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Abstract

Continuing advances in semiconductor technology, coupled with an increasing con-

cern for energy efficiency, have led to an industry-wide shift in focus towards modular

designs that leverage parallelism in order to meet performance goals. Networks-on-

Chip (NoCs) are widely regarded as a promising approach for addressing the commu-

nication challenges associated with future Chip Multi-Processors (CMPs) in the face

of further increases in integration density. In the present thesis, we investigate imple-

mentation aspects and design trade-offs in the context of routers for NoC applications.

In particular, our focus is on developing efficient control logic for high-performance

router implementations.

Using parameterized RTL implementations, we first evaluate representative Vir-

tual Channel (VC) and switch allocator architectures in terms of matching quality,

delay, area and power. We also investigate the sensitivity of these properties to key

network parameters, as well as the impact of allocation on overall network perfor-

mance. Based on the results of this study, we propose microarchitectural modifica-

tions that improve delay, area and energy efficiency: Sparse VC allocation reduces the

complexity of VC allocators by exploiting restrictions on transitions between packet

classes. Two improved schemes for speculative switch allocation improve delay and

cost while maintaining the critical latency improvements at low to medium load; this

is achieved by incurring a minimal loss in throughput near the saturation point. We

also investigate a practical implementation of combined VC and switch allocation and

its impact on network cost and performance.

The second part of the thesis focuses on router input buffer management. We
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explore the design trade-offs involved in choosing a buffer organization, and we eval-

uate practical static and dynamic buffer management schemes and their impact on

network performance and cost. We furthermore show that buffer sharing can lead

to severe performance degradation in the presence of congestion. To address this

problem, we introduce Adaptive Backpressure (ABP), a novel scheme that improves

the utilization of dynamically managed router input buffers by varying the stiffness

of the flow control feedback loop based on downstream congestion. By inhibiting

unproductive buffer occupancy, this mitigates undesired interference effects between

workloads with differing performance characteristics.
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Chapter 1

Introduction

1.1 Motivation

Continuing advances in semiconductor process technology are providing chip design-

ers with ever increasing transistor budgets. Traditionally, each new process gener-

ation has resulted in faster, smaller and more efficient transistors; as a result, de-

signers have historically focused on improving single-threaded performance by means

of higher clock speeds and the use of wider and more sophisticated microarchitec-

tures that improve instruction execution rates by attempting to extract increasing

amounts of parallelism from a sequential instruction stream. However, with the end

of Dennard scaling [22], further clock frequency increases are constrained by practical

limits on power dissipation; at the same time, timing overhead and the performance

implications of pipeline flushes render further increases in pipeline depth impractical.

Finally, superscalar execution techniques have reached a point of diminishing returns

as typical instruction streams only offer a limited amount of parallelism that can be

extracted at reasonable cost. At the same time, there is substantial demand for con-

tinued improvements in processing power. In combination with an increasing concern

for energy efficiency driven by the rise of mobile devices, this has led to an industry-

wide shift in focus towards designs that rely on explicit parallelism to achieve their

performance and efficiency goals [2, 13, 69].

1



2 CHAPTER 1. INTRODUCTION

In such parallel designs, system performance is defined by the aggregate perfor-

mance across multiple processing elements, and process scaling is exploited by increas-

ing the number—rather than the complexity—of such elements. Hence, as scaling

continues, it becomes necessary to divide a given problem into an increasingly larger

number of sub-problems in order to realize continued performance improvements; for a

fixed problem size, this generally implies an increase in the amount of communication

between processing elements, each of which is responsible for a proportionally smaller

slice of the overall problem. With future designs expected to integrate hundreds of

processing cores on a single chip, on-chip communication is thus expected to have a

significant impact on chip-level performance and energy efficiency [30,48,81,91].

1.1.1 Networks-on-Chip

Networks-on-Chip (NoCs) are widely regarded as a promising approach for addressing

the communication demands of large-scale Chip Multi-Processors (CMPs) [9,19,33]1.

Such packet-switched on-chip interconnects are embodied by a set of routers that are

connected to each other and to the network endpoints by point-to-point links, and

they are characterized by three primary design parameters:

Topology: The network topology dictates the number of routers and channels and

the connectivity among them. In determining network diameter and bisection

bandwidth, it establishes basic bounds for overall network performance and

energy efficiency. Furthermore, by controlling the number and size of individual

network components, the topology represents a critical factor in determining

overall network cost.

Due to the realities of semiconductor manufacturing, NoCs typically favor the

use of tiled two-dimensional topologies like the Mesh, Concentrated Mesh (CMesh) [4]

or Flattened Butterfly (FBfly) [45].

1 Additionally, compared to traditional approaches that rely on ad-hoc wiring, the use of a struc-
tured, packetized interconnect can reduce design complexity and verification effort, as it inherently
imposes well-defined module boundaries.
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Routing: The routing function selects the path that a given packet must take from its

source to its destination endpoint. As such, it affects the average hop count and

the degree to which load is balanced across network channels, effectively limiting

how closely the observed performance and energy efficiency can approach the

bounds established by the network topology.

Because of delay and cost constraints, NoCs typically employ simple arithmetic

routing functions like Dimension-Order Routing (DOR); i.e., a packet’s output

port at each router is computed from its destination address and the address of

the router.

Flow control: The flow control scheme governs how routers communicate with each

other; in particular, it determines when packets—or, in many practical im-

plementations, fixed-size parts of packets called flits—can be forwarded from

one router to the next. Consequently, flow control regulates resource utiliza-

tion and thus has a significant impact on performance. In addition, the buffer

space requirements imposed by a given flow control scheme directly affect the

implementation cost and power consumption of each router.

Most NoC designs employ Virtual Channel (VC) flow control [17,18]; however,

recent work has investigated alternative flow control schemes in an effort to

reduce buffer overhead [55,60].

While these parameters set the general framework for the network’s performance,

cost and efficiency, the specific characteristics of a NoC depend on the implemen-

tation of its basic components. In particular, routers and network channels set the

latency and energy cost incurred for each hop that a packet takes on its way through

the network. In addition, the microarchitecture of the routers governs the concrete

implementation of the routing algorithm and flow control scheme, determines the be-

havior in the presence of congestion, and limits the maximum operating frequency;

as a result, it directly affects overall network throughput. Finally, the actual imple-

mentation cost of the network is clearly defined by the cost of its components.

To highlight the importance of developing efficient NoCs, Figure 1.1 shows the

power breakdown for the Intel Teraflop Research Chip [39, 95]. This chip comprises
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Figure 1.1: Power breakdown for Intel Teraflop Research Chip.

80 tiles—each containing a pair of simple floating point execution units and associated

memory arrays—arranged in an 8×10Mesh with 38 bit wide channels and 2VCs.

When executing a communication-heavy Stencil kernel, the NoC accounts for more

than a quarter of the overall chip power; 83% of the network power is in the routers.

As the number of cores continues to scale up, the impact of the network will

become even more pronounced. For example, recent work has found that the un-

derlying 16×16Mesh accounts for 45% of the total energy expended in performing a

106-element radix sort on a cache-coherent 256-node CMP [34].

1.1.2 Router Microarchitecture

Developing efficient channels is largely a circuit design problem [14,36,37]; in contrast,

a router’s performance, cost and efficiency primarily depend on its microarchitecture.

The present dissertation investigates implementation aspects and microarchitectural

design trade-offs for efficient high-performance NoC routers.

Compared to routers in traditional long-haul and system interconnection networks,
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Figure 1.2: Router microarchitecture overview.

NoC routers are subject to markedly different design constraints: As modern semi-

conductor processes provide an abundant supply of on-chip wiring resources, there is

typically no need to use SERDES or sophisticated encoding schemes on the channels.

At the same time, performance in CMPs is typically much more sensitive to network

latency, mandating both the use of shallow router pipelines and aggressive cycle time

targets. Finally, NoCs are generally subject to stringent area and power constraints

to avoid interference with the requirements of the network endpoints.

Input-queued routers have emerged as the architecture of choice in current NoC

research; in such designs, packets that cannot be forwarded immediately are tem-

porarily held in FIFO buffers at the routers’ input ports until they can proceed to the

next hop. Buffer space is allocated at the granularity of fixed-size flits, one or more

of which comprise a packet, and is logically divided into multiple VCs in order to

avoid deadlock and to reduce Head-of-Line (HoL) blocking [17,18]. Figure 1.2 shows

an illustration of a typical NoC router.

A router’s primary function is to forward each flit that arrives on one of its inbound

channels to an appropriately selected outbound channel. To this end, the following
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steps must be completed before the flit can depart from its desired output port:

Route computation: The routing logic selects a suitable output port and a set

of candidate output VCs for each packet according to the routing algorithm

implemented in the network. This step only needs to be performed for the first

flit—also termed head flit—of each packet; any subsequent flits from the same

packet simply inherit the selected output port.

As latency is a critical performance metric in many CMPs, NoC routers com-

monly implement lookahead routing in order to reduce pipeline delay [28].

VC allocation: VC flow control requires each packet to secure exclusive access to an

output VC at the selected destination port before flits can be forwarded. The

VC allocator assigns available output VCs to waiting packets at the router’s

input ports. Similar to route computation, VC allocation only needs to be

performed for head flits, as the assigned output VC is inherited by subsequent

body and tail flits from the same packet.

Switch allocation: Once a packet has been assigned an output port and VC, it can

participate in switch allocation. The switch allocator is responsible for estab-

lishing a crossbar schedule by assigning time slots to waiting flits at the router’s

input ports. In particular, it must resolve conflicts between flits destined for

the same output port.

Switch traversal: Finally, after receiving a grant from the switch allocator, a flit

can traverse the router’s central crossbar switch in the next cycle to arrive at

its destination output and continue its journey through the network.

As in the case of network channels, designing fast and efficient crossbars is

primarily a circuit design problem.

Allocators represent a particularly important aspect of router design, as they

directly affect overall network performance in several ways: Allocation quality, mea-

sured in the cardinality of matchings between requests and available resources, de-

termines the utilization of the router’s VCs, the crossbar and the network channels;
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as such, it has an immediate impact on the network’s throughput under load and on

the queuing delay that packets incur in a congested network. Allocators furthermore

control the network’s fairness properties. Finally, in many typical router designs,

allocation directly affects the critical path delay; consequently, delay-optimized allo-

cator implementations are required to enable the network to achieve high operating

frequencies.

Prior research has shown that input buffers can account for a significant fraction

of a router’s overall area and power budget [15,96,98] and that buffer space represents

an expensive commodity in the on-chip environment [19,40]; for example, buffers ac-

count for 27 % of the router power in the Intel Teraflop Research Chip [39]. At the

same time, network utilization and performance are highly sensitive to the amount of

buffer space that is available to individual packets [17,40,66,80]. Flexible buffer man-

agement schemes that yield improvements in buffer utilization represent an attractive

approach for reducing buffer cost without sacrificing performance [66, 90]. However,

in developing such schemes, we must carefully consider any overhead introduced by

the buffer management logic itself and avoid undesired side effects on other important

characteristics of the network.

Throughout this dissertation, we focus primarily on synthesis-based implementa-

tions of router components. This is reflective of recent industry trends, which restrict

the use of full-custom logic to critical data path components and large regular struc-

tures, particularly memories, in an effort to maximize designer productivity. For

example, over the past five generations of IBM POWER and zSeries processors, the

fraction of full-custom blocks has shrunk by a factor of ten [27].

1.2 Contributions

This dissertation investigates implementation aspects and microarchitectural design

trade-offs for efficient high-performance NoC routers. In particular, it makes the

following specific contributions:

• We evaluate and compare standard-cell implementations of key router control
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logic components in terms of delay, area and energy efficiency in a commercial

45nm process.

• We develop efficient wavefront allocator implementations that avoid combina-

tional cycles, facilitating their use in synthesis-based design flows; our designs

improve delay and cost compared to the state-of-the-art implementation de-

scribed in [43]. We furthermore propose a simple mechanism for alleviating

inherent fairness issues in wavefront allocation by modifying the order in which

priority diagonals are selected.

• We propose sparse VC allocation, a scheme that reduces the complexity—and

hence the delay and cost—of VC allocators by exploiting restrictions on the

possible transitions between VCs assigned to different packet classes. In doing

so, it increases the router’s scalability and facilitates the use of higher-radix

network topologies.

• We develop two new implementation variants for speculative switch allocation:

Pessimistic speculation takes advantage of the fact that speculative switch al-

location is most beneficial at low to medium network load where most requests

are granted, while priority-based speculation uses a priority-aware allocator to

handle both speculative and non-speculative requests instead of using two sepa-

rate sub-allocators. Both variants sacrifice some of the performance benefits of

speculation near saturation in order to reduce delay and cost compared to the

canonical implementation described in [77]; however, they maintain the critical

latency benefits under low to medium load.

• We describe a practical implementation of combined VC and switch allocation

and compare the resulting performance and cost to a canonical router design.

Combined allocation yields the same latency improvements as speculative switch

allocation at low to medium network load. While allocation inefficiencies lead

to slightly reduced throughput near saturation, the cost and delay benefits of

avoiding a dedicated VC allocator render combined allocation an attractive

design choice for many network configurations.
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• We investigate the key trade-offs in the organization and design of router input

buffers and evaluate practical buffer management schemes in terms of overhead

and performance.

• We identify a performance pathology associated with dynamic buffer manage-

ment that can lead to undesired interference between multiple traffic classes

with different performance characteristics. To address this problem, we develop

Adaptive Backpressure (ABP), a novel mechanism that avoids unproductive

use of buffer space by regulating credit flow based on observed performance

characteristics. We show that ABP can be implemented with minimal changes

to the router, and that it effectively mitigates interference without degrading

performance under benign load conditions

• Finally, we have developed a parameterized RTL implementation of an NoC

router, which we have released to the research community as open source. In

addition to facilitating detailed evaluations of implementation trade-offs for the

present dissertation, the router has since found use in a number of other research

efforts at Stanford and beyond [10,11,44,53,55,56,59,63,64,72,73].

Parts of our work on VC and switch allocator implementations were previously

published in [7]; the work on ABP has been accepted for publication in [8].

1.3 Outline

The remainder of this dissertation is organized as follows:

Chapter 2 discusses elementary arbiter designs. We investigate different arbiter

types, discuss approaches for providing fairness, scalability and support for multiple

priority levels, and evaluate delay and cost in a commercial standard-cell design flow.

Chapter 3 similarly investigates allocators. In particular, our focus is on wavefront

allocators: We develop a scheme to alleviate inherent fairness issues in wavefront

allocation, and we propose several synthesis-friendly implementation variants that

improve delay and cost compared to a state-of-the-art design.



10 CHAPTER 1. INTRODUCTION

In Chapter 4, we discuss how the basic allocator designs described in Chapter 3 can

be used to implement VC allocation. We give an overview of practical implementation

variants, describe sparse VC allocation, and present detailed evaluation results for

delay, cost and performance.

Chapter 5 analogously addresses the application of elementary allocator designs

in the implementation of practical switch allocators. We describe and evaluate ex-

emplary architectures. Furthermore, we discuss speculative switch allocation, and we

suggest two implementation variants that improve delay and cost over the canonical

design. Finally, we describe and evaluate a practical implementation of combined VC

and switch allocation.

Chapter 6 explores trade-offs in input buffer organization and examines state-of-

the-art static and dynamic buffer management schemes. We compare the individual

schemes in terms of implementation overhead, discuss deadlock avoidance considera-

tions and evaluate cost-performance trade-offs.

In Chapter 7, we show that dynamic buffer management can lead to severe per-

formance degradation and undesired interference between different traffic classes in

the presence of congestion. We develop ABP to mitigate this effect, and we present

simulation results both for synthetically generated traffic and for application traffic

on a heterogeneous CMP to demonstrate its efficacy.

To conclude the dissertation, Chapter 8 summarizes our contributions and briefly

outlines opportunities for future work.

Finally, Appendix A provides a brief overview of the parameterized router RTL

that was developed as part of the work described in this dissertation.



Chapter 2

Arbiters

2.1 Overview

Mediating access to a shared resource between multiple agents is one of the funda-

mental operations performed by the control logic in a router. We refer to the act

of coordinating access in this way as arbitration, and to the logic that performs this

function as an arbiter.

Formally, we can describe the process of arbitration among n agents as a vector

operation Φ on a binary request vector R = {r0, r1, . . . , rn−1} that produces a grant

vector G = {g0, g1, . . . , gn−1} whose elements satisfy certain properties:

G = Φ(R) (2.1)

gi ⇒ ri (2.2)

gi ⇒
∧

j 6=i

(¬gj) (2.3)

Equation 2.2 requires that the generated grant vector be consistent with the request

vector; i.e., only those agents that actually issued a request in the first place can

receive a grant. Equation 2.3, on the other hand, ensures that in case of conflict, only

a single agent receives a grant.

While not strictly required, most practical arbiters generate grant vectors that

11
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Figure 2.1: Linear implementation of a fixed-priority arbiter.

satisfy an additional property:
∨

i

ri ⇒
∨

i

gi (2.4)

That is, if one or more agents request access to the shared resource, one of them will

receive a grant. We can take advantage of this property to simplify logic in cases

where we need to know whether a resource was granted, but not which particular

agent it was granted to.

2.2 Fixed-Priority Arbiters

This simplest form of arbiters grants access to a shared resource based on a prede-

termined priority order. If the request inputs are sorted in descending priority order,

solving this problem is equivalent to finding the first set bit in a bit vector. Figure 2.1

shows a straightforward implementation using a linear array of basic bit cells F , each

of which generates a grant gi if both its request input ri and the incoming priority sig-

nal ci are asserted. In addition, the incoming priority signal is propagated to the next

cell only if ri is not asserted. This design minimizes hardware complexity; however,
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its critical path delay τgrant scales linearly with the number of inputs, as indicated by

the dashed arrow in Figure 2.1.

If a large number of inputs must be supported, we can improve delay by taking

advantage of the fact that the logic equations for the gi and ci+1 outputs are struc-

turally similar to those for a binary half adder’s sum and carry outputs, respectively.

As such, it is possible to transform the design shown in Figure 2.1 into an equiva-

lent prefix network that hierarchically computes propagation conditions for the initial

priority signal, causing the delay to scale logarithmically with the number of inputs.

2.3 Round-Robin Arbiters

Fixed-priority arbiters require that there be a clear, pre-established priority order

among requests. However, in the context of routers, we frequently encounter sit-

uations where undifferentiated agents compete for access to a shared resource. In

such cases, we are generally interested in maintaining a degree of fairness among the

agents: At a minimum, we want to ensure that every request is granted eventually

(weak fairness); ideally, though, grants should be distributed equitably among agents

(strong fairness).

The round-robin arbiter shown in Figure 2.2 extends the fixed-priority scheme

from Section 2.2 by adding a priority select input pi to each bit cell R and wrapping

around the last bit cell’s priority output cn to the first one’s priority input c0. The

priority select inputs are driven by a state register that contains the most recent

grant, rotated by one bit position1. Thus, every time a grant is generated, the next

agent in line after the one being granted becomes the highest-priority request in the

next cycle; this scheme provides strong fairness.

The priority mechanism introduces an additional timing arc τupdate, as shown in

Figure 2.2. Depending on the timing constraints for the grant outputs gi, either τupdate

or τgrant may represent the critical path for a given arbiter instance.

1 For large arbiters, it is often preferable to reduce overhead by storing this value in binary-
encoded form if delay constraints permit.
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Commercially available timing analysis tools are typically unable to properly an-

alyze circuits that contain combinational loops like the one generated by wrapping

around the priority signals. This is particularly problematic when using a standard

cell design flow, as it prevents synthesis from performing proper gate sizing. We can

avoid the combinational loop by severing the wraparound priority signal and con-

necting it to a chain of fixed-priority cells F as shown in Figure 2.32. In a näıve

implementation, doing so nearly doubles the grant generation delay τgrant; however,

in practice, the associated delay penalty can be minimized by computing the inter-

mediate grant signals for the block of R -type cells and the block of F -type cells in

parallel and conditionally selecting either set of grants based on the value of the first

block’s final priority output cn
3. As in the case of fixed-priority arbitration, we can

further improve delay by replacing the blocks of R -type and F -type cells with prefix

networks. Alternatively, it is possible to implement the entire round-robin arbiter as

a single acyclic prefix network; Dimitrakopoulos et al. describe such a design in detail

in [23].

