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Stream
Processors

Programmability with Effi ciency

M
any signal processing applications require 
both effi ciency and programmability. Base-
band signal processing in 3G cellular base 
stations, for example, requires hundreds of 
GOPS  (giga, or billions, of operations per 

second) with a power budget of a few watts, an effi ciency 
of about 100 GOPS/W (GOPS per watt), or 10 pJ/op 
(picoJoules per operation). At the same time programma-
bility is needed to follow evolving standards, to support 
multiple air interfaces, and to dynamically provision 
processing resources over different air interfaces. Digital 
television, surveillance video processing, automated opti-
cal inspection, and mobile cameras, camcorders, and 3G 
cellular handsets have similar needs.

Conventional signal processing solutions can provide 
high effi ciency or programmability, but are unable to pro-
vide both at the same time. In applications that demand 
effi ciency, a hardwired application-specifi c processor—
ASIC (application-specifi c integrated circuit) or ASSP 
(application-specifi c standard part)—has an effi ciency 
of 50 to 500 GOPS/W, but offers little if any fl exibility. 
At the other extreme, microprocessors and DSPs (digital 
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Programmability with Effi ciency

Will this new kid on the block 
muscle out ASIC and DSP?
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signal processors) are completely programmable but have 
effi ciencies of less than 10 GOPS/W. DSP (digital signal 
processor) arrays and FPGAs (fi eld-programmable gate 
arrays) offer higher performance than individual DSPs, 
but have roughly the same effi ciency. Moreover, these 
solutions are diffi cult to program—requiring paralleliza-
tion, partitioning, and, for FPGAs, hardware design.

Applications today must choose between effi ciency 
and programmability. Where power budgets are tight,  
effi ciency is the choice, and the signal processing is 
implemented with an ASIC or ASSP, giving up program-
mability. With wireless communications systems, for 
example, this means that only a single air interface can be 
supported or that a separate ASIC is needed for each air 
interface, with a static partitioning of resources (ASICs) 
between interfaces.

Stream processors are signal and image processors that 
offer both effi ciency and programmability. Stream proces-
sors have effi ciency comparable to ASICs (200 GOPS/W), 
while being programmable in a high-level language.

EXPOSING PARALLELISM AND LOCALITY
A stream program (some-
times called a synchro-
nous data-fl ow program) 
expresses a computation 
as a signal fl ow graph with 
streams of records (the 
edges) fl owing between 
computation kernels (the 
nodes). Most signal-pro-
cessing applications are 
naturally expressed in this 
style. For example, fi gure 
1 shows a stream program 
that performs stereo depth 
extraction based on the 
algorithm of Kanade.1 In 
this application, a stereo 
pair of images are fi rst 
fi ltered and then compared 

with each other to extract the depth at each pixel of the 
image. Along the top path, a stream of pixels from the left 
image is fi ltered by a Gaussian kernel to reject high-fre-
quency noise, generating a stream of smoothed pixels. 
This stream is fi ltered by a Laplacian kernel to highlight 
edges, generating a stream of edge-enhanced pixels. The 
right image follows a similar fi ltering path. The SAD 
(sum of absolute differences) kernel then compares a 7x7 
sub-image about each pixel in the fi ltered left image with 
a row of 7x7 sub-images in the fi ltered right image to 
fi nd the best match. The position of the best match gives 
the disparity between the two images at that pixel, from 
which we can derive the depth of the pixel.

The stream program of fi gure 1 exposes both parallel-
ism and locality. Each element of each input stream (all of 
the image pixels) can be processed simultaneously, expos-
ing large amounts of data parallelism. This parallelism is 
particularly easy to identify in a stream program because 
the structure of the program makes the dependencies 
between kernels explicit. The complex disambiguation 
required when intermediate data is passed through mem-
ory arrays is not needed. Within each kernel, instruc-
tion-level parallelism is exposed since many independent 
operations can execute in parallel. Finally, the kernels 
can operate in parallel, operating on pixels or frames in a 
pipelined manner to expose thread-level parallelism.

The stream program also exposes two types of local-
ity: kernel and producer-consumer. During the execution of 
a kernel, all references are to variables local to the kernel 
except for values read from the input stream(s) and writ-
ten to the output stream(s). This is kernel locality. Consider 
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one implementation of the 7x7 convolution kernel. 
The inputs and outputs for the operations in the kernel 
require 176 references to values in local register fi les for 
every word accessed from the SRF (stream register fi le). 
Thus, because of kernel locality, we are able to ensure that 
one out of every 177 references is local to the kernel. 

