT1K and FFT4K assume data is ini-
tially in external memory. Since FFTs are typically part of a
larger application, their performance was measured with in-
put data already in the SRF, and without simulating the bit-
reversed stores on the output data. The C = 128 N = 10
processor has the highest performance with speedups over
the C = 8 N = 5 configuration of 20.5x (311 GOPS) on
RENDER and 11.6x (328 GOPS) on DEPTH, and a har-
monic mean of 10.4x across the six applications.

Intracluster scaling of application performance is similar
to kernel performance, mostly affected by the limited ILP in
kernels and increased functional unit latencies. This leads to
little application-level speedup or even slowdowns in some
cases when increasing N from 10 to 14. With intercluster
scaling, speedups vary considerably depending on the ap-
plication. RENDER, for example, is very data-parallel and
contains stream lengths limited only by the total number
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of triangles in a scene. Since this number is large com-
pared to C, it scales very well to large numbers of clus-
ters. DEPTH and CONV, which also contain abundant data
parallelism and are not as limited by inherent application
stream lengths, also scale quite well.

In contrast, QRD and FFT1K scale poorly for C > 32.
In QRD, the matrix block update kernels scale well and if
the datasets grew with C, QRD performance would scale
similarly. However, with a fixed-size dataset, the larger ma-
chines spend an increasing fraction of their runtime com-
puting the orthogonal bases for the decomposition, a step
which scales poorly, therefore limiting speedup. In addition
to algorithmic inefficiencies leading to poor speedups, ap-
plications also suffer from short stream effects [14] when
stream lengths are comparable to the number of clusters,
similar to performance effects due to short vector lengths
in vector processors [2]. With short streams, the number
of inner loop iterations executed per kernel call decreases,
causing a larger fraction of execution time to be spent in
loop prologues and epilogues rather than in kernel inner
loops. Furthermore, since software pipelining is used ex-
tensively to optimize kernel inner-loop performance, a soft-
ware pipelining priming overhead is incurred. Plus, there is
a cost associated with filling the microcontroller and cluster
pipeline every time a kernel is executed. Finally, as stream
lengths decrease relative to C, memory latency and host
processor bandwidth begin to affect performance.

Performance degradation from short stream effects is
apparent when comparing FFT4K to FFT1K. Although

FFT4K has lower performance than FFT1K at C = 8
N = 5 because its large working set requires spilling from
the SRF to memory, at C = 128 N = 10, the difference in
raw performance between FFT4K and FFT1K is due purely
to stream length. On a C = 128 N = 10 processor, FFT4K
sustains 211 GFLOPS, while FFT1K, containing shorter
streams, only sustains 103 GFLOPS.

In summary, intracluster scaling provides near-linear
speedup with a slight cost in performance efficiency until
around 10 ALUs per cluster on both kernels and applica-
tions. Intercluster scaling provides near-linear speedups on
kernel inner-loop performance, and slightly sub-linear per-
formance due to short stream effects on a range of applica-
tions. When comparing a 1280-ALU to a 40-ALU stream
processor, speedups of up to 27.4x and 10.0x on a harmonic
mean of kernels and applications are possible with only a
29% degradation in kernel performance per unit area.

6. Conclusion

As technology enables more ALUs to fit on a single chip,
architectures must efficiently utilize bandwidth in order to
achieve large performance gains. This paper presents two
scaling techniques for stream processors that enable large
performance gains on media processing applications in fu-
ture VLSI technologies. Intracluster scaling was shown to
be effective from a performance and cost standpoint up to
10 ALUs per cluster, although was most area- and energy-



efficient at 5 ALUs per cluster. Intercluster scaling was
shown to be effective up to 128 clusters, with only a slight
decrease in area and energy efficiency.

Using the scaling techniques presented in this paper, by
2007, stream processors with 1280 ALUs will be able to
provide a peak performance of over 1 TFLOPs while dis-
sipating less than 10 Watts. This presents several exciting
challenges in stream processing. One area of future work is
architectural optimizations that will enable even higher area
and energy efficiency, such as utilizing non-fully-connected
crossbars for the intracluster and intercluster switches. An-
other area of future work is to compare these two scaling
techniques compare to multiple stream processors on a sin-
gle chip simultaneously executing different kernels of one
stream program. As software tools for exploiting these two
techniques mature, the performance and cost advantages of
these and other scaling techniques can be explored.
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