2.4 Matrix Arbiters

Matrix arbiters represent another implementation alternative for providing strong

fairness. This is achieved by explicitly tracking pairwise precedence between all re-

quest inputs and updating it in response to grants in a way that implements a least-

recently-served policy. Specifically, for every pair of inputs i and j, the precedence

indicator pi,j determines whether a pending request from input i has higher priority

than a pending request from input j. The precedence indicators are stored in a matrix

of registers that lends this type of arbiter its name4. Any time an input k is granted,

it assumes lowest priority by setting pi,k and resetting pk,j for all i and j.

Using the precedence values, the grant signal gk for a given agent k can thus be

2 Because priority selection never causes rn−1 to be skipped, it does not require an F -type cell.
3 We will use a similar approach to implement multi-priority arbitration in Section 2.6.
4 Only the upper triangle of the matrix actually requires registers, as pi,j = ¬pj,i and pi,i = 0.
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Figure 2.4: Tree arbiter with m×n inputs.

computed using a simple reduction tree:

gk = rk ∧ ¬
∨

i6=k

(ri ∧ pi,k) (2.5)

The associated grant generation delay τgrant grows logarithmically with the number

of inputs. However, updating the precedence values involves fanout from each grant

signal to 2×n registers, leading to a larger update delay τupdate compared to a compa-

rable round-robin arbiter. Furthermore, the number of registers required to hold the

precedence matrix—a primary factor in the allocator’s implementation cost—exhibits

quadratic scaling5. As a result, this scheme is typically only attractive for arbiters

with a relatively small number of inputs.
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2.5 Tree Arbiters

In many applications that require large arbiters, the requesting agents are logically

organized into multiple groups. In such cases, a single arbiter as described in the

preceding two sections distributes grants evenly to all requesting agents regardless of

which group they fall into. However, in practice, it is typically preferable to first dis-

tribute grants fairly among the different groups and then among the individual agents

within each group. This can be achieved using a hierarchical organization of smaller

arbiters as shown in Figure 2.4: An m×n-input tree arbiter uses m independent

n-input arbiters of arbitrary type to determine a winning agent for each individual

group; in parallel, a single m-input arbiter selects a winner among all groups that

have at least one request and enables only that group’s outputs.

If the number and size of groups in a tree arbiter is optimized to match the delay

along the two timing arcs τselect and τgroup shown in Figure 2.4, it can achieve lower

delay than a monolithic arbiter with the same number of ports. Additionally, for

matrix arbiters, tree organization can significantly reduce area and power compared

to a monolithic implementation; in particular, implementing an n-input arbiter as l

levels of m-input matrix arbiters with m = k
√

n reduces the total number of registers

required by a factor of m compared to a monolithic n-input matrix arbiter6.

We can construct tree arbiters with more than two levels by recursively implement-

ing the individual m- and n-input arbiters in Figure 2.4 as tree arbiters themselves.

For such multi-level tree arbiters, it is typically beneficial to combine the group enable

signals across the levels of the tree and to perform a single stage of masking after

the last level, rather than performing individual masking steps after each individual

level.
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2.6 Multi-Priority Arbiters

Many applications in which arbiters are used call for the ability to dynamically prior-

itize a subset of requests that satisfy certain criteria over other requests. E.g., as we

shall see in Chapter 5, a speculative switch allocator prioritizes requests from packets

that have completed Virtual Channel (VC) allocation over those from packets that

have not yet been assigned an output VC.

In many such instances, only a small number of distinct priority levels is required;

this enables us to implement multi-priority arbitration by replicating the arbiter front-

end—i.e., the part of the arbiter that is responsible for computing grant signals—and

masking the intermediate grants generated by the individual front-end instances based

on the presence of higher-priority requests as illustrated in Figure 2.57. Masking

outputs in this way ensures that only a single request across all priority levels can

receive a grant, while sharing the arbiter state among all front-end instances reduces

hardware overhead.

5 In particular, a total of n(n−1)
2 registers are required for an n-input matrix arbiter.

6 Note that the l-level tree comprises a total of n−1
m−1 m-input matrix arbiters.

7 We assume here that the individual arbiters satisfy Equation 2.4.
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While this approach can support a small number of priority levels with compar-

atively little area and delay overhead, it is impractical for applications that require

fine-grained priorities. Such applications fall outside the scope of the present contri-

bution.

2.7 Evaluation

In this section, we evaluate the efficiency of the different types of arbiters discussed

in the present chapter. To this end, we develop parameterized RTL implementations

and synthesize them in a commercial standard-cell design flow. In particular, we

consider three different implementations:

Round-robin: An acyclic round-robin arbiter as described in Section 2.3, with prefix

networks used in place of the two chains of bit cells and conditional grant

selection.

Prefix: An implementation using a single acyclic prefix networks as described by

Dimitrakopoulos et al. [23].

Matrix: A matrix arbiter as described in Section 2.4.

To evaluate scaling behavior, we compare instances of each type of arbiter with

five, eight and ten ports. These sizes were chosen to be reflective of typical and large

arbiters in Networks-on-Chip (NoCs), respectively. Situations in which arbitration

among more than ten agents is necessary typically call for the use of tree arbiters.

2.7.1 Experimental Setup

For each configuration, we sweep the target clock frequency under worst-case process

conditions and report the resulting cell area, as well as the Power-Delay Product

(PDP) assuming a 50% activity factor at all request inputs. The latter quantity

represents a measure of the amount of energy that is expended in each round of

arbitration. We begin each sweep at a base frequency of 1.0GHz and add 100MHz
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Table 2.1: Experimental setup details.

Design Compiler version G-2012.06
Target library TCBN45GSBWP
FO4 delay 34.6 ps
Driving / receiving cells INVD8BWP
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Figure 2.6: Minimum delay for n-port arbiter implementations.

increments until a timing violation is reported. We convert all clock frequencies into

their corresponding cycle times and normalize them to the FO4 delay for our target

library.

Synthesis is performed using the Synopsys Design Compiler Reference Method-

ology, targeting a general-purpose library in the TSMC 45GS process. We disable

Design-for-Test (DFT) synthesis and enable dynamic power optimization, but oth-

erwise use the default parameters specified by the reference methodology. Arbiter

inputs and outputs are connected to standard library inverter cells to ensure realistic

drive strength and load, respectively. Table 2.1 provides additional details.



22 CHAPTER 2. ARBITERS

2.7.2 Delay

Contrary to popular wisdom, the synthesis results shown in Figure 2.6 indicate that

the minimum cycle time at which a matrix arbiter with a given number of ports can

operate exceeds that of both the round-robin arbiter and the prefix arbiter by 30% in

the five- and eight-port configurations. The state update logic represents the critical

timing path in each case, and the matrix arbiter is penalized by the large fanout

involved in updating the precedence matrix, as mentioned in Section 2.4.

With ten ports, the minimum delay for the round-robin arbiter increases substan-

tially, reducing the difference to the matrix arbiter to 3%; in contrast, the prefix

implementation increases its speed advantage even further at this design point.

2.7.3 Area

Figure 2.7 shows the trade-off between cell area and cycle time for the three types of

arbiters. We omit detailed results for n = 8 for brevity; they are consistent with our

observations for the two remaining design points.

At the beginning of the sweep, corresponding to the right side of the figure, all

three designs are able to satisfy the timing requirements using minimum-size gates.

As a result, area initially remains flat as frequency increases. The knee in each curve

indicates the maximum operating frequency that a minimum-size implementation can

support; as the target frequency increases beyond this point, synthesis must make use

of larger standard cells with increased drive strength in order to be able to satisfy the

tighter delay requirements, leading to a rapid increase in overall cell area.

Across both design points, the round-robin and prefix network arbiters both yield

lower minimum delay and require less area. This difference is primarily a result of

the relatively large number of registers required for implementing a matrix arbiter.

Comparing the results for n = 5 and n = 10 at low clock frequencies clearly illustrates

the differences in scaling behavior between the round-robin and prefix arbiters (linear

scaling) on the one hand and the matrix arbiter (quadratic scaling) on the other hand.

The difference in cell area between the round-robin and prefix arbiters is relatively

small; the former produces slightly more compact designs at lower target frequencies
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Figure 2.7: Area-delay trade-off curves for n-port arbiters.
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and for small arbiters, while the latter becomes more efficient as the number of ports

increases.

2.7.4 Power-Delay Product

The PDP values, shown in Figure 2.8, largely mirror the results for cell area: Matrix

arbiters consistently incur higher energy cost than both other types of arbiters, round-

robin arbiters are more efficient for small configurations, and prefix arbiters become

more efficient as the number of ports increases. However, compared to the area

results, the differences between the round-robin and prefix arbiters are slightly more

pronounced, while the differences between those two and the matrix arbiters have

become less pronounced. Nevertheless, round-robin arbiters remain the most efficient

choice for small configurations, and prefix network arbiters maintain their benefits

for large configurations.

2.7.5 Multi-Priority Overhead

Figure 2.9 illustrates the impact that adding support for two priority levels as de-

scribed in Section 2.6 has on the minimum cycle time. The white segment at the

bottom of each bar corresponds to the minimum cycle time for the single-priority

case from Figure 2.6.

The delay increase is most pronounced for the round-robin arbiter and least sig-

nificant for the matrix arbiter; in the latter case, priority selection can be overlapped

with existing logic to a large extent, minimizing the impact on the critical path.

With ten inputs, this allows the matrix arbiter to achieve lower cycle times than

the dual-priority round-robin arbiter. However, the prefix arbiter remains the fastest

implementation across all configurations.

While both area and PDP increase in magnitude when adding dual-priority sup-

port, the overall trends remain the same as with a single priority level, with the

difference in efficiency between matrix arbiters on the one hand and round robin and

prefix arbiters on the other hand decreasing slightly for the larger configurations. We

omit the corresponding figures in the interest of brevity.
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Figure 2.8: Power-delay-product for n-port arbiters.
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Figure 2.9: Cycle time penalty for implementing dual-priority support.

2.8 Related Work

Pankaj and McKeown [71] provide detailed block-level descriptions of basic arbiter im-

plementations used in the context of the Tiny Tera research project. Huang et al. [41]

describe fast full-custom implementations. Preußer et al. [79] develop techniques for

using high-speed adder designs to implement arbitration; this approach is of particu-

lar benefit for applications that target Field-Programmable Gate Arrayss (FPGAs),

which often provide delay-optimized adder blocks that yield better performance than

general-purpose programmable logic. Dimitrakopoulos et al. [23] propose a fast ar-

biter design based on prefix networks. Lee at al. [51] develop a multi-priority arbiter

that treats priorities in a probabilistic—rather than absolute—manner; i.e., priori-

ties determine the statistical distribution of grants instead of imposing a strict order

among requests. Their design has applications in improving global fairness in the net-

work. Finally, Shin et al. [86] present a tool that can generate synthesizable arbiter

implementations with arbitrary numbers of inputs.
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2.9 Summary

In this chapter, we have presented a brief overview of arbitration and provided de-

tailed descriptions of representative arbiter implementations, which will we will use

as building blocks for more complex structures in subsequent chapters. A compar-

ison of standard-cell arbiter implementations in terms of delay, area and energy ef-

ficiency shows that—contrary to popular wisdom—matrix arbiters are both less ef-

ficient and slower than round-robin arbiters at sizes commonly encountered in NoC

routers. Throughout the remainder of this dissertation, we will therefore consider the

latter type of arbiter exclusively.



Chapter 3

Allocators

3.1 Overview

Where arbitration addresses the problem of coordinating access to a single shared

resource between multiple competing agents, allocation extends the problem to situa-

tions where agents compete for multiple resources simultaneously. Specifically, given

a set of resources and a set of agents, each of which can request access to one or

more of the former, an allocator grants resources to agents subject to three basic

constraints1:

• Resources are only granted to agents that requested them.

• Each agent is granted access to at most one resource.

• Each resource is granted to at most one agent.

Similar to the approach taken in Chapter 2, we can thus formally describe allocation as

an operation Ψ on a two-dimensional binary request matrix R = {ri,j} that produces

1 We also refer to the agents as the allocator’s inputs, and to the resources as its outputs; both
terms are used interchangeably in the remainder of this dissertation.

28
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a grant matrix G = {gi,j} with the following properties:

G = Ψ(R) (3.1)

gi,j ⇒ ri,j (3.2)

gi,j ⇒
∧

k 6=j

(¬gi,k) (3.3)

gi,j ⇒
∧

k 6=i

(¬gk,j) (3.4)

Any grant matrix that satisfies these constraints is called a matching. The car-

dinality of a matching is the number of generated grants; it represents a metric for

matching quality. We refer to matchings in which no further resource can be granted

except by replacing another existing grant as maximal. Among these, the matchings

with the highest possible cardinality are called maximum matchings.

In order to maximize resource utilization, it is desirable for an allocator to produce

matchings with the highest possible cardinality. In practice, however, there is a trade-

off between matching quality on the one hand and delay, area and power constraints

that limit the allocator’s logic complexity on the other hand. The remainder of this

section discusses allocator implementations that represent different trade-offs between

these two qualities.

3.2 Separable Allocators

A separable allocator generates a matching by decomposing allocation into two suc-

cessive phases of arbitration. Formally, each phase corresponds to applying an arbi-

tration function Φ to each row or column of the request matrix.

For separable input-first allocation, as shown in Figure 3.1a, each agent indepen-

dently selects a single resource to request in the first round. A second round of

arbitration is then performed at each resource to select a winner among all incoming

requests.

In contrast, for separable output-first allocation, shown in Figure 3.1b, agents

eagerly forward all of their requests to the associated resources. The latter again
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Figure 3.1: Separable allocators with n inputs and m outputs.
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Figure 3.2: Example of inefficiency in separable input-first allocation.

perform arbitration among all incoming requests and send grants back to the winning

agents. As multiple resources may select the same winning agent in this stage, a

second round of arbitration is required in which each agent chooses a winner among all

resources that were granted to it in the first stage. Compared to input-first allocation,

this incurs additional propagation delay on the timing arc for arbiter state updates

as shown in Figure 3.12.

Arbiters—and therefore separable allocators—can be designed such that their de-

lay scales approximately logarithmically with the number of inputs, enabling relatively

fast allocation even for high-radix routers. However, because the arbiters in each stage

make arbitration decisions independently from one another, multiple arbiters in the

first stage can select requests for the same second-stage arbiter from their respective

set of available requests, resulting in a non-maximal matching. Figure 3.2 shows an

example for separable input-first allocation: Agent 0 and agent 2 both independently

select resource 1 in the first arbitration stage, leading to a conflict in the second ar-

bitration stage. Resource 1 can only satisfy one of the two requests, leaving agent 2

unassigned even though it could have used resource 3.

We can reduce the likelihood of such allocation inefficiencies—and consequently

increase matching quality—by staggering arbiter priorities using the iSLIP approach

2 The timing paths for τupdate shown in Figure 3.1a and Figure 3.1b assume that updates are
performed according to the iSLIP scheme described later in this section.
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described in [54]; to this end, we only update the priority state for any given ar-

biter in the first stage if it produced a request that subsequently resulted in a grant

in the second arbitration stage. Further improvements in matching quality can be

achieved by performing multiple iterations of separable allocation; however, tight de-

lay constraints typically make this iterative approach unattractive in the context of

Networks-on-Chip (NoCs).

3.3 Wavefront Allocators

Wavefront allocators [89] take advantage of the fact that, by construction, no two

entries on any given diagonal in the request matrix3 share the same row or column;

consequently, all requests on a diagonal can be granted independently of one another.

This allows us to compute a maximal matching by first granting all requests on a

highest-priority diagonal, eliminating any additional requests in the same rows or

columns as the granted requests, and then repeating this process for all remaining

diagonals in the request matrix.

Assuming that the diagonals are traversed in linear order, a wavefront allocator

can be implemented as a regular array of simple bit cells as shown in Figure 3.3. This

facilitates efficient full-custom implementation [21] with area and delay that scales

quadratically and approximately linearly with the number of ports, respectively.

Because each row and column of the wavefront array must contain one element

of the selected priority diagonal, wavefront allocators are inherently square. If the

number of agents and resources differs, a wavefront allocator of sufficient size to

accommodate the larger of the two must be used, with the request inputs for any

unused bit cells tied to zero.

3.3.1 Fairness

Fairness in wavefront allocators can be controlled by managing the order in which

the highest-priority diagonal is selected at the beginning of each round of allocation.

3 Each diagonal corresponds to the set of requests ri,j for which (i+j) mod n has the same value;
i.e., diagonals wrap around at the edges of the matrix.
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Figure 3.4: Circular priority diagonal selection results in uneven distribution of grants.
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Existing designs commonly implement weak fairness by connecting the priority select

signals P = {p0, p1, . . . , pn−1} to a circular shift register in which a single bit is set.

This approach ensures that any given request will be granted after at most n cycles;

however, it can lead to unfair allocation of resources, as the example in Figure 3.4

shows: Because diagonals are evaluated in ascending order, three out of four possible

choices for the starting diagonal—indicated by shaded cells—lead to request r2,1 being

granted, while request r3,1 is only granted in the one remaining case where the diagonal

it is on has highest priority. Thus, on average, r2,1 is granted three times as often as

r3,1.

To facilitate more balanced allocation of resources, we modify the canonical design

such that the starting diagonal for the next cycle is selected based on the grants that

were generated in the current cycle. Specifically, we extend the priority update mech-

anism for round-robin arbiters described in Section 2.3 from grant vectors to grant

matrices: Whenever one or more grants are produced, the successor of the highest-

priority diagonal that had any requests—and, by extension, grants—in the current

cycle becomes the starting diagonal in the next cycle. While this is not sufficient to

guarantee strong fairness—in particular, if there are requests from all inputs or for

all outputs, the behavior is the same as in the canonical implementation—, it avoids

pathological behavior when a small number of agents compete for the same resource.

The proposed scheme is readily implemented in hardware by performing an OR

reduction across the diagonals of the request matrix, feeding the resulting vector

into a round-robin arbiter and connecting the latter’s state variable to the wavefront

array’s priority select inputs pk. As the starting diagonal for the next cycle depends

only on the request matrix and the starting diagonal for the current cycle, the update

can be performed in parallel with the actual allocation and consequently does not

extend the allocator’s critical path.

3.3.2 Acyclic Implementations

As in the case of round-robin arbiters, combinational loops—formed by signals xi,j

and yi,j in Figure 3.3—can interfere with the ability of commercially available tools
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to properly perform static timing analysis. In order to facilitate the use of wavefront

allocation with synthesis-based design flows, we develop acyclic alternatives to the

canonical design described in [89].

We can eliminate combinational loops by unrolling the wavefront array as we did

for linear round-robin arbiters in Section 2.3. Figure 3.5 shows the arrangement of

the replicated cells; their grant outputs are ORed with those of the corresponding

original cells. The one-hot priority signals pk logically divide the extended array into

multiple sub-arrays:

• Any part of the extended array above the first active priority diagonal is ef-

fectively disabled as the xi,j and yi,j signals for each cell (cf. Figure 3.3) are

deasserted.

• The first activated priority diagonal marks the beginning of the sub-array in

which grants are generated. This sub-array is equivalent to the canonical wave-

front array for the current value of the priority signals {pk} and extends for a

total of n successive diagonals.

• Any remaining diagonals at the bottom of the extended array, starting with the

second instance of the selected priority diagonal, are also effectively inactive:

Because they replicate earlier active diagonals, any requests in this region of

the array are guaranteed to be masked by prior grants.

Hurt et al. [43] describe a similar implementation that uses a sliding window of enable

signals to activate a subset of the unrolled array explicitly. All in all, unrolling the

wavefront array roughly doubles area, power and critical path delay compared to the

canonical implementation.

An alternative approach for eliminating the combinational loops takes advantage

of the fact that each each of them is logically severed at the currently selected priority

diagonal: In the basic cell shown in Figure 3.3, if p(i+j) mod n is asserted, the two OR

gates mask the values of xi and yi. Hence, for each individual priority selection, we

can construct an equivalent loop-free wavefront array as shown in Figure 3.6. We can

use these fixed-priority equivalents to implement an acyclic wavefront allocator.
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Figure 3.5: Acyclic wavefront allocator using unrolling with n = 4 ports.
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Figure 3.6: Loop-free equivalent wavefront arrays for individual priority selections.
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The symmetry of the wavefront array implies that the equivalent array for a given

priority k can be derived from that for priority 0 by rotating either each row or each

column of the request matrix by k bit positions. Thus, we can construct an acyclic

wavefront allocator using a fixed-priority wavefront array and a set of barrel shifters

at the inputs and outputs as shown in Figure 3.7. This eliminates the combinational

loops at the cost of increased delay.