Producer-consumer locality is exposed by the streams 
fl owing between kernels. As one kernel produces stream 
elements, the next kernel consumes these elements in 
sequence. By appropriately sequencing kernels, the ele-
ments of an intermediate stream can be kept local—val-
ues are consumed soon after they are produced. Each 
time the Gaussian kernel in fi gure 1 generates a block of 
the smoothed pixel stream, for example, this block can 
be consumed by the Laplacian kernel. Only a block of the 
intermediate stream exists at any point in time, and this 
block can be kept in local storage.

EXPLOITING PARALLELISM AND LOCALITY
As shown in the block diagram of fi gure 2, a stream 
processor consists of a scalar processor, a stream memory 
system, an I/O system, and a stream execution unit, 
which consists of a microcontroller and an array of C 
arithmetic clusters. Each cluster contains a portion of the 
SRF, a collection of A arith-
metic units, a set of local 
register fi les, and a local 
switch. A local register fi le 
is associated with each 
arithmetic unit. A global 
switch allows the clusters 
to exchange data.

A stream processor 
executes an instruction 
set extended with kernel 
execution and stream 
load and store instruc-
tions. The scalar processor 
fetches all instructions. It 
executes scalar instructions 
itself, dispatches kernel 
execution instructions to 
the microcontroller and 
arithmetic clusters, and 
dispatches stream load and 
store instructions to the 
memory or I/O system. 
For each kernel execution 
instruction, the microcon-
troller starts execution of a 

microprogram broadcasting VLIW (very-long instruction 
word) instructions across the clusters until the kernel is 
completed for all records in the current block.

A large number, C×A, of arithmetic units in a stream 
processor exploit the parallelism of a stream program. A 
stream processor exploits data parallelism by operating 
on C stream elements in parallel, one on each cluster, 
under SIMD (single-instruction, multiple-data) control of 
the microcontroller. The instruction-level parallelism of 
a kernel is exploited by the multiple arithmetic units in 
each cluster that are controlled by the VLIW instructions 
issued by the microcontroller. If needed, thread-level 
parallelism can be exploited by operating multiple stream 
execution units in parallel. Research has shown that 
typical stream programs have suffi cient data and instruc-
tion-level parallelism for media applications to keep more 
than 1,000 arithmetic units productively employed.2

The exposed register hierarchy of the stream processor 
exploits the locality of a stream program. Kernel local-
ity is exploited by keeping almost all kernel variables in 
local register fi les immediately adjacent to the arithmetic 
units in which they are to be used. These local register 
fi les provide very high bandwidth and very low power 
for accessing local variables. Producer-consumer local-
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ity is exploited via the SRF. A producing kernel, such as 
the Gaussian kernel in fi gure 1, generates a block of an 
intermediate stream into the SRF, each cluster writing to 
its local portion of the SRF. A consuming kernel, such as 
the Laplacian kernel in fi gure 1, then consumes the block 
of stream elements directly from the SRF.

To see how parallelism and locality are exploited in 
practice, fi gure 3 shows how the depth extraction pro-
gram of fi gure 1 is mapped to the stream processor of fi g-
ure 2. The input images are read from external memory or 
an I/O device into the SRF one block at a time, then the 
Gaussian kernel is run. Each cluster performs the kernel 
on a different pixel of the input, reading each pixel of the 

block from the SRF and writing each pixel of the output 
block to the SRF. Most local variables for the kernels are 
kept in the local register fi les with some partial products 
cycled through the SRF. Overall, for each word accessed 
from memory or I/O, 23 words are referenced from the 
SRF, and 317 are referenced from local registers. 