Alternatively, an acyclic implementation can be constructed by applying Shannon

decomposition based on the priority selection signals pk to the canonical implementa-

tion. In this case, the loop-free implementation—as shown in Figure 3.8—computes

the resulting grant matrix for each possible priority level in parallel using a set of fixed-

priority wavefront arrays; a set of multiplexers then selects the correct intermediate

result based on the actual priority value. The replication of wavefront arrays results

in cubic scaling behavior for area and power, rendering this approach unattractive

for large allocators; however, for allocators with a relatively small number of ports,

its comparatively low delay can outweigh the cost differential compared to other im-

plementation alternatives.
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Figure 3.9: Example of starvation in maximum-size allocation.

3.4 Maximum-Size Allocation

Conceptually, a maximum matching for a given set of requests and resources is read-

ily found by performing successive iterations of an augmenting path algorithm [26].

However, while hardware implementations have been proposed that can perform one

such augmentation step in each cycle [38], the associated complexity as well as the

inherently iterative nature of generating a complete matching in this fashion limit

their applicability to NoC routers.

Furthermore, given a request matrix, a maximum-size allocator will never generate

a grant that is not part of any maximum matching; as a result, it fails to satisfy the

elementary fairness property that every request eventually be granted. Figure 3.9

shows an example of a request matrix with two possible maximal matchings that

differ in cardinality. In this scenario, a maximum-size allocator will always produce

the higher-cardinality matching shown in Figure 3.9b, causing the remaining request

to block indefinitely.

However, despite its implementation complexity and susceptibility to starvation,

maximum-size allocation provides a useful upper bound on matching quality that

other allocators can be benchmarked against.
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3.5 Evaluation

For separable allocators, implementation trade-offs are largely determined by the

characteristics of their constituent arbiters, which we evaluated in Chapter 2. In the

present section, we compare the delay, area and energy efficiency of different wavefront

allocator implementations. Specifically, we consider the following designs:

Unroll: An acyclic wavefront allocator using unrolling as shown in Figure 3.5.

Rotate: An implementation using input/output transformation (cf. Figure 3.7).

Replicate: An implementation using replicated wavefront arrays (cf. Figure 3.8).

DPA: A Diagonal Propagation Arbiter4 as described in [43].

3.5.1 Experimental Setup

We conduct our evaluation using the same experimental setup that was used to com-

pare arbiter implementations in Section 2.7. However, due to the greater logic com-

plexity of wavefront allocators compared to individual arbiters, we begin each sweep

at a lower base frequency of 500 MHz.

3.5.2 Delay

Figure 3.10 compares the minimum cycle time that each implementation alternative

can operate at for three exemplary allocator sizes. Due to the expansion of the

wavefront block, cycle time grows more quickly for the Diagonal Propagation Arbi-

ter (DPA) and the unrolled implementation as the number of ports increases than

for the two other implementations. With n = 5 ports, the additional overhead for

transforming inputs and outputs increases the delay for the rotation-based allocator

by 11% compared to these two implementations; however, its more benign scaling

behavior allows it to operate at lower cycle times for configurations with eight or

more ports. Despite the overhead associated with creating multiple instances of the

4 Note that, contrary to its name, the DPA is actually an allocator, not an arbiter.
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Figure 3.10: Minimum cycle time for n-port wavefront allocators.

central wavefront array, the replication-based implementation is the fastest across all

three design points, outperforming the closest competitor in each case by 30–41%.

3.5.3 Area

Figure 3.11 shows the area-delay trade-off for the individual wavefront allocator vari-

ants; as in Chapter 2, we omit the results for the intermediate configuration (n = 8)

for brevity.

With five ports, the unrolled design illustrated in Figure 3.5 yields the best area

efficiency among all four designs for cycle times above 20FO4. While the cost inherent

in instantiating multiple wavefront arrays causes the replication-based approach to be

less area-efficient for cycle times in excess of 28FO4, the situation is reversed at the

opposite end of the delay spectrum as the higher delay of the other implementation

variants necessitates the use of increasingly larger gate sizes in order to meet timing

constraints.

For the ten-port configuration, the cubic scaling behavior of the replication-based

implementation substantially increases its base cost at low target frequencies. The
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Figure 3.11: Area-delay trade-off curves for n-port wavefront allocators.
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unrolled implementation continues to require the least area at low operating frequen-

cies; however, due to its lower minimum delay, the rotation-based implementation

represents the most area-efficient choice for target cycle times between 28 FO4 and

40FO4. As in the five-port case, the replication-based implementation achieves the

lowest delay overall and thus represents the best trade-off at high target frequencies.

For either design point, at any given target cycle time, at least one of the wavefront

implementations described in in Section 3.3 provides better area efficiency than the

previously proposed implementation from [43].

3.5.4 Power-Delay Product

Results for energy efficiency, shown in Figure 3.12, follow the same overall trends as

those for area, with slightly shifted transition points and less pronounced differences

between implementations at low target frequencies.

3.5.5 Fairness Overhead

Additional synthesis runs, the detailed results of which we omit for brevity, show that

implementing the fair priority diagonal selection scheme described in Section 3.3.1

does not measurably affect critical path delay and has minimal impact on area and

energy efficiency.

3.6 Related Work

Wavefront allocators were first developed by Tamir and Chi [89]. Gopalakrishnan [29]

develops an asynchronous implementation of a wavefront allocator using micropipelin-

ing principles; this design avoids clock distribution and synchronization overhead at

the cost of increased design and verification complexity. Hurt et al. [43] present wave-

front allocator implementations that avoid combinational loops, including the DPA.

Delgado-Frias and Ratanpal [21], on the other hand, describe efficient full-custom

VLSI implementations that do include combinational cycles. Tian et al. [93] describe

an alternative scheme for avoiding fairness issues in wavefront allocators. Olesinski
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Figure 3.12: Power-delay-product for n-port wavefront allocators.
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et al. [67] propose a variation of a wavefront allocator suitable for use in very large

switches; however, the proposed design incurs high latency under light load. A follow-

on paper [68] remedies this deficiency by using a fast secondary allocator to back-fill

generated grant matrices.

3.7 Summary

In the present chapter, we have discussed the key aspects of allocation and provided

detailed descriptions of representative hardware implementations. In doing so, we

have examined allocation inefficiencies in separable allocators, fairness issues in wave-

front allocators and starvation scenarios in maximum-size allocation. Furthermore,

we have investigated approaches for eliminating combinational loops in wavefront

allocators to facilitate their use in synthesis-based design flows. Experimental re-

sults for common NoC design points indicate that our designs compare favorably to

a state-of-the-art implementation of an acyclic wavefront allocator, improving delay,

area and energy efficiency.



Chapter 4

Virtual Channel Allocation

4.1 Overview

In Virtual Channel (VC) flow control [17], when the head flit of a packet arrives at

a router, it must acquire one of the VCs associated with the physical channel that

connects to its destination output before it can proceed. To achieve this, the head

flit sends a request to the VC allocator once it reaches the front of its input VC. The

VC allocator generates a matching between any such requests from the input VCs on

the one hand and those output VCs that are not currently in use by another packet

on the other hand.

In the general case, a router with P ports and V VCs per port therefore requires

a VC allocator that can match P×V agents (all input VCs at all input ports) to

P×V resources (all output VCs at all output ports). However, in practice, the range

of output VCs that any given packet can request is typically subject to additional

constraints. In particular, many commonly used routing functions in Networks-on-

Chip (NoCs) return only a single output for any given packet, limiting the set of

candidate output VCs to those at its selected destination port. We will assume

that the routing function is restricted in this way throughout the remainder of this

chapter; specifically, we assume that the set of allowable output VCs for a given

packet is represented by two signals generated by the routing logic: One that that

selects its destination port and second one that carries a bit vector of candidate VCs

48
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at the selected port. This motivates several modifications compared to a canonical

P×V -by-P×V allocator implementation according to Chapter 3.

In response to successful allocation, each granted output VCs is marked as being

in use, and its state is updated to reflect which input and VC it is currently assigned

to. At the same time, each winning input VCs updates its state to indicate that VC

allocation has been completed and stores the assigned output VC in a register.

4.2 Implementation

We can implement VC allocation using separable allocators as described in Sec-

tion 3.2. Compared to the canonical designs, a separable VC allocator requires

additional logic for generating requests and grants, and its input stage is slightly

simplified as a result of the restricted routing function.

In the input-first implementation, shown in Figure 4.1, since the destination port

is known, we can avoid P×V -input arbitration in the input stage and instead simply

select among the V candidate output VCs specified by the routing function; a demul-

tiplexer can then be used to expand the result into a P×V -wide vector of output-side

requests. However, only those output VCs that are not currently in use by another

packet should be considered in this arbitration step. To this end, a multiplexer selects

the availability signals for the VCs at the destination port, and the resulting bit vector

is used to mask the candidate VCs ahead of input-side arbitration. As the availability

signals originate at the individual output VCs, this masking step increases the delay

τgrant,in for generating the final input VC grant signal as shown in Figure 4.1.

Output-side arbitration is implemented using two-level tree arbiters rather than

monolithic P×V -input arbiters, as the former distribute grants more fairly across

input ports. A given output VC can be marked as unavailable if it receives requests

from any input VCs, as one of these requests will result in a grant1.

The results of output-side arbitration are then distributed back to the inputs VCs.

Because a given input VC only issues requests to a single output port, it is safe to

combine the incoming grant signals from all output ports using a P -input OR gate;

1 We assume here that the arbiters satisfy the property described in Equation 2.4 in Chapter 2.
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the result is a bit vector that indicates the granted output VC—if any—at the selected

destination port.

The output-first implementation variant is depicted in Figure 4.2. Here, each

input VC sends requests to all candidate output VCs at the selected destination port,

where arbitration is performed as in the input-first case. Because selection among

output VCs is not performed until after output-side arbitration, we can account for

VCs that are unavailable simply by masking their output arbiters’ grant signals.

At the input side, we can combine the grants from the different output ports using

a P -input OR as in the input-first case. However, as a given input VC may receive
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grants from multiple output VCs at its destination port, an additional arbitration

stage is needed to select a winner among them.

Because output VCs that were allocated must be marked as unavailable, the final

input-side grant signals must be propagated back to the output side; thus, while

output-first allocation reduces the delay for generating the input-side grant signals,

it increases the delay τgrant,out for computing the grant signals for individual output

VCs.

A wavefront-based VC allocator, as illustrated in Figure 4.3, consists of a canonical

P×V -input wavefront allocator, with additional logic for generating the P×V -wide

request vector for each input VC as in the separable output-first case, and for reducing

the P×V -wide grant vectors to V -wide vectors as in the input-first case. Availability

masking can be performed at the inputs to the wavefront allocator, while output-side

grants are generated by combining the grant signals for all P×V input VCs for each

individual output VC. As in the output-first case, the latter timing arc represents

the allocator’s overall critical path; its delay τgrant,out is dominated by the actual
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wavefront allocator.

4.3 Sparse VC Allocation

VCs are employed for a variety of different purposes in modern interconnection net-

works:

• Dependencies between different types of packets, such as request and reply

packets in memory traffic, can lead to protocol deadlock at the network boundary

if the network interfaces impose additional dependencies, e.g. as a result of finite

buffer resources [20]. Such deadlock can be avoided by partitioning the total set

of VCs into subsets corresponding to different message classes and mapping the

different types of packets to these subsets appropriately. In addition, message

classes can be employed to implement Quality-of-Service (QoS) policies and to

provide traffic isolation between concurrently executing applications or virtual

machines.

• In order to prevent deadlock scenarios caused by cyclic resource dependencies

within the network, each message class can be partitioned into multiple resource

classes, with transitions between the latter being restricted such as to enforce a

partial order of resource acquisition. Examples of this approach include dateline

routing in torus networks and two-phase routing as implemented in Valiant’s

algorithm [94], O1TURN [82] or UGAL [87].

• Finally, it is often beneficial to assign multiple VCs to each class; this increases

network performance under load by reducing head-of-line blocking, and it im-

proves channel utilization by increasing the number of logical connections that

are multiplexed onto each physical link.

Thus, the total number of VCs V is determined by the number of message classes M,

the number of resource classes R and the number of VCs assigned to each class C :

V = M × R × C (4.1)



54 CHAPTER 4. VIRTUAL CHANNEL ALLOCATION

Prior work on router design has typically treated VCs in a uniform manner for the

purpose of allocation: The allocator logic is designed such that it can handle requests

from any given input VC to the whole range of output VCs, and a bit vector generated

by the routing logic is used to constrain that range to a subset of allowable VCs on a

packet-by-packet basis. However, based on the following observations, we can exploit

the assignment of VCs to different message and resource classes to statically constrain

the set of candidate output VCs that a given input VC can generate requests for, and

thus greatly reduce the VC allocator’s logic complexity.

As packets are assigned to message classes based on immutable properties—e.g.,

the packet’s type or the application or virtual machine it belongs to—, a given packet

can never transition from a VC belonging to one message class to one belonging to

another. Therefore, we can partition the VC allocator into a set of smaller, completely

independent allocators, each of which is dedicated to handling VCs for a specific

message class. Since allocator complexity scales super-linearly with the number of

ports, this can lead to substantial reductions in area and power consumption.

While a packet’s resource class can change as it traverses the network, by con-

struction, it can only do so subject to specific restrictions imposed by the routing

function to prevent cyclic dependencies. Additionally, the routing function will gen-

erally limit the set of candidate output ports for the same purpose. This allows us to

further constrain the set of possible transitions from input VCs to output VC.

As an example, Figure 4.4 illustrates the set of legal resource class and port

transitions for Universal Globally Adaptive Load-Balanced (UGAL) routing on a 64-

node two-dimensional Flattened Butterfly (FBfly). Upon injection into the network,

each packet is either routed minimally to its destination, or it is first routed to a

random intermediate router using a separate resource class (non-minimal) before

being routed minimally to its final destination. Additional restrictions are imposed

by the fact that each phase uses Dimension-Order Routing (DOR) and that minimal

routing only allows for a single hop per dimension in FBfly networks. In aggregate,

these restrictions reduce the number of possible transitions by 60 %.

In combination with the restrictions imposed by message classes, this enables us

to reduce the size of each input- and output-side arbiter in a separable VC allocator
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to the total number of possible successors and predecessors for the resource class it

belongs to, respectively, times the number of VCs in each class2. Additional opti-

mizations in the input stage are possible If the routing function further limits the

number of candidate resource classes for each individual packet.

Finally, all VCs belonging to the same class are equivalent from a functional point

of view. As such, a given input VC can either use all of the output VCs that belong

to a given class or none of them. VC allocator requests therefore need not specify

individual candidate VCs within the class, but instead can select the class as a whole.

This facilitates additional logic optimizations.

4.4 Evaluation

In the present section, we investigate the impact of the allocator implementations

described earlier in this chapter on router and network performance, quantify their

delay, area and energy efficiency, and evaluate the efficacy of the proposed sparse VC

allocation scheme.

4.4.1 Experimental Setup

In order to perform detailed cost evaluations and to develop insights about basic

trends and trade-offs that are independent of network-level implementation details,

we first investigate individual allocator instances. To this end, we have developed

parameterized RTL implementations for the three allocator architectures discussed

in this chapter.

We first evaluate matching quality for each implementation using open-loop sim-

ulations: For each VC configuration, we apply a set of 10000 pseudo-randomly gen-

erated request matrices that are consistent with that configuration, and we count the

total number of grants produced by each allocator. As a point of comparison, we also

compute the maximum possible number of grants for the sequence of request matrices

using maximum-size allocation as described in Section 3.4.

2 Except for special cases in which the set of resource classes is divided into multiple disconnected
subsets, wavefront-based VC allocators only benefit from the restrictions imposed by message classes.
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Subsequently, we evaluate the impact of VC allocation on overall network per-

formance using the cycle-accurate BookSim 2.0 network simulator. We model input-

queued router designs with VC flow control [17]. Input buffers are statically parti-

tioned, with eight entries assigned to each VC. Lookahead routing [28] is used to

eliminate the need to perform route computation in a separate pipeline stage; con-

sequently, we model a pipeline that comprises three stages: VC allocation, switch

allocation and switch traversal.

We exercise the network by injecting synthetic traffic; packet inter-arrival times

follow a Bernoulli distribution with configurable rate, and destinations are selected

randomly or according to a set of permutation patterns [20]. To model memory traffic,

we generate packets with a bimodal length distribution: Short packets—representing

read requests and write replies—comprise two flits, whereas long packets—representing

read replies and write requests—include four additional flits that carry payload data.

For each traffic pattern, we sweep injection rates and measure the resulting packet

latency for each rate. Measurements are taken after an initial warm-up period that

allows the network to reach steady state, and all results include source queuing delay.

Finally, to investigate delay and cost trade-offs and to quantify the benefits af-

forded by sparse VC allocation, we synthesize each allocator in a commercial standard-

cell design flow. For additional details on our synthesis setup, we refer to Section 2.7.1.

4.4.2 Matching Quality

Figure 4.5 compares matching quality for the three allocator implementations con-

sidered in this chapter and illustrates how it changes as the number of VCs per class

increases. The shaded area in each graph marks the feasibility region; its upper

boundary corresponds to the maximum number of grants that can be generated for

the given request patterns.

We report results for port (P ) and VC (V ) configurations representative of a Mesh

network with request-reply traffic; additional simulation runs show that configurations

with more ports or packet classes exhibit similar characteristics as long as the same

number of VCs is assigned to each packet class. We omit detailed results for brevity.
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Figure 4.5: VC allocator matching quality.
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For cases where a single VC is assigned to each packet class, as shown in Fig-

ures 4.5a, all three allocator implementations generate maximum matchings for ev-

ery valid request matrix: As each input VC can use only one specific output VC,

each allocator will produce grants for all non-conflicting requests, as well as a single

grant for each group of conflicting requests. This represents the best possible—i.e.,

maximum—matching for such configurations.

Results start to diverge as additional VCs are assigned to each packet class, as

illustrated in Figures 4.5b and 4.5c. As before, all three allocator types produce

grants for non-conflicting requests. In the presence of conflicts—i.e., multiple input

VCs requesting output VCs from the same packet class at a given output port—

the wavefront allocator will grant as many of the requests as there are available

VCs in that class, and therefore continues to produce maximum matchings3. For

the separable allocators, on the other hand, scenarios as described in Section 3.2

can arise where some of the VCs within a given class are left unassigned even in

the presence of unsatisfied requests; e.g., for a separable input-first implementation,

multiple input VCs destined for the same packet class might select the same output

VC during input-side arbitration, leaving other available VCs in that class unused.

Consequently, matching quality for the separable implementations decreases both for

higher injection rates and for larger numbers of VCs per class, as both increase the

probability that such lockouts will occur.

Input-first allocation provides slightly better matching than output-first alloca-

tion, as it performs the narrower V : 1 arbitration at the input side before the wider

P×V : 1 arbitration at the output side; because an n-input arbiter grants only one

of up to n requests, eliminating up to n − 1 others, this allows more requests to be

propagated from the first arbitration stage to the second one than in the output-first

case.

Under heavy load, the wavefront allocator generates 20% and 25% more grants

3 Note that while a wavefront allocator is not guaranteed to produce maximum matchings for
arbitrary request matrices, legal request matrices for VC allocation exhibit additional properties;
in particular, the set of output VCs requested by any two input VCs either overlaps completely (if
they request the same class) or not at all (if they request different classes). With this additional
constraint, any maximal matching is also a maximum matching.
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Figure 4.6: Impact of VC allocation on saturation throughput (8×8 Mesh, 8VCs).

than the separable input- and output-first allocators, respectively. However, in prac-

tice, a given load level can only be sustained in steady state if the average number of

generated grants does not exceed the number of new requests. The latter quantity is

inherently limited by the fact that at most one new packet can arrive at each input

port—shared among multiple VCs—in any given cycle; the dashed lines in Figure 4.5

denote this threshold, expressed as a fraction of the per-VC request rate, for each

configuration. VC allocation can only operate in the regions above these curves for

limited periods of time, e.g. as a result of bursty traffic. While a wavefront allocator’s

higher matching quality facilitates faster recovery from such transient network states,

its overall utility in the context of VC allocation is significantly reduced by this effect.

4.4.3 Network-Level Performance

As outlined in Section 4.4.1, a request-reply packet pair in our traffic model always

comprises a total of six flits; consequently, as VC allocation only needs to be performed

once per packet, on average only one in three flits generates a requests, resulting in low

effective load on the VC allocator. We saw in Figure 4.5 that all three allocator types
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Figure 4.7: Minimum cycle time for VC allocator implementations.

produce near-maximum matchings when the request arrival rate is low; therefore,

we expect the choice of VC allocator to not significantly affect performance at the

network level.

Indeed, simulation results for an 8×8 Mesh network—shown in Figure 4.6—

confirm that VC allocation does not affect zero-load latency and has minimal impact

on the saturation throughput measured for each traffic pattern. This holds even as

the number of VCs or the switch allocation scheme—Figure 4.6 uses 8VCs and a sep-

arable input-first switch allocator—is varied: While the absolute throughput values

measured for individual traffic patterns change, no significant discrepancies between

the results for the different VC allocator implementations are introduced.

4.4.4 Delay and Cost

Figure 4.7 compares the minimum cycle time at which the individual allocators can

run for configurations with different numbers of ports (P ) and VCs (V ). For the

wavefront-based VC allocator, we consider implementation variants using unrolling,
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input transformation and replication as described in Section 3.3.2. The white seg-

ments at the top of each bar indicate the minimum cycle time for näıve implemen-

tations, while the colored sections show the cycle time achieved after applying the

optimizations described in Section 4.34.

Sparse VC allocation yields significant speedup in all cases; in particular, it im-

proves the minimum cycle time of the fastest implementation for each design point—

generally the separable input-first implementation—by of 31–46%. Between the

wavefront-based implementations, the one using replication can operate at signifi-

cantly higher clock frequencies than the ones employing unrolling and I/O trans-

formation for the five-port configurations; with ten ports, the maximum operating

frequencies for all three variants are significantly lower than those for the two sepa-

rable allocators.

Figure 4.8 illustrates the area-delay trade-off with (solid markers) and without

(dotted lines) sparse VC allocation. We show results for the five-port configuration

with two message classes and a single resource class; results for configurations with

more ports and packet classes largely follow the expected scaling behavior of the

underlying allocator type, and thus the benefits afforded by sparse VC allocation

become more pronounced.

With a single VC per packet class, as shown in Figure 4.8a, cell area at low

target frequencies is reduced by 55–50 % for the separable implementations, as well

as the unrolling- and rotation-based wavefront implementations; with a second VC

per class—as shown in Figure 4.8b—the improvement is slightly smaller. For the

replication-based wavefront design, sparse VC allocation reduces area by up to 75%

at low target frequencies. Nevertheless, the three wavefront-based implementations

remain significantly more expensive than either of the separable implementations and

as such do not represent attractive choices for VC allocation.

By reducing allocator complexity, sparse VC allocation also significantly improves

4 For the largest configuration shown, the minimum cycle times for the näıve implementations
of the unrolled and the rotation-based wavefront allocators exceed 250 FO4; we truncate the cor-
responding bars at 100FO4 to ensure that other results remain readable. We were unable to suc-
cessfully synthesize the näıve implementation of the replication-based wavefront allocator due to its
excessive size.
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Figure 4.8: Area-delay trade-off for VC allocator implementations.
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energy efficiency. Detailed results—omitted here in the interest of brevity—show that

area and Power-Delay Product (PDP) exhibit essentially the same scaling behavior

and consequently follow the same trends.

For all design points considered, results show that the separable input-first im-

plementation achieves better delay, area and PDP than the other implementations

under investigation. As the choice of VC allocator does not significantly affect net-

work performance, it thus represents the preferable overall design choice for this use

case.

4.5 Related Work

VC allocation in interconnection networks has been addressed in a number of prior

research contributions:

Peh and Dally [76, 77] present an analytical delay model for separable VC al-

locators. Their model is derived from gate-level schematics using the logical effort

method [88]; as such, it is primarily geared towards full-custom implementations that

optimize for minimum critical path delay regardless of the implications for area and

power. Furthermore, the models do not account for wire delay, which has become a

critical factor in modern sub-micron semiconductor processes.

Mullins et al. [62] propose a technique for reducing the delay of separable input-

first VC allocators by precomputing arbitration decisions and by using a free VC

queue at each output port, the front-most element of which is assigned to incoming

requests.

Kumar et al. [47] describe a scheme that combines VC and switch allocation into

a single step; we explore a similar design in Section 5.4.

Finally, Zhang and Choy [99] investigate approaches for reducing the complexity of

separable VC allocators based on utilization statistics for their individual constituent

arbiters and present detailed delay, area and power results.
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4.6 Summary

In this chapter, we have explored the design space for VC allocators in the context of

NoC routers. In particular, we have presented practical hardware implementations for

three exemplary VC allocator architectures based on the elementary designs described

in Chapter 3.

In comparing matching quality between the three allocator implementations, we

find that differences primarily manifest at load levels that cannot be sustained contin-

uously. Consequently, network-level steady-state performance in largely insensitive to

the choice of VC allocator; we have confirmed this using extensive simulation runs on

an exemplary 64-node Mesh network. Thus, when selecting a VC allocator implemen-

tation, the optimal choice is primarily determined by delay and cost considerations.

In order to improve the latter characteristics, we have furthermore developed

sparse VC allocation, a scheme that reduces the complexity of the VC allocator by

taking advantage of the fact that many common use cases organize VCs as multiple

disjoint packet classes. By structuring the allocator to explicitly enforce restrictions

on transitions between packet classes in hardware, sparse VC allocation reduces its

minimum cycle time by up to 46% compared to a näıve implementation, while im-

proving area and energy efficiency by up to 75%.

Overall, our results suggest that the separable input-first implementation provides

the optimal delay, area and energy efficiency among the three designs considered in

the present chapter.



Chapter 5

Switch Allocation

5.1 Overview

Once a packet has completed Virtual Channel (VC) allocation, its flits can be for-

warded to the selected destination port subject to buffer space availability. For each

flit to be transferred, a crossbar connection between the corresponding input and out-

put ports must be established for one cycle. The switch allocator is responsible for

scheduling such crossbar connections; in particular, it generates matchings between

requests from active VCs at each of the router’s P input ports on the one hand and

crossbar connections to its P output ports on the other hand1. The quality of the

generated matchings directly affects the router’s latency and throughput under load.

With VC flow control, flits may only be sent downstream if sufficient buffer space

is available at the receiving router. To this end, routers maintain a set of credit

counters at each output port that track the number of available buffer entries for

each downstream VC. A given input VC can only request access to the crossbar if its

destination VC has at least one credit available.

We assume throughout the remainder of this chapter that each input VC main-

tains a proxy of the credit count for its assigned destination VC; this allows credit

1 To minimize the cost of the crossbar, Network-on-Chip (NoC) routers typically do not implement
speedup [20].
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checks to be performed locally at each input port, eliminating substantial propaga-

tion and multiplexing delay. Maintaining such proxy registers is feasible because the

destination port and VC are fully determined at the end of VC allocation, allowing

the proxy to be set up in time for the first cycle of switch allocation2.

The grant signals generated by the switch allocator are used to set up the regis-

ters that control crossbar connectivity. In addition, the switch allocator notifies the

winning VC at each input port, causing the latter to prepare its frontmost flit for

crossbar traversal—e.g., by initiating a read access to the input buffer—and to decre-

ment its credit count proxy. Finally, the output-side credit counter for each winning

flit’s destination VC is updated to reflect the fact that a credit has been consumed.

5.2 Implementation

As in the case of VC allocation, we can implement switch allocators by adapting the

canonical designs described in Chapter 3. Specifically, additional logic is required to

combine the requests from individual VCs at each input port, as well as for notifying

the winning input VCs and initiating output-side credit count updates.

In a separable input-first implementation, shown in Figure 5.1, a V -input arbiter

first selects a winner among all active VCs at each input port. As each VC can only

request a single output port, this effectively replaces the input-side P -input arbiter

found in the canonical implementation shown in Figure 3.1a3. Each input port then

proceeds to request the desired output port for its winning VC.

At the output side, a round of P -input arbitration is performed as in the canonical

design. The grants generated by these arbiters are used to set up the crossbar control

registers; furthermore, combined with the winning VCs from the selected input ports,

they are used to identify the output-side credit counters that need to be updated4.

2 By the same argument, it is generally not feasible to use a similar approach for masking
unavailable VCs at the beginning of VC allocation.

3 We could instead select an output port by performing P -input arbitration over the combined
requests from all VCs; however, unless the number of VCs significantly exceeds the number of ports,
which is not commonly the case in NoCs, this generally leads to a less efficient implementation.

4 Recall from Section 4.1 that the state maintained for each output VC includes registers that
track the input port and VC to which it is currently assigned.
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Figure 5.1: Separable input-first switch allocator.

Finally, the winning input ports are notified, prompting each to generate a grant for

the VC that was selected by the input arbiter at the beginning of allocation. This

timing arc, with an associated delay of τgrant,in, represents the allocator’s critical path.

Figure 5.2 illustrates the separable output-first implementation. Here, requests

from all active input VCs are combined and forwarded to the output side, where P -

input arbitration is performed among all incoming requests and the resulting grants

are propagated back as in the input-first case. Since a given input port can receive

grants from multiple outputs, it is necessary to select one among them; to this end,

the allocator performs arbitration among all those input VCs whose requests match

one of the granted output ports.

Unlike in the input-first case, the grant signals generated by the output arbiters

cannot drive the crossbar control registers directly, as this could cause an input to be

connected to multiple outputs. Instead, each input port sets up its crossbar connec-

tion using the winning VC’s port select signal at the end of allocation. The final port

select signals, combined with the winning VC from each input port, furthermore trig-

ger output-side credit count updates as in the input-first case; the associated timing

arc with delay τgrant,out represents the output-first allocator’s critical path.
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The implementation for a wavefront-based switch allocator, shown in Figure 5.3,

largely follows that of the separable output-first variant: At the input side, requests

from all active VCs are combined and forwarded to the central wavefront allocator.

However, as the latter guarantees that at most one output port is granted to any

given input port and vice versa, its grant signals can be used to set up the crossbar

control registers directly.

Despite the fact that each input port can only receive a single grant, a final input-

side arbitration step must be performed in the same way as in the separable output-

first implementation. This is necessary to account for situations where multiple input

VCs request the same output port.

In order to correctly update the output-side credit counts, the winning VCs have

to be communicated to the output ports. As in the output-first implementation,

the timing arcs involved in performing the credit count update represent the overall

critical path of the design; however, because the port selections are fully determined

by the wavefront allocator and thus available earlier than in the output-first case, it

is the timing of the input VC selection signals that determines the delay τgrant,out of

the wavefront allocator’s critical path.

5.3 Speculative Switch Allocation

In addition to using lookahead routing, we can further reduce the router’s pipeline

delay by allowing a packet’s head flit to bid for crossbar access in parallel to partic-

ipating in VC allocation, speculating that a VC will be assigned [76, 77]. If a grant

is received from the VC allocator as predicted, the outcome of switch allocation de-

termines what action to take next as in the non-speculative case. However, in case

of mis-speculation, the flit must ignore the outcome of switch allocation—potentially

leaving an assigned crossbar time slot unused—and issue requests to both allocators

again in the next cycle.

Because speculative requests are issued before an output VC has been assigned, it

is not feasible to perform input-side credit masking using proxy registers as described

in Section 5.1. Instead, we must check for buffer space availability late in the cycle,
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Figure 5.4: Canonical implementation of speculative switch allocation.

after the VC allocator has computed its grants. This effectively introduces an ad-

ditional degree of uncertainty: Even after receiving grants from both allocators, the

head flit must leave its assigned crossbar time slot unused if the allocated output VC

has no credits available.

As all speculative requests thus carry the risk of not being able to use their as-

signed crossbar time slots, we must prioritize non-speculative requests during switch

allocation in order to avoid potential performance degradation. In the following, we

investigate approaches for extending the previously described switch allocator designs

accordingly.

5.3.1 Canonical Speculation

The canonical implementation of speculative switch allocation—as described in [76,

77]—uses two separate allocators for handling non-speculative and speculative re-

quests. Allocation is performed independently for each set of requests, and a final

merging stage resolves conflicts between the grants generated by both allocators. A
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block diagram of the canonical implementation is shown in Figure 5.4.

The checks for input and output conflicts require two sets of reduction ORs to

generate row- and column-wise summary bits that indicate the presence of a non-

speculative grant. Pairs of summary bits are then combined to form a P×P matrix

that serves as a mask for speculative grants. For a given type of allocator, this

increases the critical path delay τgrant by the sum of the delays incurred by the

reduction trees and the masking logic when compared to a purely non-speculative

implementation5.

As suggested in [76], for separable input-first allocators, we can exploit Equa-

tion 2.4 to speed up the computation of the column-wise summary bits by performing

it in parallel with the output arbitration stage; however, as the row-wise summary bits

cannot be determined before output arbitration has completed, this does not shorten

the overall critical path. A similar argument can be made for separable output-first

allocators.

5.3.2 Pessimistic Speculation

The benefits of speculative switch allocation are most pronounced when network load

is low and end-to-end packet latency is dominated by pipeline delay. In such cases,

the expected number of pending requests at each router—and hence, the likelihood

of any given request not being granted due to a conflict—is small. Consequently,

we can pessimistically mask those speculative grants that conflict with one or more

non-speculative requests—rather than grants—while maintaining the desirable perfor-

mance characteristics of the canonical implementation at low to medium load levels.

As shown in Figure 5.5, this allows us to compute the row- and column-wise

reduction trees in parallel with allocation, removing them from the critical path.

Pessimistic masking thus reduces the delay penalty associated with speculative switch

allocation to the delay of the final stage of 2-input AND gates.

As network load—and thus the level of congestion in the routers—increases, more

5 Note that we could exploit the additional slack on the input side of the speculative path by
using a more complex allocator for these requests; however, in practice, this yields little benefit, as
the speculative request matrix is typically less densely populated than the non-speculative one.
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Figure 5.5: Pessimistic speculation shortens the critical path.
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and more speculative requests are unnecessarily masked by non-speculative requests

that fail to produce a grant. Consequently, the efficacy of pessimistic speculation is

reduced as the network approaches saturation, and its performance approaches that

of a purely non-speculative implementation. However, in many practical applica-

tions, NoCs operate at modest load levels, and performance is primarily limited by

end-to-end latency rather than available network bandwidth [81]. In such scenarios,

pessimistic speculation represents an attractive design choice.

5.3.3 Priority-Based Speculation

Instead of prioritizing non-speculative requests by handling speculative ones in a

separate low-priority allocator and resolving conflicts externally, we can often achieve

the same goal with less overhead using a single priority-aware allocator.

For example, we can implement priority-aware separable allocators by replacing

each arbiter in the canonical designs shown in Figure 5.1 and Figure 5.2 with a multi-

priority arbiter as described in Section 2.6. Compared to implementing speculative

switch allocation using two separate allocators, effectively doubling the implemen-

tation cost, this introduces significantly less overhead. In particular, priority-based

speculation allows the arbiter state registers, which account for a substantial fraction

of the overall cost of the allocator, to be shared among both priority levels.

As priorities are enforced at each individual arbiter, priority-based speculation

exhibits slightly different performance characteristics than both the canonical and the

pessimistic implementations. E.g., in an input-first design, the input arbitration stage

can propagate at most a single request from each input port to the output stage; in

contrast, each input in the canonical design can propagate both a non-speculative and

a speculative request, improving its odds of receiving a grant. However, at the same

time, the priority-based implementation avoids cases where a given input receives

grants for different outputs from the non-speculative and the speculative allocator,

leaving the speculative crossbar assignment unused.

In principle, we can apply the same approach to wavefront-based switch allocators;

however, in practice, implementing a multi-priority wavefront allocator essentially
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involves performing two successive rounds of wavefront allocation6. The substantial

associated delay increase typically makes such designs unattractive for NoC routers.

5.4 Combined VC and Switch Allocation

A canonical VC allocator as described in Chapter 4 is capable of assigning a new

output VC to every input VCs in any given cycle. However, when using speculative

switch allocation as described in the previous section, at most one of the input VCs

can also receive a grant from the switch allocator and thus begin crossbar traversal;

any additional output VC assignments made have no immediate effect on through-

put7. While over-provisioning VC allocation bandwidth in this manner minimizes

the likelihood of mis-speculation, this is achieved at the cost of the VC allocator’s

substantial logic complexity.

Based on the insight that only a single VC assignment per input port is required in

order to be able to sustain full throughput, we can achieve the performance benefits

afforded by speculative switch allocation in a more efficient way by assigning both

VCs and crossbar time slots using a combined VC and switch allocator. Eliminating

the dedicated VC allocator shortens the router’s critical path and significantly reduces

its cost and complexity.

We can implement combined allocation by building on the basic structure of a

speculative switch allocator and introducing additional logic for assigning VCs based

on the generated grants. Allocation for body and tail flits is performed in the same

way as when using separate VC and switch allocators. Head flits similarly issue

requests to the combined allocator; each winning head flit is implicitly granted the

next available output VC for its selected packet class at the assigned destination port.

If no suitable VC with at least one credit is available, allocation must be attempted

again in the next cycle; the same is true for any head flits that fail to receive a

grant. As such, only those head flits that can immediately begin crossbar traversal

6 In particular, unlike for arbiters, it is not possible to compute the grants for the different priority
levels in parallel, as the set of grants for any given level depends on each individual higher-level grant.

7 They can, however, indirectly improve throughput in the presence of congestion, as subsequent
requests from the assignees will no longer be speculative.



76 CHAPTER 5. SWITCH ALLOCATION

are assigned an output VC; conversely, only head flits that have not yet been assigned

an output VC participate in allocation8.

As any grants issued to head flits may subsequently need to be discarded if all

suitable output VCs are found to be in use or to not have credits available9, it is

necessary to prioritize requests from body and tail flits in order to avoid potential

performance degradation; this mirrors the handling of non-speculative requests in

speculative switch allocation. As a side benefit, this prioritization scheme also reduces

unnecessary packet fragmentation: Once a packet’s head flit has been granted an

output port, another packet will only be granted the same output while the first

packet is still active if it either temporarily exhausts its supply of body and tail

flits—e.g., as a result of earlier fragmentation—or experiences a credit stall. In both

cases, interleaving packets is necessary to avoid throughput degradation.

While prior research has proposed the use of a FIFO queue per packet class at

each output port to track the next available output VCs for each class [47,62], we find

that we can implement the same functionality in a more efficient way by replacing

each queue with a simple round-robin arbiter10: The input to each arbiter is a bit

mask that indicates which—if any—of the output VCs assigned to a particular class

are currently not assigned to an input VC and have at least one credit available; its

output corresponds to the next VC for each class to assign to a requesting head flit.

Because these arbiters operate in parallel with switch allocation, they do not increase

the router’s critical path delay.

In a baseline router that performs VC and switch allocation separately, a fair VC

allocator can partially mitigate fairness issues inherent in the design of the switch

8 This differs from speculative switch allocation, where a head flit that is granted an output VC
but no crossbar time slot becomes non-speculative.

9 In the general case, it is not feasible to ascertain availability of a suitable output VC at the
beginning of allocation due to timing constraints. While one might imagine using input-side proxy
registers that track for each output port and packet class whether at least one VC is available, such
an approach would incur significant overhead as every input port would have to track all possible
packet classes for all output ports concurrently.