This high fraction of references from local registers is 
not unique to the depth extractor. Figure 4 shows that 
kernel locality and producer-consumer locality exist in a 
broad range of applications and that a stream processor 
can successfully exploit this locality. The fi gure shows the 
bandwidth from main memory, the SRF, and local register 
fi les for six applications. The fi rst column (depth) shows 
the bandwidth for the depth extractor of fi gure 1. MPEG 
is an MPEG2 encoder including motion estimation. QRD 
is a QR decomposition using the Householder method. 
STAP (space-time adaptive processing) is an adaptive 
beam-forming application. Render is an OpenGL 3D 
graphics-rendering program. RTSL (realtime shading lan-
guage) is a renderer with a programmable shader.3 For all 
of these programs, more than 95 percent of all references 
are from the local registers and less than 0.5 percent are 

from external memory.
While a conventional 

microprocessor or DSP can 
benefi t from the locality 
and parallelism exposed 
by a stream program, it is 
unable to fully realize the 
parallelism and locality of 
streaming. A conventional 
processor has only a few 
(typically fewer than four, 
compared with hundreds 
for a stream processor) 
arithmetic units and thus 
is unable to exploit much 
of the parallelism exposed 
by a stream program. A 
conventional processor 
is unable to realize much 
kernel locality because 
it has too few processor 
registers (typically fewer 
than 32, compared with 
thousands for a stream 
processor) to capture the 
working set of a kernel. A 
processor’s cache memory 
is unable to exploit much 
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of the producer-consumer locality because there is 
little reuse of consumed data (the data is read once and 
discarded). Also, a cache is reactive, waiting for the data 
to be requested before fetching it. In contrast, data is pro-
actively fetched into an SRF so it is ready when needed. 
Finally, a cache replaces data without regard to its live-
ness (using a least-recently used or random replacement 
strategy) and often discards data that is still needed. In 
contrast, an SRF is managed by a compiler in such a man-
ner that only dead data (data that is no longer of interest) 
is replaced to make room for new data.

EFFICIENCY
Most of the energy consumed by a modern microproces-
sor or DSP is consumed by data and instruction move-
ment, not by performing arithmetic. As illustrated in 

Table 1, for a 0.13µm (micrometer) process operating 
from a 1.2V supply, a simple 32-bit RISC processor con-
sumes 500 pJ to perform an instruction,4 whereas a single 
32-bit arithmetic operation requires only 5 pJ. Only 1 
percent of the energy consumed by the instruction is used 
to perform arithmetic. The remaining 99 percent goes to 
overhead. This overhead is divided between instruction 
overhead (reading the instruction from a cache, updating 
the program counter, instruction decode, transmitting the 
instruction through a series of pipeline registers, etc.) and 
data overhead (reading data from a cache, reading and 
writing a multiport register fi le, transmitting operands 
and intermediate results through pipeline registers and 
bypass multiplexers, etc.).

A stream processor exploits data and instruction 
locality to reduce this overhead so that approximately 30 
percent of the energy is consumed by arithmetic opera-
tions. On the data side, the locality shown in fi gure 4 
keeps most data movements over short wires, consuming 
little energy. The distributed register organization with a 
number of small local register fi les connected by a cluster 
switch is signifi cantly more effi cient than a single global 
register fi le.5 Also, the SRF is accessed only once every 20 
operations on average, compared with a data cache that is 
accessed once every three operations on average, greatly 
reducing memory access energy. On the instruction side, 
the energy required to read a microinstruction from the 
microcode memory is amortized across the data parallel 

clusters of a stream proces-
sor. Also, kernel microin-
structions are simpler and 
hence have less control 
overhead than the RISC 
instructions executed by 
the scalar processor.

TIME VERSUS SPACE 
MULTIPLEXING
A stream processor time-
multiplexes its hardware 
over the kernels of an 
application. All of the clus-
ters work together on one 
kernel—each operating on 
different data—then they 
all proceed to the next 
kernel, and so on. This is 
shown on the left side of 
fi gure 5. In contrast, many 
tiled architectures (DSP 
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arrays) are space-multiplexed. Each kernel runs continu-
ously on a different tile, processing the data stream in 
sequence, as shown on the right side of fi gure 5. The 
clusters of a stream processor exploit data parallelism, 
whereas the tiles of a DSP array exploit thread-level 
parallelism.

Time multiplexing has two signifi cant advantages 
over space multiplexing: load balance and instruction 
effi ciency. As shown in fi gure 5, with time multiplexing 
the load is perfectly balanced across the clusters—all of 
the clusters are busy all of the time. With space multi-
plexing, on the other hand, the tiles that perform shorter 
kernels are idle much of the time as they wait for the 
tile running the longest kernel to fi nish. The load is not 
balanced across the tiles: Tile 0 (the bottleneck tile) is 
busy all of the time, while the other tiles are idle much of 
the time. Particularly when kernel execution time is data 
dependent (as with many compression algorithms), load 
balancing a space-multiplexed architecture is impossible. 
A time-multiplexed architecture, on the other hand, is 

always perfectly balanced. This often results in a 2x to 3x 
improvement in effi ciency.