10 In principle, we could further reduce complexity by using fixed-priority arbiters as described
in Section 2.2 to perform VC selection; however, this concentrates load on the minimum required
number of VCs and thus leads to increased packet latency. In contrast, round-robin arbiters lead to
more evenly balanced load across all available VCs.
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allocator; this is because any newly arriving head flits either have to undergo VC

allocation before competing for crossbar access (in a purely non-speculative imple-

mentation) or have lower priority during switch allocation than any flits that have

already been assigned an output VC (in a speculative implementation). With com-

bined allocation, on the other hand, head flits that fail to secure access to the crossbar

are not assigned an output VC and must thus re-attempt switch allocation with the

same priority as newly arriving head flits. This can exacerbate the starvation effects

that cause unstable network behavior when the load is increased beyond the satu-

ration point [20]. As a result of the fairness issues described in Section 3.3.1, this

effectively renders wavefront-based switch allocators unattractive for use in combined

allocation.

5.5 Evaluation

In this section, we compare the performance of the allocator designs described in

Section 5.2, and we evaluate the different implementation alternatives for speculative

switch allocation outlined in Section 5.3, as well combined VC and switch allocation

as described in the preceding section.

5.5.1 Experimental Setup

We employ the same methodology for evaluating switch allocator implementations

that we used for VC allocators in Section 4.4; i.e., we first compare matching quality

for individual allocator instances, then evaluate network-level performance, and finally

investigate implementation cost and delay.

In order to be able to present meaningful results for combined VC and switch

allocation, we furthermore synthesize complete router instances. Based on the results

from Chapter 4, we use separable input-first VC allocators and employ sparse VC al-

location for all configurations that do not employ combined VC and switch allocation.

Furthermore, we allow synthesis to optimize switch allocator and crossbar by taking

advantage of turn restrictions imposed by the routing function where applicable.
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5.5.2 Matching Quality

Figure 5.6 illustrates the matching quality of separable input-first, separable output-

first and wavefront-based switch allocators as a function of the average rate at which

each individual VC generates requests. We consider the corresponding configurations

to those shown in Figure 4.5. Unlike VC allocators, switch allocators are not affected

by the division of VCs into packet classes.

The shaded area in each graph represents the range of possible matching cardi-

nalities, with an upper limit given by the performance of a maximum-size allocator.

Because all V VCs at any given input port share a single crossbar input, the average

grant rate across all VCs is inherently limited to V −1 grants per VC per cycle.

Dashed lines indicate the maximum request rate per VC that can be sustained in

the absence of congestion, which corresponds to a new flit arriving at each input port

in every cycle; this represents a measure for the maximum instantaneous load on the

switch allocator. However, it does not represent a limit for steady-state operation: As

a result of congestion, multiple VCs at an input port may have buffered flits and thus

issue requests to the switch allocator at the same time. Because only one of these

requests can be granted in any given cycle, at most one VC at a time can become

inactive; at the same time, a new flit may arrive at the input port and either cause an

additional VC to become active or prevent a VC that received a grant from becoming

inactive. Thus, regardless of how many VCs were active in one cycle, it is possible

for the total number of active VCs—and hence, requests—to remain the same in the

next cycle regardless of whether a grant was received. Any given load on the switch

allocator can therefore be sustained indefinitely once congestion has built up.

As in the case of VC allocation, all three allocator variants yield near-maximum

matchings at low request rates where conflicts are unlikely, and differences in matching

quality become more pronounced as the number of VCs and the average request rate

per VC increase. The number of VCs limits the maximum number of outputs that any

given input port can request, and the combination of both quantities thus determines

the average density of the the generated request matrices.

For a fully populated request matrix, any maximal matching is also a maximum
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Figure 5.6: Switch allocator matching quality.
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matching; however, as the number of zero elements in the matrix increases, the like-

lihood of any given maximal matching also being a maximum matching decreases.

Statistically, if each VC issues a request in every cycle, the expected number of VCs

necessary to ensure that the combination of their requests includes each of the P

output ports—and thus, that the request matrix is fully populated—is given by the

following expression11:

Vmin = P ×
P∑

i=1

1

i
(5.1)

Evaluating for P = 5, we find that the expected number of VCs necessary to ensure

a fully populated request matrix is Vmin = 11.42. Thus, the wavefront allocator’s

matching quality remains below that of a maximum-size allocator for all three con-

figurations we consider.

The separable input-first switch allocator eventually becomes limited by the fact

that it can only propagate a single request per input port to the output arbitration

stage; as such, once the probability psat = 1 − (1 − preq)
V that at least one VC per

input port has a flit available in any given cycle approaches one, further increases in

the request rate preq do not lead to additional grants.

In contrast, as the separable output-first implementation propagates all input-

side requests, it continues to generate more grants as the request rate approaches its

maximum; however, due to the allocation inefficiencies described in Section 3.2, its

matching quality remains below that of the wavefront-based implementation.

Results for configurations with ten input ports exhibit the same overall charac-

teristics; however, when comparing configurations with the same number of VCs, the

differences between the wavefront-based implementation on the one hand and the

separable implementations on the other hand are slightly more pronounced, while the

differences between the two separable implementation variants are less pronounced.

We omit the corresponding figures in the interest of brevity.
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Figure 5.7: Impact of switch allocation on saturation throughput.
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5.5.3 Network-Level Performance

We first compare the performance of different allocator types using a non-speculative

router implementation. Figure 5.7 shows the saturation throughput for individual

synthetic traffic patterns. We present results for two network configurations with

multiple VCs assigned to each traffic class; configurations where the total number of

VCs is significantly smaller than the number of ports generally yield only minimal

performance differences between allocator types, as the resulting request matrices

are only sparsely populated. We omit detailed latency results as all three allocator

variants exhibit the same behavior under low load.

In the Mesh, shown in Figure 5.7a, differences in matching quality between the

different allocator implementations have minimal impact on overall network perfor-

mance. This is primarily a result of routing restrictions, as the use of Dimension-Order

Routing (DOR) results in an uneven distribution of output port requests: Because

packets are only allowed to turn at the end of each dimension traversal, the vast ma-

jority of flits arriving at a given input port request the output port on the opposite

side of the router. This leads to a sparsely populated request matrix, which—as we

saw in Section 5.5.2—allows all three allocator variants to produce a near-maximum

matching. Uniform Random (UR) traffic yields the biggest performance difference

(3%), as output port requests from different packets are least correlated in this pat-

tern.

In contrast, using a wavefront-based allocator noticeably improves saturation

throughput for the Flattened Butterfly (FBfly), as shown in Figure 5.7b. In FBfly

networks, packets change their direction of travel after every hop and select an out-

put port based on their destination coordinate in a given dimension; as such, requests

are more evenly distributed across output ports than in the case of the Mesh. The

performance differences are most pronounced for benign traffic, including the UR

(11%) and Nearest Neighbor (NN) patterns (7 %); the remaining adversarial traffic

patterns exhibit smaller differences. This is because throughput for minimally routed

traffic in these cases is limited by oversubscribed network channels; only the fraction

11 Note that each VC selects a random output in our experiment.
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of traffic that is adaptively routed through a random intermediate destination bene-

fits from the wavefront allocator’s higher matching quality. Nevertheless, the average

improvement across traffic patterns is close to 6 %.

Figure 5.8 compares the efficacy of the speculation mechanisms described in Sec-

tion 5.3 in a Mesh network. Results for FBfly networks follow the same trends;

however, the reduction in zero-load latency is less pronounced as a result of the lower

network diameter. We use separable input-first allocation and present detailed results

for UR traffic; however, our qualitative observations hold for other switch allocators

and synthetic traffic patterns.

Simulation results confirm that all three speculation schemes exhibit similar char-

acteristics for low to medium levels of network load. In particular, they all reduce

zero-load latency by 21% compared to a purely non-speculative router design. With

two VCs, speculation improves saturation throughput by 3%, with minimal differ-

ences between the three speculation variants. As the number of VCs is increased

to four, the performance of the pessimistic scheme and the priority-based scheme

under heavy load approaches that of the non-speculative implementation. This is a

result of speculative grants being eliminated by non-speculative requests that later

fail to produce a grant. However, the throughput loss compared to the canonical

implementation is smaller than 2%.

Overall, the improvements in saturation rate by themselves would likely not suffice

to justify the complexity increase incurred by speculative switch allocation; however,

the substantial reduction in latency at low to medium load is of significant benefit to

many common applications of NoCs [81].

Finally, we evaluate the performance of combined VC and switch allocation. Fig-

ure 5.9 shows the load-latency diagram for a Mesh with two VCs. We prioritize

requests from body and tail flits using the same basic mechanism as described in

Section 5.3.3, and we compare the resulting performance to that of a non-speculative

implementation, as well as to that of a priority-based speculative switch allocator.

All design points are implemented as separable input-first allocators.

At low to medium network load, combined allocation yields the same latency

improvement as speculation, as both effectively reduce the pipeline delay incurred at
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(a) Mesh, 2VCs.
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Figure 5.8: Impact of speculative switch allocation on packet latency for UR traffic.
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Figure 5.9: Impact of combined allocation on packet latency for Mesh (UR traffic).

each hop by one cycle. However, as network load continues to increase, the quality

of allocation degrades and the saturation rate for combined allocation is reduced by

3% and 5 % compared to the non-speculative and the speculative implementation,

respectively.

This throughput degradation is primarily caused by an increase in unproductive

requests at high load: Because body and tail flits are given priority over head flits,

any newly arriving head flits whose destination port has body and tail flits waiting to

be transmitted are queued. Once the last body or tail flit destined for a given output

port is forwarded, all queued head flits that are waiting for that port compete for

access in the next cycle. However, because a combined allocator does not assign an

output VC to a head flit until after it wins allocation, we cannot eliminate requests

for which no available downstream VC exists a priori; thus, under heavy load, there

is an increased probability that a grant generated for one head flit will have to be

discarded even though a suitable VC would have been available for another head flit.

In a canonical implementation that uses separate VC and switch allocators, specu-

lative requests are in principle prone to the same effect. However, in such designs, any
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Figure 5.10: Minimum cycle time for switch allocator implementations.

buffered head flit can be assigned an output VC—and thus become non-speculative—

without securing crossbar access first. Thus, as a result of over-provisioned VC allo-

cator bandwidth (cf. Section 5.4), the number of speculative—and thus potentially

unproductive—requests at high network load is smaller compared to combined allo-

cation.

5.5.4 Delay and Cost

Figure 5.10 compares the minimum cycle time for different switch allocator imple-

mentations across a range of design points. We first focus on non-speculative imple-

mentations.

As in the case of VC allocation, the separable input-first implementation yields

the lowest delay for all configurations, outperforming the separable output-first im-

plementation by 12–23% and the fastest wavefront-based implementation.

Despite its associated overhead, the replication-based wavefront allocator can op-

erate at a lower minimum cycle time than both the unrolled and the rotation based
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Figure 5.11: Area-delay trade-off for switch allocator implementations.

ones. For the five-port configurations, its delay exceeds that of the separable input-

first allocator by 6–17%; however, due to its inferior scaling behavior, the delay

increase grows to 45–50% when using ten ports. As such, despite its associated im-

provements in saturation rate, using a wavefront-based switch allocator in an FBfly

is only attractive if external constraints impose a sufficiently long cycle time.

The minimum cycle times for both separable implementations closely match those

for the corresponding VC allocator implementations if the optimizations described in

Section 4.3 are applied. For the wavefront-based implementations, this is only true for

the configurations with five ports; for the two larger design points, the VC allocator

has significantly higher delay. This is explained in part by the fact that wavefront-

based VC allocators cannot exploit restrictions in transitions between resource classes

(cf. Section 4.3).

The area-delay trade-off—shown in Figure 5.11 for a five-port configuration with

two VCs—largely reflects the trends established by the results for minimum cycle

time; in particular, except for target cycle times greater than 45FO4, the order of
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Figure 5.12: Minimum cycle time for speculation implementations.

implementations in terms of area efficiency is the same as that for delay, primarily

as a result of gate sizing that synthesis must perform in order to meed timing con-

straints. Results for larger configurations as well as for Power-Delay Product (PDP)

are qualitatively similar.

Figure 5.12 illustrates the delay impact of implementing speculative switch al-

location; in particular, we compare implementations based on separable input-first

allocation. The results for the non-speculative baseline implementation are identical

to the ones shown in Figure 5.10.

Pessimistic speculation yields a delay reduction of up to 8% compared to the

canonical design, and it incurs an average delay increase of 7% over the non-speculative

implementation. Priority-based speculation incurs a slight delay increase at the small-

est design point, but otherwise yields equal or better delay compared to the canonical

implementation.

Figure 5.13 shows the trade-off between target cycle time and cell area for the

five-port configuration with two VCs. While the pessimistic implementation and the

canonical implementation exhibit similar characteristics when delay constraints are
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Figure 5.13: Area-delay trade-off for speculation implementations.

sufficiently loose to allow for the use of minimum-size gates, the pessimistic imple-

mentation requires less gate resizing to achieve more stringent delay constraints, and

thus gradually becomes more area-efficient than the canonical implementation as the

target cycle time decreases. Both require substantially more area than the priority-

based implementation, as arbiter state is essentially replicated for the speculative

and the non-speculative parts of the design. At target cycle times exceeding 25 FO4,

sharing arbiter state allows the priority-based implementation to reduce area by 30%

compared to the canonical and pessimistic designs; compared to the non-speculative

baseline, on the other hand, priority-based speculation incurs an area overhead of

around 50%. For more aggressive cycle times, the necessary gate resizing to meet

timing constraints causes the cell area of the priority-based implementation to ap-

proach that of the pessimistic one.

To conclude our evaluation, we synthesize complete router instances. In addition

to enabling us to evaluate combined VC and switch allocation, this allows us to more

accurately capture the effects of peripheral logic required for generating requests and
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Figure 5.14: Area-delay trade-off for complete router instances.
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updating VC state in response to grants, and to consider interactions between VC

and switch allocation.

Figure 5.14 shows the area-delay trade-off for a non-speculative baseline router,

router instances using the three variants of speculative switch allocation described in

Section 5.3, as well as a router using combined VC and switch allocation as described

in Section 5.4. All implementations—including VC allocators where applicable—are

based on separable input-first allocators. We consider two configurations: A five-port

router with two VCs—one per message class—as used in typical Mesh networks, as

well as a router configuration with ten ports and four VCs that is representative of

FBfly networks. As in the case of individual allocator instances, PDP results are

largely consistent with the qualitative observations for area.

For both design points, pessimistic and priority-based speculation are both faster

and more area-efficient than the canonical implementation. Priority-based specula-

tion has a slight area advantage because fewer registers are used to maintain arbiter

state; however, the difference between the two designs is small compared to the total

area of the router. In contrast, by eliminating the dedicated VC allocator, the use

of combined VC and switch allocation substantially reduces the router’s overall cell

area.

For the Mesh, pessimistic and priority-based speculation both improve delay by

14% compared to the canonical implementation. Combined allocation achieves the

same minimum delay while reducing overall router area by 13% and 17%, respec-

tively. All three cases incur a 7% delay penalty compared to the non-speculative

implementation.

In the FBfly configuration, combined allocation allows the router to achieve clock

frequencies of up to 1GHz; the corresponding cycle time (29FO4) represents a 10%

reduction compared to the fastest speculative design overall, and a 36% reduction

compared to the fastest speculative design with the same area. Furthermore, at the

maximum target frequency, combined allocation reduces the router’s overall cell area

by 9% compared to the non-speculative baseline implementation.

Due to the VC allocator’s scaling behavior (cf. Section 4.3), increasing the number

of VCs by assigning additional VCs to each packet class further increases the delay
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and area benefits afforded by combined allocation; we omit detailed results in the

interest of brevity.

5.6 Related Work

Speculative switch allocation as a means of improving network performance was orig-

inally proposed by Peh and Dally [76,77]. In particular, these contributions describe

the canonical implementation outlined in Section 5.3.1. The authors present an an-

alytical delay model for a separable implementation, but do not investigate area or

power; since the model does not account for wire delay, its results are overly optimistic

for modern process technologies.

Mukherjee et al [61] compare the performance of several switch allocator imple-

mentations in the context of a system-level interconnection network. Their study

assumes that routers are deeply pipelined, and two of the allocators considered re-

quire multiple cycles to produce each matching; both factors would be undesirable in

latency-sensitive NoCs. Furthermore, the different allocators are compared purely in

terms of network performance; in particular, the analysis does not consider area or

power, both of which represent first-class design considerations in NoCs.

Mullins et al. [62] reduce the pipeline latency of a VC router by precomput-

ing arbitration decisions in a separable allocator one cycle in advance. While this

scheme effectively removes the switch allocation stage from the router’s critical path

for buffered flits, it is less effective in the absence of congestion, as conflicts between

newly arriving flits can result in unused crossbar time slots.

The row/column decoupled router introduced by Kim et al. [46] features an ef-

ficient mirror allocation scheme; however, this scheme is not directly applicable to

generic router designs.

Kumar et al. [47] describe a scheme for combined VC and switch allocation that

dynamically transitions between input- and output-first operation based on network

load. Their design explicitly prioritizes subsequent flits from the same packet, and

uses FIFO queues to implement both input-side arbitration and VC selection.
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Park et al. [74] introduce a mechanism that prioritizes flits traveling along fre-

quently used paths in the network, as well as a method to allow such flits to bypass

the switch allocation pipeline stage entirely by sending arbitration requests ahead of

time.

Seo and Thottethodi [83] implement maximum-size allocation in minimally routed

Mesh networks using a lookup table of precomputed matchings. While table size can

be reduced by filtering requests and exploiting routing restrictions, the proposed

approach quickly becomes infeasible as the radix of the router grows. Furthermore,

an additional mechanism is required to mitigate starvation issues as described in

Section 3.4.

More recently, Ahn et al. [1] and Michelogiannakis et al. [57, 58] have proposed

schemes that improve matching quality for separable switch allocators by reusing

crossbar connections for multiple successive flits, effectively allowing efficient match-

ings to build up incrementally. These efforts are complementary to the work presented

in this chapter.

5.7 Summary

In the present chapter, we have evaluated three exemplary switch allocator implemen-

tations and investigated several approaches for reducing the router’s pipeline delay.

Following the evaluation methodology established in Chapter 4, we compare match-

ing quality for individual allocator instances and find that wavefront allocation yields

superior matching in the presence of congestion, particularly for configurations with

large numbers of ports and VCs; in contrast to VC allocation, such congestion can

be sustained for indefinite periods of time if network load is high. Nevertheless,

simulation results for network-level performance indication that the improved match-

ing quality afforded by wavefront allocation does not translate to significant perfor-

mance improvements for Mesh networks. In contrast, for higher-radix networks like

the FBfly, wavefront allocation measurably improves throughput for benign traffic

if a sufficiently large number of VCs is used; in such cases, the use of a wavefront

allocator is particular attractive if externally imposed timing constraints mask its
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comparatively high delay.

In evaluating the network-level performance impact of speculative switch alloca-

tion, we find that a substantial reduction in latency stands in contrast to a merely

marginal improvement in saturation throughput. Based on the realization that the

impact of speculative switch allocation is most significant at low to medium network

load, we have developed two modified speculation mechanisms that improve delay,

area and energy efficiency compared to the canonical implementation at the cost of

a slight reduction in saturation throughput.

Combined allocation affords the same latency improvements as speculative switch

allocation, but reduces the router’s overall area requirements and critical path delay

by eliminating the dedicated VC allocator. However, this is achieved at the cost of a

further reduction in saturation throughput caused by allocation inefficiencies at high

load. Nevertheless, due to its low cost and delay, combined allocation—implemented

using separable input-first allocators with integrated priority support—represents an

attractive design choice for a wide variety of network configurations.



Chapter 6

Buffer Management

6.1 Overview

Proper buffer sizing and organization are essential to achieving optimal network per-

formance [40, 66, 80]. At the same time, input buffers account for a large fraction of

the overall area and power budget of typical Network-on-Chip (NoC) routers [15,39,

96,98]. Consequently, buffer resources must be utilized efficiently in order to achieve

good cost-performance trade-offs. To this end, prior research has proposed dynamic

buffer management schemes in which a pool of buffer slots is shared between Virtual

Channels (VCs) [47,66,75,90].

In the present chapter, we explore the key design parameters pertaining to the

organization and management of router input buffers and evaluate their effect on

network performance. We discuss important considerations in slicing and sizing input

buffers and compare different buffer management mechanisms in terms of their impact

on the router’s cost and performance.

6.2 Buffer Organization

We first discuss the high-level design trade-offs involved in choosing the appropriate

number and depth of VCs that the buffer is divided into and briefly outline how these

choices affect network performance.

95
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6.2.1 Number of VCs

VCs serve dual purposes in interconnection networks: On the one hand, they enable

flits from different packets—even within a single flow—to bypass each other, e.g.

when one of them becomes blocked. Doing so reduces Head-of-Line (HoL) blocking

and improves channel utilization as well as overall network throughput. On the other

hand, different flows of traffic can be constrained in which subset of a network’s VCs

they are allowed to travel on; this provides a means of separating different flows of

traffic, which in turn can be used as the basis for implementing deadlock avoidance

schemes or Quality-of-Service (QoS) policies.

By enabling flits from one packet to pass other packets’ flits, VCs provide perfor-

mance benefits in the same way that adding dedicated turn lanes to an intersection

can improve the flow of traffic in street networks; in particular, they allow flits that

have become blocked due to contention elsewhere in the network to be bypassed by

other flits which are not directly affected by this contention, enabling them to make

use of channel bandwidth that would otherwise be left idle [17].

The number of VCs also directly determines the number of requests that are ex-

posed to the VC and switch allocator. The degree to which this affects network

performance varies with the topology and the characteristics of the routing function.

For example, in Flattened Butterfly (FBfly) networks [45], packets make turns at each

hop. Consequently, different packets stored in a given input buffer are likely to re-

quest different output ports, and therefore increasing the number of VCs increases the

average number of candidate output ports that a given input port can use. For allo-

cators whose matching efficiency improves with the number of exposed requests—e.g.

wavefront allocators (cf. Chapter 3)—the additional requests provide more freedom

in finding an optimal matching between inputs and outputs. However, this effect

reaches a point of diminishing returns once the number of active VCs becomes larger

than the number of output ports.

On the other hand, in Mesh networks using Dimension-Order Routing (DOR),

packets are more likely to continue traveling in the same direction than to take a turn

at any given router. Consequently, requests from different packets in a given input

buffer tend to be highly correlated, and therefore exposing additional requests is less
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likely to lead to an increase in the number of candidate output ports.

Different types of packets which are subject to interdependencies at the edge

of the network—e.g. request packets and the reply packets that they generate at

their destination—must be isolated from one another in order to prevent protocol

deadlock [20]. This is readily achieved by preventing the different types of pack-

ets from using the same VCs, effectively assigning VCs to different message classes.

The required number of messages classes—and, by extension, of VCs—depends on

the specifics of the communication protocol as well as implementation details of the

network interface.

Similarly, cyclic resource dependencies within the network, which can form e.g. as

a result of routing, can be prevented by further grouping VCs into different resource

classes, with transitions between the latter being restricted such as to enforce a partial

order of resource acquisition. As an example, this approach is used for deadlock-free

dateline routing in torus networks [20] and multi-phase routing algorithms such as

Valiant’s algorithm [94] or Universal Globally Adaptive Load-Balanced (UGAL) [87].

The required number of resource classes depends on the network topology and the

routing algorithm.

While increasing the number of VCs beyond the minimum number required to

achieve the desired deadlock avoidance properties generally leads to better perfor-

mance, it also increases router cost as each VC requires control logic, state and—in

the case of statically managed buffers—additional buffer space to satisfy minimum

capacity requirements. The number of VCs also directly affects the complexity of VC

allocation and therefore the router’s cost and, potentially, cycle time, as we explored

in Chapter 4.

6.2.2 Maximum VC Capacity

Network latency under modest load represents a critical performance metric for many

typical NoCs applications [81]. To minimize latency in the absence of significant

congestion, it is important to avoid other causes for stalls. in particular, in order

to avoid credit stalls,it is important for individual VCs to have enough buffer space
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available to cover the credit round-trip time. This allows flits from a single packet of

arbitrary length to be transmitted back-to-back without introducing fragmentation.

In cases where packet size is limited and known a priori, the same effect can be

achieved by making individual VCs deep enough to be able to hold an entire packet;

however, while this avoids credit stalls when transmitting a single packet at a time,

such stalls can still occur when transmitting a burst or continuous stream of back-to-

back packets. Unless a large enough number of VCs is available to cover the credit

round-trip delay with their aggregate capacity, this both increases packet latency and

reduces the achievable throughput.

As network load—and therefore congestion—increases, the capacity of individual

VCs becomes less important, as congestion leads to an increase in overall latency,

and therefore reduces the impact of fragmentation. Furthermore, in the presence of

multiple VCs with pending flits, any credit stalls incurred by one of them are unlikely

to affect throughput, as there is a high probability that another VC is ready to go;

thus, full throughput can be achieved as long as all VCs collectively have sufficient

capacity to cover the credit round-trip delay.

The total capacity across all VCs also limits the number of in-flight flits, and thus

the amount of contention that can be tolerated before back pressure must be applied

to the upstream router. Higher aggregate capacity allows temporary contention to be

contained at the local router, and thus reduces the incidence of tree saturation in the

network [78]. However, the same effect also reduces the stiffness of the flow control

feedback loop, which is undesirable for adaptive routing algorithms that rely on this

feedback for their routing decisions. Furthermore, for any given network load, there

is a point of diminishing returns beyond which additional increases in total capacity

simply reduce average buffer utilization without improving performance.

6.2.3 VC Reallocation Policy

Another key design parameter for buffer management is the policy governing the reuse

of VCs. Canonical router designs with statically partitioned input buffers typically

allow a VC to be reused by the next packet as soon as the previous packet’s tail flit
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has been sent. As a result, multiple packets may be queued up behind one another in

each VC, up to the limit of the VC’s capacity. This enables buffer configurations with

relatively few VCs to support a large number of in-flight packets. On the other hand,

because only the first packet in each VC participates in allocation, this approach

can increase HoL blocking by preventing subsequent packets from making forward

progress if the first packet becomes blocked.

In order to minimize HoL blocking, we can limit reuse such that each VC can hold

at most one packet at any given time [66]; this is referred to as atomic VC allocation.

In practice, atomic VC allocation is easily enforced by requiring all of a VC’s credits

to be returned to the upstream router before making it available for re-allocation.

The disadvantage of this scheme is that it inherently limits the number of in-flight

packets at each router input and output port to the number of VCs. Consequently,

it is best suited for configurations with many VCs.

Certain routing functions, notably those that rely on escape VCs for deadlock

avoidance, require VCs to be allocated atomically.

6.3 Static Buffer Management

As a result of the stringent timing constraints that the NoC environment typically

imposes, much prior work has opted to implement low-complexity buffer management

schemes which statically divide the available buffer space among all VCs.

While such schemes minimize control logic complexity, they are prone to buffer

under-utilization when network load is not evenly distributed across VCs. Further-

more, in order to avoid credit stalls, each VC individually must be assigned at least

enough buffer space to be able to cover the credit round-trip delay, causing buffer

requirements to scale linearly with the number of VCs while further reducing the av-

erage utilization factor. Consequently, such implementations typically only support

a modest number of VCs.

Statically managed buffers are readily implemented as circular buffers, with man-

agement logic essentially comprising a pair of index registers per VC that point to

the buffer locations which will be read from and written to next, respectively.
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For efficiency reasons, it is typically beneficial to consolidate storage for all VCs

into one large buffer structure instead of using a separate buffer for each VC. In a

standard cell implementation, this does not affect the delay for the buffer write and

read paths, as flits for all VCs at a given input port arrive through the same input

register and depart through the same crossbar port; as such, the larger buffer merely

subsumes external demultiplexing and multiplexing logic that is necessary in the case

of separate buffers per VC.

Credit tracking at the router’s output ports can be implemented as a set of coun-

ters that track the number of occupied buffer entries for each VC; counters are in-

cremented whenever a flit destined for a given VC wins switch allocation and decre-

mented in response to incoming credits from the downstream router. If the counter

for a given output VC reaches its maximum value, no further flits can be sent to that

VC until one or more credits return.

6.4 Dynamic Buffer Management

In practice, network load is typically not evenly distributed across all VCs. For

example, with request-reply traffic [4], both packet classes consist of one short—read

requests and write replies—and one long—read replies and write requests—packet

type; however, many common workloads generate more read transactions than write

transactions. As a result, the VCs assigned to the packet class used by replies tend

to see a higher effective load than those carrying requests. Similarly, for multi-phase

routing algorithms like UGAL [87] or dateline routing, network traffic tends to be

unevenly distributed across the corresponding resource classes.

Dynamic buffer management schemes improve buffer utilization in such scenarios

by allowing available buffer space to be shared among VCs. This offers several key

advantages over static approaches:

• Assigning buffer space to VCs based on demand increases the average buffer

utilization and thus facilitates more efficient use of expensive buffer resources.
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• Furthermore, by decoupling flit storage from VCs, the differential cost of in-

creasing the number of VCs is reduced. As a result, a dynamically managed

input buffer of a given size can support more VCs—as many as one per buffer

entry—than would be feasible with static partitioning.

• Finally, dynamic buffer management allows the effective number and depth of

VCs to vary based on network conditions. Specifically, at low network load, a

dynamically managed buffer can provide a small number of active VCs that are

each sufficiently deep to cover the credit round-trip delay, whereas at high load,

the same buffer can accommodate a multitude of shallow VCs that collectively

reduce HoL blocking [66,80].

Together, these benefits allow a dynamically managed buffer to either improve

performance for a given buffer size or achieve comparable performance to a statically

partitioned buffer at lower cost; for example, Nicopoulos et al. [66] report up to 25%

higher performance or up to 50% reduction in buffer size for a 64-node mesh network.

6.4.1 Implementation

Prior research has proposed several implementation alternatives for dynamically man-

aged router input buffers. From a functional perspective, all variants exhibit the same

overall behavior: They manage multiple variable-length queues—one per VC in our

case—and allow flits to be removed from the head or added to the tail of each. How-

ever, the individual variants differ in how the order of flits is preserved within each

queue. Practical designs largely fall into three major categories:

Linked-list based [90]: Tamir and Frazier initially proposed a design that uses a

hardware linked-list implementation to track the order of flits and their assign-

ment to different queues in the buffer. In such implementations, each queue

maintains a head and tail pointer into the buffer, and flit order is established by

adding a successor pointer to each buffer entry1. A separate list tracks the set

of currently unused buffer slots which are dispensed to arriving flits on demand.

1 In practice, these successor pointers are typically stored in a separate array, as appending them
to the flit buffer entries directly necessitates the inclusion of a second write port.
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Table-based [47,66]: In order to avoid the control logic necessary to update suc-

cessor pointers, a second implementation variant stores pointers to each VC’s

individual in-flight flits in a packet table; unoccupied buffer entries are tracked

using a bit mask. While this approach simplifies flit insertion and removal, it

increases the total number of pointer registers, as each table entry must include

enough pointers to accommodate the maximum capacity for an individual VC2.

Conversely, the fixed table entry size limits buffer occupancy for individual VCs,

reducing overall flexibility.

Self-compacting buffers [52,65,75]: A third approach eliminates the need to main-

tain pointers to all buffer entries by storing each individual VC’s flits in a con-

tiguous buffer region in order of arrival and moving unoccupied entries to the

top of the buffer. Every time a flit arrives at (departs from) the buffer, all occu-

pied buffer entries above the point of insertion (removal) are shifted up (down)

to ensure that the buffer regions assigned to individual VC remain contigu-

ous. Under high load, when buffer occupancy is high, this leads to substantial

dynamic power overhead; as a result, self-compacting buffers generally do not

represent an attractive design choice for the power-constrained NoC environ-

ment, and we exclude them from further consideration in the remainder of this

chapter.

If buffer space is shared freely, we can track credits using a single counter at each

output port. However, as we will see in Section 6.5, practical implementations typi-

cally impose additional constraints on the distribution of buffer slots among queues.

In such cases, it is generally necessary to provide individual occupancy counters for

each downstream VC as in the statically partitioned case, as well as a separate counter

for the total number of shared buffer slots that are currently occupied.
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Table 6.1: Buffer management implementation cost.

Description Static Linked-list Packet table

Buffer control
VC pointers 2×V ×⌈log2(⌊B/V ⌋)⌉ 2×V ×⌈log2(B)⌉ 2×V ×⌈log2(P )⌉
Flags V V V
Free pointers – 2×⌈log2(B)⌉ –
Free mask – – B
Buffer pointers – B×⌈log2(B)⌉ –
Output VC state
Busy/empty flags 2×V 2×V 2×V
VC counters V ×⌈log2(⌊B/V ⌋)⌉ V ×⌈log2(B)⌉ V ×⌈log2(P )⌉
Free counter – ⌈log2(B)⌉ ⌈log2(B)⌉

6.4.2 Overhead

Table 6.1 shows a breakdown of the implementation overhead for the different buffer

management schemes as a function of the buffer size (B), the number of VCs (V ) and

the maximum packet length (P ). In addition to the cost of the buffer control logic

itself, we include the cost of the output-side VC state and credit tracking mechanism.

As a concrete example, Figure 6.1 compares the overhead for a 16-entry buffer

with 64-bit flits and a maximum packet length of six flits; the white segments at the

bottom of each bar correspond to the number of registers required for the actual flit

buffer.

With a maximum packet length of six flits, the configuration with two VCs does

not represent a feasible design point for the table-based buffer management scheme:

The packet table only provides enough pointers to map twelve of the sixteen avail-

able buffer entries, leaving four entries unusable. For the remaining feasible design

points, on the other hand, the linked-list based implementation consistently incurs

less overhead; as such, we will use the latter mechanism throughout the remainder of

this dissertation.

2 Note that the primary benefit of dynamic buffer management is to allow each individual VC to
use more than its fair share of the buffer’s total capacity.
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Figure 6.1: Buffer management overhead for a 16-entry buffer.

6.5 Deadlock Avoidance

Without additional restrictions, buffer sharing can allow cyclic dependencies to form

between VCs and buffer slots when multiple packets are interleaved, resulting in net-

work deadlock. Figure 6.2 shows an example of a deadlocked configuration involving

two routers. For simplicity, we assume that each router input buffer has a capacity

of two flits and can support up to two VCs; however, similar examples can be con-

structed for most reasonable network configurations with larger buffers or more VCs.

In the depicted example, the flits from packets A and B have traveled from the

upper router’s western and eastern input, respectively, to the lower router’s northern

input, acquiring VCs on the way as indicated by the inscribed circles. Subsequently,

packet interleaving has allowed flits from packets C and D to each acquire a VC at

the upper router and to fill up all available buffer slots there, preventing additional

flits from packets A and B from entering this router. Even after the two initial

flits from packets A and B leave the lower router and relinquish the buffer at its

northern input, packets C and D are unable to proceed as both VCs at the lower

router are still occupied by packets A and B . The remaining flits from packets
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Figure 6.2: Buffer sharing causes interleaving deadlock.
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A and B are also unable to make progress, as all buffer space at the upper router

is occupied by packets C and D . Since the VCs at the lower router can only be

freed after all remaining flits from packets A and B have passed through, a cyclic

dependency has formed and the network has become deadlocked.

We can avoid interleaving deadlock in a straightforward manner by statically

reserving at least one buffer slot for each VC. This guarantees that body and tail

flits from one packet can bypass flits from other packets in order to catch up to their

respective predecessor flit. Since each VC is able to make forward progress, protocol

and routing deadlock avoidance can be implemented in the same way as for a statically

managed buffer.

However, for configurations with large numbers of VCs, statically reserving buffer

slots for all VCs significantly reduces the amount of buffer space that is available

for sharing, relinquishing some of the utilization benefits that dynamic buffer man-

agement provides. For such configurations, we can avoid interleaving deadlock in a

more space-efficient manner by exploiting the fact that buffer space needs to be re-

served for a given packet if and only if some but not all of its flits have been sent

downstream. Consequently, interleaving deadlock can be prevented by dynamically

reserving a buffer slot for a given VC whenever a head flit is sent to it and releasing

it once the corresponding tail flit is sent. In this way, buffer space is only reserved for

as long as a packet is in flight, and otherwise remains available to other VCs.

When employing this dynamic reservation scheme, a VC that does not currently

have any buffer space assigned is unable to accept any new flits if all shared buffer

slots are in use by other VCs. Thus, in order to avoid protocol and routing deadlock,

we must not only constrain the set of VCs that a given packet is allowed to use based

on its message and resource class as outlined in Section 6.2.1, but also ensure that

each class has buffer space available at all times. This is easily achieved by statically

reserving one buffer entry for the range of VCs assigned to each message and resource

class. Because the number of such classes required for deadlock avoidance in practice

tends to be much smaller than the number of available buffer entries, such reservations

do not significantly reduce the amount of buffer space that can be shared among

VCs.
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6.6 Evaluation

6.6.1 Experimental Setup

As in previous chapters, we evaluate network performance for different buffer config-

urations using a modified version of the BookSim 2.0 interconnection network simu-

lator.

We model memory traffic that comprises request and reply packets for both read

and write transactions. Read requests and write replies consist of a single head flit,

followed by an additional flit which carries the memory address being accessed. Read

replies and write requests additionally carry four flits containing payload data. Nodes

generate traffic with a 2:1 ratio of read requests to write requests.

Nodes inject request packets into the network according to a Bernoulli process

with configurable arrival rate. Upon reaching their destination node, requests trigger

injection of a corresponding reply packet in the next cycle, which then proceeds back

to the source node. Injection of replies takes priority over the injection of new request

packets.

To evaluate network performance both under benign and under adversarial load

conditions, we select destinations for request packets according to a set of syn-

thetic traffic patterns including Bit Complement (BC), Bit Reverse (BR), Nearest

Neighbor (NN), Shuffle (SH), Tornado (TO), Transpose (TR) and Uniform Ran-

dom (UR) [20]. Throughput numbers correspond to the effective throughput for the

specified traffic pattern, which is given by the minimum measured throughput across

all source-destination pairs in the pattern. Packet latency is measured from the time

at which a packet is placed in the injection queue to the time at which its tail flit is

ejected from the network; i.e., reported latencies include source queuing delay.

We consider two exemplary 64-node network topologies: A Mesh network with

8×8 routers, each of which connects to a single node, as well as a two-dimensional

FBfly [45] with four nodes per router. Network channels have a delay of a single

cycle for the Mesh and between two and six cycles for the FBfly; ingress and egress

channels in both topologies have a delay of one cycle. The Mesh uses DOR, while

the FBfly uses UGAL routing [87].
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Both networks use input-queued routers and VC flow control. The router pipelines

comprise two stages: The first pipeline stage implements combined VC and switch

allocation as described in Section 5.4, while the second one is reserved for crossbar

traversal. Lookahead routing [28] removes the need for a dedicated routing stage.

After a credit arrives at a router, processing and internal signal propagation cause

an additional two-cycle delay before the associated buffer slot becomes visible to the

switch allocator.

We consider the following three buffer management schemes in our evaluation:

Static: The available buffer capacity is evenly divided among all VCs.

Hybrid: One buffer slot is statically assigned to each VC for deadlock avoidance,

while the remaining buffer slots are shared among all VCs. As the reserved

buffer slots logically correspond to a statically partitioned subset of the buffer,

this effectively represents a hybrid of the two remaining schemes.

Dynamic: Buffer slots are shared among all VCs, and one slot is retained by each

active VC as described in Section 6.5. In addition, in order to prevent protocol

and routing deadlock, we statically reserve a single buffer slot for the range of

VCs assigned to each message and resource class.

Unless otherwise noted, we allow each VC to be assigned to a new packet as

soon as the previous packet’s tail flit enters the crossbar traversal stage; Section 6.6.3

explores the performance impact of using atomic VC allocation.

6.6.2 Cost-Performance Trade-offs

Figure 6.3 illustrates the trade-off between buffer implementation cost and saturation

throughput. Individual curves correspond to different buffer sizes as annotated. The

first data point in each curve corresponds to a configuration with two VCs; each

additional data point represents a doubling of the number of VC. Buffer cost is

determined by computing the total number of registers required for flit storage and

adding buffer management overhead as described in Table 6.1. We show results for

UR traffic as an example of a benign traffic pattern (Figure 6.3a), as well as for the
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(a) UR traffic.
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(b) Harmonic mean across traffic patterns.

Figure 6.3: Cost-performance trade-offs for Mesh.
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harmonic mean of saturation rates across all simulated traffic patterns (Figure 6.3b).

Results for other individual traffic patterns are largely consistent with our qualitative

observations. All reported cost numbers assume a flit width of 64 bits.