Exploiting data parallelism rather than thread-level 
parallelism, a time-multiplexed architecture uses its 
instruction bandwidth more effi ciently. Fetching an 
instruction is costly in terms of energy. The instruction 
pointer is incremented, an instruction cache is accessed, 
and the instruction must be decoded. The energy required 
to perform these operations often exceeds the energy per-
formed by the arithmetic carried out by the instruction. 
On a space-multiplexed architecture, each instruction is 
used exactly once, and thus this instruction cost is added 
directly to the cost of each instruction. On a time-mul-
tiplexed architecture, however, the energy cost of an 
instruction is amortized across the parallel clusters that all 
execute the same instruction in parallel. This results in an 
additional 2x to 3x improvement in effi ciency.

STREAM PROGRAMMING TOOLS
Mapping an application to a stream processor involves 
two steps: kernel scheduling, in which the operations of 
each kernel are scheduled on the arithmetic units of a 
cluster; and stream scheduling, in which kernel executions 
and data transfers are scheduled to use the SRF effi ciently 
and to maximize data locality. We have developed a set of 
programming tools that automate both of these tasks so 
that a stream processor can be programmed entirely in C 
without sacrifi cing effi ciency.

Our kernel scheduler takes a kernel described in 
kernel C and compiles it to a VLIW microprogram. This 
compilation uses communication scheduling6 to map each 
operation to a cycle number and arithmetic unit, and 
simultaneously schedule data movement necessary to 
provide operands. The compiler software pipelines inner 
loops, converting data parallelism to instruction-level 
parallelism where it is required to keep all operation units 
busy. To handle conditional (if-then-else) structures across 
the SIMD clusters, the compiler uses predication and 
conditional streams.7 Figure 6 shows the schedule for the 
7x7 convolution kernel from the depth extractor of fi gure 
2 compiled to the Imagine stream processor (described 
later). Time is shown on the vertical axis and function 
units on the horizontal axis. The kernel scheduler is able 
to keep the multipliers (columns 4 and 5) busy nearly 
every cycle.

The stream scheduler schedules not only the transfers 
of blocks of streams between memory, I/O devices, and 
the SRF, but also the execution of kernels. This task is 
comparable to scheduling DMA (direct memory access) 
transfers between off-chip memory and I/O that must be 
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performed manually for most conventional DSPs. The 
stream scheduler accepts a C++ program and outputs 
machine code for the scalar processor including stream 
load and store, I/O, and kernel execution instructions. 
The stream scheduler optimizes the block size so that the 
largest possible streams are transferred and operated on at 
a time, without overfl owing the capacity of the SRF. This 
optimization is similar to the use of cache blocking on 
conventional processors and to stripmining of loops on 
vector processors. Figure 7 shows a stream schedule for an 
OpenGL polygon renderer. Time is shown vertically and 
space in the SRF horizontally.

THE IMAGINE STREAM PROCESSOR
Imagine,8 shown in fi gure 8, is a prototype stream pro-
cessor fabricated in a 0.18µm CMOS process. Imagine 
contains eight arithmetic clusters, each with six 32-bit 
fl oating-point arithmetic units: three adders, two multi-
pliers, and one divide-square root (DSQ) unit. With the 
exception of the DSQ unit, all units are fully pipelined 
and support 8-, 16-, and 32-bit integer operations, as 
well as 32-bit fl oating-point operations. Each input of 
each arithmetic unit has a separate local register fi le of 
sixteen or thirty-two 32-bit words. The SRF has a capac-
ity of 32KB 32-bit words (128KB) and can read 16 words 
per cycle (two words per cluster). The clusters are con-
trolled by a 576-bit microinstruction. The microcontrol 
store holds 2K such instructions. The memory system 
interfaces to four 32-bit-wide SDRAM banks and reorders 
memory references to optimize bandwidth. Imagine also 
includes a network interface and router for connection to 
I/O devices and to combine multiple Imagines for larger 
signal-processing tasks.

CHALLENGES
Stream processors depend on parallelism and locality 
for their effi ciency. For an application to stream well, 
there must be suffi cient parallel work to keep all of the 
arithmetic units in all of the clusters busy. The parallel-
ism need not be regular, and the work performed on each 
stream element need not be of the same type or even the 
same amount. If there is not enough work to go around, 
however, many of the stream processor’s resources will 
idle and effi ciency will suffer. For this reason, stream pro-
cessors cannot effi ciently handle some control-intensive 
applications that are dominated by a single sequential 
thread of control with little data parallelism. A streaming 
application must also have suffi cient kernel and producer-
consumer locality to keep global bandwidth from becom-
ing a bottleneck. A program that makes random memory 

references and does little work with each result fetched, 
for example, would be limited by global bandwidth and 
not benefi t from streaming. Happily, most signal pro-
cessing applications have adequate data parallelism and 
locality.

Even for those applications that do stream well, inertia 
represents a signifi cant barrier to the adoption of stream 
processors. Though it is easy to program a stream proces-
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sor in C, learning to use the stream programming tools 
and writing a complex streaming application still 
represents a signifi cant effort. For evolutionary applica-
tions, it is often easier to reuse the existing code base for 
a conventional DSP, or the existing netlist for an ASIC 
rather than to develop new streaming code. An applica-
tion must require both effi ciency and fl exibility to over-
come this inertia.

THE FUTURE IS STREAMS
Figure 9 shows a roadmap 
that illustrates how we 
expect stream processors 
to evolve with improving 
semiconductor process 
technology.  The fi gure 
shows two lines of evolu-
tion. The top line repre-
sents fl oating-point stream 
processors (that, like Imag-
ine, support 32-bit fl oat-
ing-point operations), and 
the bottom line represents 
fi xed-point processors that 
support just 8-, 16- and 
32-bit integer operations. 
Integer operations are 
suffi cient for most signal 
processing operations and, 
as the fi gure indicates, 
are signifi cantly more 
effi cient in terms of both 
area and power. Each point 
in the roadmap repre-
sents a stream processor 
(integer or fl oating point) 
implemented in a par-
ticular technology with a 
nominal die size of 1 cm2 
(1.3 cm2 for the fl oating-
point processors). For each 
point, the fi gure shows the 
performance and power 
at full voltage and the 
performance and power at 
reduced voltage (for more 
effi cient operation). The 
performance, power, and 
area may be scaled up or 
down over a wide range by 
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varying the number of clusters in the stream processor.9

The main competition for stream processors are fi xed-
function (ASIC or ASSP) processors. Though ASICs have 
effi ciency as good as or better than stream processors, 
they are costly to design and lack fl exibility. It takes about 
$15 million and 18 months to design a high-performance 
signal-processing ASIC for each application, and this cost 
is increasing as semiconductor technology advances. In 
contrast, a single stream processor can be reused across 
many applications with no incremental design cost, and 
software for a typical application can be developed in 
about six months for about $4 million.10 In addition, this 
fl exibility improves effi ciency in applications where mul-
tiple modes must be supported. The same resources can 
be reused across the modes, rather than requiring dedi-
cated resources for each mode that remain idle when the 
system is operating in a different mode. Also, fl exibility 
permits new algorithms and functions to be easily imple-
mented. Often the performance and effi ciency advantage 
of a new algorithm greatly outweighs the small advantage 
of an ASIC over a stream processor.

FPGAs are fl exible, but lack effi ciency and program-
mability. Because of the overhead of gate-level confi gu-
rability, processors implemented with FPGAs have an 
effi ciency of 2-10 MOPS per megawatt, comparable to 
that of conventional processors and DSPs. Newer FPGAs 
include large function blocks such as multipliers and 
microprocessors to partly address this effi ciency issue. 
Also, though FPGAs are fl exible, they are not program-
mable in a high-level 
language. Manual design to 
the register-transfer level is 
required for an FPGA, just 
as with an ASIC. Advanced 
compilers may someday 
ease the programming 
burden of FPGAs.

With competitive 
energy effi ciency, lower 
recurring costs, and the 
advantages of fl exibility, 
we expect stream proces-
sors to replace ASICs in the 
most demanding of signal-
processing applications. Q
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