In order to minimize latency in the absence of congestion, we are particularly

interested in configurations that provide sufficiently large maximum VC capacities

to allow individual packets to be transferred without credit stalls; i.e., the maximum

capacity for an individual VC must exceed the maximum packet size or the credit

round-trip time, whichever is smaller. Design points that fail to meet this requirement

are designated by unfilled markers and dashed lines in Figure 6.3; these design points

generally exhibit increased latency at low to medium injection rates as a result of

packet fragmentation.

Overall, results for UR traffic—shown in Figure 6.3a—and for the mean across

all considered traffic patterns exhibit largely similar behavior; in particular, in both

cases, the two dynamically managed configurations of a given buffer size yield compa-

rable performance to the next larger statically partitioned buffer configuration: When

comparing configurations with the same number of VCs, a 12-entry dynamically man-

aged buffer yields comparable performance to a 16-entry statically partitioned buffer

while reducing implementation cost by up to 22%, while an 8-entry shared buffer

outperforms a 39% more expensive statically managed one with 12 entries.

For buffer implementations with a given capacity, dynamic buffer management

is particularly beneficial when the overall buffer size is small. For example, with a

capacity of eight entries, dynamic buffer management improves the maximum achiev-

able saturation throughput for UR traffic across VC configurations by 33% while

increasing buffer cost by 20 %; alternatively, by choosing the same number of VCs as

in the static configuration, the difference in buffer cost can be reduced to 11% while

maintaining a performance advantage in excess of 30%.

As the buffer size increases, credit stalls become less frequent and thus have less

impact on overall network performance. However, sharing can be attractive even for

large buffers if external constraints necessitate the use of a large number of VCs;

in particular, dynamic buffer management is beneficial if the maximum capacity for

individual VCs—i.e., the buffer size divided by the number of VCs in the case of
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a statically partitioned buffer—falls below the value necessary to support back-to-

back transmission of flits from the same packet; such configurations are indicated by

unfilled markers and dashed lines in Figure 6.3.

For a statically partitioned buffer, increasing the number of VCs for a given buffer

size reduces each VC’s maximum capacity proportionally; as such, VC configurations

represent different trade-offs between zero-load latency—which favors deeper VCs—

and saturation throughput—which favors more, shallower VCs. In contrast, for buffer

sharing with dynamic reservations, increasing the number of VCs does not incur a

latency penalty. However, beyond a relatively small number of VCs, the differential

performance gains are generally smaller than the associated increase in buffer cost3.

The hybrid implementation with static reservations exhibits performance character-

istics that are close to those for the fully dynamic implementation when the number

of VCs is relatively small. As more VCs are added, the total amount of buffer space

that is reserved for individual VCs continues to increase, leaving fewer buffer entries

available for sharing among VCs; consequently, the performance approaches that of

the statically partitioned implementation4.

Figure 6.4 and Figure 6.5 illustrate the effect of the number of VCs on zero-

load latency for a Mesh with 16-entry input buffers: All configurations for which the

effective maximum capacity for each VC suffices to avoid incurring credit stalls under

low load—as indicated by the dashed line in Figure 6.4—yield the same zero-load

latency. For the static scheme, increasing the number of VCs quickly reduces the per-

VC capacity below this level, causing zero-load latency to increase as capacity drops

further. The effect is less pronounced for the hybrid scheme, as each additional VC

only reduces the number of shared buffer slots by one. In contrast, per-VC capacity—

and hence, latency—remains unchanged as the number of VCs is increased in the fully

dynamic configuration. Overall, dynamic buffer management thus allows a buffer of a

given size to support a larger number of VCs without compromising zero-load latency.

The performance advantages afforded by dynamic buffer management are even

3 As we discussed in Chapter 4 and Chapter 5, increasing the number of VCs furthermore directly
affects the cost and critical path delay of the VC and switch allocation logic.

4 In the extreme case where V = B, the hybrid scheme effectively degenerates into implementing
static partitioning, as all buffer slots are reserved for individual VCs.
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Figure 6.4: Maximum VC capacity for 16-entry buffer.
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Figure 6.5: Zero-load latency for Mesh (16 buffer slots, UR traffic).
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Figure 6.6: Cost-performance trade-offs for FBfly (all traffic patterns).
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more pronounced in the case of the FBfly network, as shown in Figure 6.6. We report

the harmonic mean of the saturation throughput for all simulated traffic patterns;

the relative performance of the different buffer management schemes exhibits the

same qualitative behavior for most individual traffic patterns. Because we employ

UGAL routing on the FBfly network, which requires the use of two resource classes

for deadlock avoidance, the first data point in each curve in Figure 6.6 corresponds

to four VCs, compared to two in the case of the Mesh. In order to accommodate

statically partitioned configurations with the same VC depth as before, we increase

the maximum buffer size considered to 32 flits.

Due to the increase in the overall number of VCs, the implementation overhead

for the hybrid and fully dynamic schemes is larger than in the Mesh. However, this is

offset by substantial performance increases: When comparing configurations with four

VCs, buffer sharing enables a 16-entry buffer to outperform a statically partitioned

buffer with 32 entries—the only such configuration that has sufficient capacity per VC

to allow packets to be transmitted without introducing fragmentation. In particular,

the dynamically managed buffer achieves 17% higher average saturation throughput

while simultaneously reducing buffer cost by 45%. Similarly, an eight-entry buffer

using either the hybrid or dynamic scheme achieves 4 % higher performance with 44 %

lower cost compared to a 16-entry statically partitioned buffer.

The observed performance improvements are primarily a result of load imbalance

between the two resource classes used by UGAL routing: In the absence of congestion,

most packets are routed minimally, leaving any buffer space assigned to the non-

minimal resource class unused. Even in the presence of congestion, any packets that

are routed non-minimally only use the associated resource class while on their way

to the randomly selected intermediate router; thus, as long as any packets are routed

minimally, network load remains unevenly distributed across the two resource classes.

With a statically partitioned buffer, this leaves a fraction of the buffer space assigned

to the less heavily loaded class unused; in contrast, buffer sharing allows available

buffer space to be distributed among both classes based on demand; in particular,

by allowing the more heavily loaded class to use more than its fair share of buffer

space, the incidence of tree saturation [78] is reduced, leading to improved overall
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Figure 6.7: Performance impact of using atomic VC allocation.

throughput.

As in the case of the Mesh, we find that increasing the number of VCs for a given

buffer size does not significantly improve performance, and in fact cause performance

degradation for the static and hybrid configurations in most cases as the maximum

capacity for any given VC is reduced. While the fully dynamic buffer management

scheme consistently yields higher saturation throughput with more VCs, the benefits

are generally not commensurate with the associated increase in buffer cost.
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6.6.3 Atomic VC Allocation

Figure 6.7 illustrates the impact of using atomic VC allocation on the achievable

saturation throughput for different synthetic traffic patterns. We present detailed

results for the fully dynamic buffer management scheme; additional simulation runs

confirm that our observations hold for the static and hybrid schemes.

For small numbers of VCs, atomic VC allocation severely limits the number of

in-flight packets for each router input and output port. This leads to reduced channel

utilization and increases the incidence of tree saturation, resulting in substantially

degraded overall throughput.

With a maximum packet length of six flits, the smallest configuration for each

topology effectively prevents the buffer from being fully utilized, and consequently

experiences the most severe performance degradation. While the penalty is reduced

as the number of VCs increases, performance remains degraded up to the point where

the number of available VCs equals the buffer size divided by the minimum packet

length, allowing the buffer to be fully utilized with arbitrary combinations of packets.

In the presence of a sufficiently large number of VCs, atomic VC allocation can

reduce HoL blocking by avoiding false dependencies between packets [66]; however,

as we explained in Section 6.2.1, the resulting benefits are limited if most packets

follow the same direction of travel, as is commonly the case in Mesh network using

DOR. Indeed, our results indicate that, even with the maximum possible number of

VCs, atomic VC allocation improves performance by at most 2% for the Mesh and

3% for the FBfly.

Overall, while atomic VC allocation can be beneficial in situations where a large

number of VCs is required as a result of external design constraints, its performance

benefits generally do not justify any significant increases in design complexity.

6.7 Related Work

Rezazad and Sarbazi-azad [80] study of the effect of input buffer organization on the

performance of Mesh, Torus and Hypercube interconnection networks. In particular,
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they evaluate the trade-off between the number and depth of VCs for a fixed buffer size

and investigate schemes which assign different numbers of VCs to links in different

dimensions. Similarly, Huang et al. [42] propose an approach for optimizing the

number of VCs multiplexed onto each physical channel based on traffic characteristics.

To this end, they propose an off-line algorithm for computing expected port contention

rates for a given target application running on a Mesh network.

Dynamic input buffer management in off-chip interconnection networks was pi-

oneered by Tamir and Frazier in [90]; the authors provide a detailed evaluation of

a linked-list based implementation. Pinkston and Choi [16] extend this work by in-

troducing support for VCs. Park et al. [75] and Ni et al. [65] propose alternative

implementations that avoid the complexity of linked lists by storing flits belonging to

the same queue in contiguous buffer slots inside a linear and circular buffer structure,

respectively. Liu and Delgado-Frias [52] adapt the work in [65] to the NoC domain

and propose reserving buffer space for each VC in order to avoid deadlock and starva-

tion effects. Lai et al. [49] and Wang et al. [97] propose NoC routers with linked-list

based buffer management. In contrast, Nicopoulos et al. [66] and Kumar et al. [47]

implement buffer sharing using table-based approaches. Evaluations in these studies

focus on Mesh and Torus networks, and generally assume that all packets have the

same length.

Other recently proposed methods of reducing buffer cost, including bufferless [25,

60] and Elastic Buffer (EB) [55, 56] flow control, do not support VCs; as such, they

must rely on other means—e.g. using multiple parallel networks—to avoid routing

deadlock or to support traffic classes. For situations where multiple such networks are

required, these approaches are typically less attractive compared to VC flow control.

6.8 Summary

In this chapter, we have investigated the trade-offs involved in choosing input buffer

organizations for NoC routers. We have discussed the major design parameters—

number and depth of VCs, overall buffer size and static vs. dynamic buffer manage-

ment schemes—and investigated their respective implications for network cost and
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performance.

Simulation results for exemplary 64-node Mesh and FBfly networks show that

allowing buffer entries to be shared among VCs improves network performance for

a given buffer size; more importantly, it also allows a given level of performance to

be achieved at substantially lower cost compared to statically partitioned buffers.

Buffer sharing is particularly beneficial for small buffer sizes, where it can provide

comparable performance to statically partitioned buffers with 50% (Mesh) and 100%

(FBfly) more capacity. This is of particular interest in the NoC domain, where area

and power budgets are typically subject to tight constraints.

Contrary to popular wisdom, we find that both increasing the number of VCs and

using atomic VC allocation yield only modest performance improvements when con-

sidering a range of traffic patterns; in particular, we find that the speedup achieved by

increasing the number of VCs beyond the minimum imposed by external constraints—

e.g., deadlock avoidance requirements—is generally smaller than the associated in-

crease in buffer management overhead.



Chapter 7

Adaptive Backpressure

7.1 Overview

In Chapter 6, we showed that allowing expensive buffer resources to be shared among

multiple Virtual Channels (VCs) represents an effective way of improving buffer uti-

lization under benign load conditions, enabling the network designer to achieve better

cost-performance trade-offs. However, as we will see in the course of the present chap-

ter, unrestricted sharing can give rise to undesirable behavior under adversarial load

conditions. Specifically, buffer sharing allows VCs which experience heavy down-

stream congestion to monopolize buffer space at the expense of other VCs. This

is particularly undesirable in scenarios where multiple workloads with different per-

formance characteristics and Quality-of-Service (QoS) requirements share access to

the network, as it can allow an adversarial workload to significantly degrade the

performance of a well-behaved one even when both operate on disjoint sets of VCs.

Examples of scenarios that are particularly susceptible to such undesired interference

effects include networks with heterogeneous endpoints—e.g. general-purpose cores

and specialized accelerators—or Chip Multi-Processors (CMPs) executing multiple

virtual machines.

To address these issues, we develop Adaptive Backpressure (ABP), a novel mech-

anism that heuristically regulates the credit supply for each output VC based on

its observed performance characteristics. In doing so, we preferentially assign buffer

119
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space to those VCs that carry well-behaved traffic, and we aim to limit the amount

of buffer space that is occupied unproductively by VCs experiencing downstream

congestion. ABP is readily implemented as a simple, low-overhead extension to the

router’s existing output controllers, and it does not require changes to other parts of

the router’s pipeline or to inter-router signaling.

7.2 Motivation

As shown in Chapter 6, sharing buffer space among multiple VCs is attractive in Net-

works-on-Chip (NoCs) because it improves buffer utilization and thus makes more

efficient use of the limited and expensive buffer resources. However, managing buffer

entries in a shared pool introduces an additional degree of coupling between VCs,

which now have to compete for buffer space in addition to channel bandwidth. As

we will demonstrate in the remainder of this section, such coupling can lead to severe

performance degradation when buffer space is shared freely among multiple types of

traffic with different performance characteristics.

As a motivating example, we consider the situation depicted in Figure 7.1. Fig-

ure 7.1a shows a snapshot of the steady state of flits from two different VCs—shaded

in light gray and dark gray—arriving at the upstream router from the bottom and

left, traversing a network channel, and leaving the downstream router at the right

and bottom, respectively. Only the relevant parts of the two routers are shown. The

dotted outline marks the credit loop that implements flow control between the two
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Figure 7.1: Unrestricted sharing causes congestion to spread across VCs.
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neighboring routers:

1 A credit is consumed when the switch allocator at the upstream router generates

a grant for a waiting flit. The credit is implicitly carried along by the flit as it

makes its way towards the next hop.

2 In the first cycle after receiving the grant, the flit traverses the upstream router’s

crossbar.

3 Subsequently, the flit departs the upstream router and traverses the channel

towards the downstream router.

4 Upon arrival at the downstream router, the flit is held in the input buffer until it

receives a grant from the switch allocator, at which point the implicitly carried

credit is sent back upstream.

5 The credit traverses the flow control back-channel towards the upstream router,

where it indicates to the switch allocator that the corresponding buffer slot is

ready to be assigned to a different flit in the next cycle. This closes the credit

loop.

In the congestion-free steady state, three implicit credits—located in stages 2 ,

3 and 4 —and one explicit credit—located in stage 5 —are in flight at any given

time. Since each credit effectively corresponds to one particular buffer entry, the

input buffer at the downstream router must comprise at least one additional slot—

for a total of five slots—in order to ensure that the upstream router always has at

least one credit available, allowing it to forward a new flit in every cycle.

We note that out of the four outstanding credits, only one actually corresponds

to a downstream buffer slot that is currently occupied by a flit; two credits account

for slots that have been reserved but not yet filled, as the corresponding flits are still

en route to the downstream router, while the fourth credit corresponds to a buffer

entry that has been vacated but remains reserved until the credit returns to the

upstream router. This difference between the perceived buffer occupancy—measured

by the upstream router in the number of outstanding credits—and the actual buffer
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occupancy at the downstream router is typical for congestion-free operation. All

outstanding credits in Figure 7.1a are necessary to support the throughput achieved

in this scenario.

In Figure 7.1b, the bottom output at the downstream router becomes congested.

As a result, the flit at the head of the downstream router’s input buffer becomes

blocked—indicated in the figure by a stripe pattern—and remains stationary. Because

there are still only four credits in use at that point, the congestion is not yet visible

to the upstream router, which therefore continues to forward flits from both VCs

as they arrive. The light gray VC’s destination output remains uncongested, and

its flits therefore continue to be forwarded from the downstream buffer immediately

after arrival. As such, any credits the light gray VC consumes continue to be returned

upstream after a delay equal to the basic credit round-trip latency, which depends

on the router pipeline and the length of the network channels. In contrast, once flits

from the dark gray VC reach the downstream router, they are unable to make further

progress due to the ongoing congestion. Over time, this results in the flits from the

latter VC accumulating in the buffer, preventing their credits from being returned

upstream.

Assuming that one buffer slot is reserved for each VC to prevent interleaving

deadlock and starvation (cf. Section 6.5), flits from the congested VC eventually fill

up all shared buffer space as shown in Figure 7.1c. Exhausting the credit supply, this

causes backpressure to reach the upstream router, prompting it to exclude the VC

from switch allocation and thus propagating congestion within the VC upstream. For

the uncongested VC, on the other hand, flits continue to be forwarded immediately

after arrival at the downstream router. However, because only its reserved buffer slot

remains available, the VC can only send a single flit downstream in each credit round-

trip interval; additional flits that arrive at the upstream router during this interval

become blocked, as shown in Figure 7.1c. As a result, buffer monopolization allows

congestion to spread across VCs.

In stark contrast to the scenario depicted in Figure 7.1a, the majority of the out-

standing credits in the scenario shown in Figure 7.1c—specifically, all credits held

by the congested VC—correspond to flits that occupy slots in the the downstream
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buffer; as these flits are blocked, only the credit used by the uncongested VC actually

supports data movement. The stationary flits do not contribute to throughput, and

therefore represent inefficient use of buffer resources; in fact, by diminishing the up-

stream router’s credit supply, they reduce overall throughput and cause the channel

between the two routers to be severely under-utilized.

The given example readily extends to configurations with any number of VCs: If

buffer space is shared freely, any VCs that experience downstream congestion will ac-

cumulate flits in the downstream router’s input buffer over time, reducing the number

of credits available to other VCs. Unrestricted buffer sharing therefore facilitates the

spread of congestion across VCs, causing the network to become more susceptible to

tree saturation [78] and reducing overall performance under load. Furthermore, in sce-

narios with multiple traffic classes, the described buffer monopolization effect allows

misbehaving traffic in one class to significantly degrade the latency and throughput

of traffic in other classes even if they are routed on disjoint sets of VCs.

7.3 Detailed Description

In order to mitigate the adverse effects described in Section 7.2 without sacrificing

the benefits of dynamic buffer management under benign conditions, we propose a

mechanism that regulates sharing by heuristically limiting the number of outstand-

ing credits for each VC based on its observed performance characteristics. VCs that

exceed their quota allocation are treated as full until enough credits return for the

quota to be satisfied. The goal is to assign quota values in a way that provides indi-

vidual VCs with enough credits to sustain their observed throughput as in Figure 7.1a

while minimizing the amount of buffer space that is occupied unproductively as in

Figure 7.1c.

Once a flit occupies a buffer slot, its corresponding credit can only be returned to

the upstream router after a grant is received from the switch allocator, indicating that

the flit will be forwarded in the next cycle; i.e., the only way to recover outstanding

credits is to wait for forward progress at the downstream router. Therefore, a VC

can temporarily exceed its quota if an update causes it to drop below the current
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number of outstanding credits. Since quota checks are performed in addition to the

conventional mechanisms for ensuring credit availability and deadlock avoidance (cf.

Section 6.5), this does not interfere with the correct operation of the router; instead,

it simply causes the actual distribution of credits among VCs to deviate from the

desired distribution embodied in the quota values. In the absence of deadlock, any

flit stored in an input buffer will eventually be forwarded, allowing its corresponding

credit to be returned to the upstream router. As this newly returned credit can only

be consumed by those VCs that have not exhausted their quota, such deviations from

the desired credit distribution tend to self-correct over time.

7.3.1 Quota Computation

In determining quota values for individual VCs, we aim to make credits freely available

to those VCs that utilize them efficiently, while being more restrictive in situations

that are susceptible to the previously described performance pathologies. To this end,

we take advantage of the realization that the number of credits that a given output

VC can utilize productively is effectively limited by the throughput it achieves:

Based on our earlier example in Figure 7.1a, we know that if a VC achieves

a steady-state throughput of one flit per cycle, the number of outstanding credits

required to support this throughput is equal to the basic credit round-trip latency

determined by router pipeline and channel length. In the absence of congestion, any

additional credits available to the VC beyond the required number will simply remain

unused.

If congestion causes stalls at the downstream router, as shown in Figure 7.2,

both the number of outstanding credits at the upstream router and the number of

occupied buffer slots at the downstream router increase in response to each stall if

no quota is imposed. This represents inefficient use of buffer space in the same way

as in Figure 7.1c, as the additional flits accumulating in the downstream router’s

input buffer are not needed to support the resulting effective throughput, and the

corresponding credits are unavailable to other VCs.

On the other hand, limiting the number of outstanding credits to less than the
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amount required to cover the basic credit round-trip latency leads to idle cycles in

which the downstream router’s input buffer is empty, as shown in Figure 7.3: In

the given example, once four flits are in flight—and hence, all four allowed credits

are outstanding—, the upstream router must suspend transmission until one of the

outstanding credits returns. Thus, by imposing a quota on the number of outstanding

credits, we can effectively regulate throughput.

We can exploit this ability to regulate throughput by matching the credit quota

value to the level of downstream congestion: Figure 7.4 shows the result of applying

the downstream stall pattern from Figure 7.2, which causes throughput to be re-

duced by 20% at the downstream router, to Figure 7.3, where the credit quota leads

to a 20 % reduction in throughput at the upstream router. The resulting effective

throughput is the same as in Figure 7.2; however, in contrast to the latter, there is

no unproductive accumulation of flits in the downstream router’s input buffer. As a

result, the congested VC uses fewer credits, leaving more available to other VCs.

In the general case, we can avoid inefficient use of credits and buffer resources in

this way by setting a VC’s quota value to the product of its effective throughput and

the basic credit round-trip latency Tcrt,base. However, in practice, the upstream router

cannot easily measure throughput directly. Instead, we compute quota values based

on the observed round-trip time Tcrt,obs for individual credits:

If Tcrt,obs for a given credit is equal to Tcrt,base, we know that the corresponding

flit must have been forwarded immediately at the downstream router, suggesting that

the VC it was assigned to is able to achieve unimpeded throughput; consequently, we

set its quota value to Tcrt,base credits.

On the other hand, Tcrt,obs for a credit may exceed Tcrt,base if the corresponding

flit experienced one or more stall cycles at the downstream router directly, or if

it incurred queueing delay as an indirect result of previous stalls as shown by the

highlighted transition in Figure 7.2. Each cycle by which Tcrt,obs exceeds Tcrt,base

requires a subsequent idle cycle in order to avoid unproductive increases in buffer

occupancy. By subtracting the difference from the quota value for the congestion-free

case, we can ensure that the appropriate number of idle cycles will be generated over

the course of the next credit round-trip interval.
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Noting that we must allow each VC to use at least one credit in order to guarantee

that quota values can continue to be updated, we derive the overall equation for quota

updates based on the observed credit round-trip time1:

Q = max(Tcrt,base − (Tcrt,obs − Tcrt,base), 1)

= max(2 × Tcrt,base − Tcrt,obs, 1) (7.1)

Quotas for all VCs are updated independently, and no explicit effort is made to

ensure that the sum of all quotas does not exceed the total capacity of the input

buffer. However, as explained at the beginning of Section 7.3, quota values merely

represent a desired distribution of buffer space among VCs and thus are not required

to be conservative in order to ensure correct operation.

Because quota values are adjusted in response to credits that return upstream,

ABP can only effectively regulate the credit supply if the time scale at which the

level of congestion changes exceeds the credit round-trip delay; in particular, it can-

not prevent sporadic periods of congestion that extend for less than a round-trip

interval—such as highly transient hot spots—from causing inefficient use of buffer

space. The severity of this weakness is mitigated by the fact that credit round-trip

times in NoCs typically do not extend beyond a few clock cycles; as a result, the total

amount of congestion that can form in the vicinity of such hot spots—and hence,

the overall impact on performance—is limited in practice. While it is theoretically

possible for an adversarial workload to specifically generate short-term hot spots at

arbitrary locations in the network, achieving the desired transient behavior requires

tight coordination among multiple traffic sources and is further complicated by inter-

actions with other workloads.

7.3.2 Implementation

From an implementation perspective, ABP comprises two main functional aspects:

On the one hand, it needs a mechanism that prevents flits from being forwarded to

1In practice, it is beneficial to stabilize quotas by performing updates by means of a moving
average rather than using the computed value directly.
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an output VC that has exhausted its quota. On the other hand, it requires a facility

that measures credit round-trip times and computes the individual VCs’ quota values

in response.

In order to enforce quotas in a router design that employs dynamic buffer man-

agement (cf. Section 6.4.1), we augment the state of each output VC by adding a

register that tracks its current credit quota, as highlighted in Figure 7.5. In combi-

nation with the existing VC occupancy counter, this register is used by the allocator

to mask output VCs that have exceeded their quota in the same way as if they had

run out of buffer space.

In order to minimize implementation overhead, we only measure round-trip delay

for a single outstanding credit per output VC at a time. This avoids the need to

be able to track a large number of outstanding credits—up to the total number of

entries in the input buffer—in parallel; doing so would necessitate the addition of

a dynamically managed time stamp buffer at each output port, and the associated

overhead would offset a substantial part of the savings achieved by using a dynamically
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Figure 7.6: State transition diagram for quota computation logic.

managed input buffer in the first place. While restricting measurements in this way

can slightly increase the response time of quota updates to the onset of downstream

congestion, this does not significantly affect the steady-state performance of ABP.

For each output VC, a state variable indicates whether a measurement is currently

taking place. As shown in Figure 7.6, all VCs are initially in the idle state. When

a flit is sent to a VC in this state, it transitions to the active state, indicating that

a measurement is in progress. It remains in this state until the associated credit

returns from the downstream router, at which point the VC updates its quota value

according to the observed round-trip delay and transitions back to the idle state.

When a VC enters the active state, it may already have one or more credits in

flight; these must be ignored for the purposes of round-trip time computation. We

achieve this by employing a skip counter as shown in Figure 7.7a: When a flit is

sent to a VC in idle state, the skip counter is initialized to the current number of

outstanding credits for this VC; subsequently, every time a credit is received, the

counter value is decremented. A counter value of zero indicates that the next credit

to be received is the one being measured and causes the capture signal to be asserted.

Figure 7.7b sketches the implementation of the counter that is responsible for

measuring the actual round-trip time. In idle state, the counter is forced to a pre-

computed constant:

start value = 2 × Tcrt,base − 1 (7.2)

Subtracting one is necessary to properly account for the one-cycle delay between
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Table 7.1: Storage overhead for ABP.

Description Cost

Quota registers V ×⌈log2(Tcrt,base)⌉ = 12 bits
Round-trip timers V ×⌈log2(2×Tcrt,base)⌉ = 16 bits
Skip counters V ×⌈log2(B)⌉ = 16 bits
Total storage overhead per port 44 bits

the start value input and the next quota output. In active state, the counter is

decremented in every cycle, down to a minimum value of one, as per Equation 7.1.

Finally, Figure 7.7c shows the quota register and the associated update logic:

When the VC is in active state and the skip counter indicates that no older cred-

its must be discarded, the next credit that is received causes the next quota value

computed by the round-trip time counter to be written to the quota register. We

can optionally stabilize quota values by performing an additional averaging step, as

indicated by the dashed lines in Figure 7.7c. This is achieved by adding next quota

to quota and discarding the least significant bit of the sum, causing the quota output

to represent an exponentially weighted moving average of the computed next quota

values.

Since measurements and quota updates are computationally simple and can be

performed off the critical path, the described mechanism does not adversely affect

the router’s cycle time.

7.3.3 Overhead

When using a dynamically managed input buffer as described in Section 6.4.1 with

a capacity of B = 16flits per input buffer, V = 4VCs and a basic credit round-trip

latency of Tcrt,base = 8 cycles, we can compute the total number of registers required

for implementing ABP using Table 7.1. Assuming a flit width of 64 bits, the resulting

44 registers represent an overhead of 4.2 % relative to the cost of the flit buffer and

its associated management logic (cf. Section 6.4.2).
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7.4 Evaluation

7.4.1 Experimental Setup

We evaluate the efficacy of ABP using a customized version of the BookSim 2.0

interconnection network simulator [20]. We conduct simulations on a tiled CMP

with 8×8 nodes, connected either as a Mesh, a Concentrated Mesh (CMesh) [4] or a

Flattened Butterfly (FBfly) [45]. All network channels are 64 bits wide. Ingress and

egress channels have a delay of one cycle, while channels connecting different routers

have a delay of one cycle for the Mesh, two cycles for the CMesh and two, four or

six cycles—depending on physical distance—for the FBfly. Packets are routed using

Dimension-Order Routing (DOR) on the Mesh and CMesh, and using the Universal

Globally Adaptive Load-Balanced (UGAL) [87] routing algorithm on the FBfly.

We model input-queued routers with credit-based flow control and two pipeline

stages. The first stage performs combined VC and switch allocation as described in

Section 5.4 and computes lookahead routing information for the next hop [28], while

the second pipeline stage is reserved for switch traversal. We use a separable input-

first allocator design with round-robin arbiters. After arriving at a router, credits

incur a processing and signal propagation delay of two cycles before the corresponding

downstream buffer slot becomes available for allocation again.

Each input buffer has a total capacity of 16 flits, shared among 4VCs. For exper-

iments with two traffic classes, half of the VCs are statically assigned to each class.

One buffer slot is statically reserved for each VC in order to avoid interleaving dead-

lock and starvation [52]. The base configuration does not otherwise restrict sharing.

The abp and abp-ma configurations implement ABP as described in Section 7.3 with

immediate and with moving average based quota updates, respectively.

Network terminals maintain a separate, unbounded injection queue per traffic

class. Each terminal can can inject a single flit into the network in any given cycle;

if multiple traffic classes have pending flits, injection alternates between them in a

round-robin fashion. All reported latencies include source queueing delay.

For synthetic traffic, packet arrival times are generated according to a Bernoulli

process. Destination addresses are chosen according to a set of traffic patterns
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Figure 7.8: Target system for CMP application workloads.

that model communication behavior commonly encountered in network workloads.

Throughput numbers correspond to the effective throughput for a particular traf-

fic pattern; i.e., we report the minimum throughput across all source-destination

pairs [20]. Packet lengths follow a bimodal distribution, with 50% of the packets

comprising two and six flits, respectively.

For CMP application workloads, we simulate a target system of 64 tiled nodes with

eight attached banks of external memory, as shown in Figure 7.8. Figure 7.9 gives an

overview of the individual network nodes’ internal structure: Each node comprises a

general-purpose processor cores with private L1 instruction and data caches, a slice

of a shared L2 cache, as well as an array of throughput-optimized stream processors.

Eight of the nodes additionally include a memory controller.

The general-purpose processor cores implement a RISC architecture with in-order

execution. Cores and caches operate at four times the network’s clock frequency.
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Table 7.2 lists the key parameters of the cache hierarchy.

With 64-bit wide network channels, memory transactions manifest as traffic with

a bimodal packet length distribution: Short packets—e.g., read requests, write re-

sponses or invalidation messages—comprise a head flit followed by a flit that carries

a 64-bit memory address, while long packets—primarily write requests, writebacks,

as well as read and downgrade responses—include eight additional payload flits.

We leverage Netrace [35] to generate application traffic for the general-purpose

Table 7.2: Cache configuration for general-purpose cores.

L1 cache L2 cache

Capacity 32 kB + 32 kB 64 × 256 kB
Organization I + D shared S-NUCA
Associativity 4-way 8-way
Line size 64B 64B
Access time 3 cycles 6 cycles
Coherence MESI —
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cores based on a set of PARSEC benchmarks [12]. Netrace tracks and enforces timing

dependencies between different packets in a trace, enabling us to perform closed-loop

simulations without incurring the overhead of using a full-system simulator.

As the co-located array of throughput-optimized cores in each network node sup-

ports a large total number of outstanding memory transactions, we can model its

aggregate behavior by continuously streaming data to the memory controllers. We

assume that data is streamed at cache line granularity, and consequently use the same

bimodal packet length distribution as for application traffic. We further assume that

the destination addresses for streaming traffic are interleaved such that packets are

uniformly spread across all eight memory controllers.

Our evaluation methodology for application traffic is similar to that used by Grot

et al. [31,32] to evaluate performance isolation for PARSEC benchmarks; however, in

their experiments, streaming traffic is generated by one or more columns of dedicated

aggressor nodes added to one side of a Mesh, while in our model, all nodes generate

both streaming traffic and PARSEC traffic.

7.4.2 Synthetic Traffic

We first evaluate the efficacy of ABP using synthetically generated traffic. This gives

us the freedom to easily exercise the network at a wide variety of load levels without

begin restricted to the traffic characteristics of any particular application.

Network Stability

In many practical interconnection networks, once the saturation point is reached,

further increases in injection rate will actually reduce the effective throughput for the

applied traffic pattern. This throughput instability is a result of two factors:

On the one hand, higher injection rates cause more flits to be in flight at any

given time, leading to increased contention for network resources and facilitating

the formation of tree saturation [78]. Overall throughput is reduced in response to

congestion spreading through the network.

On the other hand, when multiple flows of traffic merge at different points along a
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path through the network, the use of locally fair allocation policies at the individual

routers can lead to an exponential reduction in available network bandwidth for flows

that are subject to multiple instances of such merging. For adversarial traffic patterns,

this causes one or more sources to become subject to starvation as injection rate

increases beyond saturation, reducing the effective throughput for the desired traffic

pattern [20].

By regulating credit availability and promoting efficient use of buffer resources,

ABP can mitigate both causes of network instability: Limiting buffer occupancy for

congested traffic flows inhibits the spread of congestion to other flows and therefore

inhibits tree saturation. Furthermore, ABP effectively throttles sources that inject

traffic at a very high rate, alleviating the starvation effects that cause instability in

adversarial traffic patterns.

Figure 7.10 demonstrates throughput instability for the Mesh and CMesh networks

with adversarial Tornado (TO) traffic2. In both networks, throughput drops sharply

once the saturation point is reached and stabilizes at a substantially lower post-

saturation value.

For the Mesh, as shown in Figure 7.10a, extensive merging of traffic flows effected

by the topology’s large network diameter causes the throughput for the base con-

figuration to drop to less than 8% of the value achieved at saturation. In contrast,

post-saturation throughput with ABP stabilizes at 51% of the saturation throughput.

Stabilizing quota values by performing updates via a moving average process further

improves the efficacy of ABP, increasing throughput for the abp-ma configuration to

60%; this represents a 7.8-fold improvement over the base configuration.

Due to its smaller network diameter, the CMesh is less susceptible to starvation

caused by traffic merging than the Mesh; on the other hand, because individual

links in the CMesh are shared between a larger number of flows, the effects of tree

saturation become more pronounced. This results in an increase in post-saturation

throughput for the base configuration to 32% of the peak rate, while post-saturation

throughput for that for the abp and abp-base configurations decreases to 42 % and

2The FBfly topology is inherently not susceptible to such instability and is thus not considered
here.
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(a) Mesh.
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(b) Concentrated Mesh.

Figure 7.10: Throughput vs. offered load for TO traffic pattern.
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49% of said value, respectively. Nevertheless, ABP remains beneficial, yielding up to

a 1.5-fold improvement over the base configuration.

Figure 7.11 shows the throughput at maximum injection rate for different synthetic

traffic patterns on the Mesh and CMesh networks, as well as the harmonic mean

across traffic patterns. The upper end of the white segment atop each bar marks the

saturation rate for a particular combination of configuration and traffic pattern.

With the exception of Uniform Random (UR) traffic, ABP measurably improves

post-saturation throughput for all traffic patterns, with an average improvement of

52% for the CMesh and 259% for the Mesh. While ABP reduces saturation rate

by an average of 2–3% across traffic patterns, this only results in a performance

degradation in a narrow region around the saturation point as throughput at low to

medium network load is unaffected.

For UR random traffic, ABP actually decreases saturation rate by 10% and 3 %

and post-saturation throughput by 8 % and 5% for the Mesh and CMesh, respectively.

This is because UR traffic reduces correlation between successive packets in a given

VC as a result of randomly selected destinations, causing quota values to be less likely

to apply across multiple packets3. The performance degradation for UR traffic only

manifests at high injection rates; in contrast, ABP affords substantial performance

improvements for most other traffic patterns starting at significantly lower injection

rates.

While practical systems with finite injection queues are inherently self-throttled,

and therefore cannot operate in the post-saturation region in steady state, it is pos-

sible for the injection rate in such systems to exceed the saturation rate temporarily,

e.g. as a result of bursty traffic or the formation of a transient hotspot in the net-

work. In such cases, by maintaining high post-saturation throughput, ABP enables

the network to recover and return to steady-state operation more quickly.

Performance Isolation

Individual processor cores in a typical CMP can generally only support a limited num-

ber of outstanding network requests—e.g. L1 cache misses or evictions—at a time;

3Concentration mitigates this effect by reducing the number of possible destination routers.
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(b) CMesh.

Figure 7.11: Throughput at maximum injection rate (outlines show saturation rate).
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once the maximum number of concurrent in-flight requests is reached, any instruction

that would trigger an additional request must block until one or more earlier requests

complete. As packet latency in an interconnection network generally increases with

offered load, this introduces a negative feedback loop that causes performance in such

self-throttled systems to be primarily limited by end-to-end latency rather than avail-

able bandwidth [81]. In evaluating performance isolation, we therefore first focus our

investigation on how latency for a given traffic class of interest is affected by a second

class of background traffic.

Figure 7.12 demonstrates how the zero-load latency for a foreground workload

consisting of UR traffic varies as increasingly adversarial background traffic—using

the Nearest Neighbor (NN), UR, Transpose (TR) and Hot Spot (HS) traffic patterns—

is injected into a 64-node CMesh. In all four cases, the latency for the the foreground

traffic pattern is initially virtually identical across the three configurations, increasing

slowly as background load ramps up.

Once the background traffic reaches its saturation point, buffer occupancy for the

base configuration increases rapidly, resulting in buffer monopolization as described

in Section 7.2 and severely degrading the zero-load latency of the foreground traffic.

In contrast, the abp configuration effectively limits buffer occupancy for the back-

ground workload once it reaches the saturation point, preventing such inefficient use

of buffer space. As a result, the latency for the foreground traffic quickly stabilizes

at a significantly lower level compared to the baseline implementation.

While the inflection point occurs earlier for more adversarial background traffic

patterns, the increase in foreground latency is actually more pronounced for benign

patterns, both for the baseline configuration and—albeit to a lesser extent—for the

two ABP-based ones. Benign traffic patterns saturate at higher injection rates, re-

sulting in a larger number of in-flight flits, which in turn cause the foreground traffic’s

flits to experience a higher degree of contention for network resources.

Figure 7.13 shows the average zero-load latency in the presence of 50% UR back-

ground traffic across a set of synthetic foreground traffic patterns, including Bit

Complement (BC), Bit Reverse (BR), Shuffle (SH), TO, TR and UR, for the three

topologies we investigate. The white segment at the bottom of each bar represents
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(a) NN background traffic.
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(b) UR background traffic.
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(c) TR background traffic.
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(d) HS background traffic.

Figure 7.12: Foreground zero-load latency for UR foreground traffic on CMesh.
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Figure 7.13: Average foreground zero-load latency with 50% UR background traffic.

the latency measured in the absence of background traffic; our measurements show

that ABP does not adversely affect latency under benign conditions. While the mag-

nitude of foreground latency varies by traffic pattern, we find that the performance

difference between the base, abp and abp-ma configurations is consistent across all

six patterns for each topology. Overall, the latency improvement is most pronounced

for the CMesh network at 36 % and slightly smaller for the Mesh and FBfly at about

31%.

In addition to increasing zero-load latency, adversarial background traffic can also

negatively impact the throughput achieved by benign foreground traffic. Figure 7.14

shows the effective throughput when injecting UR foreground traffic into a CMesh at

a target injection rate of 10%. As with latency, increased buffer occupancy causes

foreground performance for the base configuration to degrade as the background traf-

fic enters its saturation region4. In contrast, both ABP-based configurations allow

foreground throughput to remain stable beyond the background traffic’s saturation

4Note that the higher foreground injection rate causes the background traffic to saturate earlier
than in Figure 7.12.
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(a) TR background traffic.
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(b) HS background traffic.

Figure 7.14: Throughput degradation for UR foreground traffic on CMesh.
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point, resulting in minimal overall performance degradation. ABP effectively throt-

tles traffic with undesirable performance characteristics, mitigating its impact on the

network, while leaving well-behaved traffic largely unaffected.

Performance on the Mesh is qualitatively similar if we double the foreground

injection rate to 20% in order to account for the difference in bisection bandwidth.

For the FBfly, we observe qualitatively similar behavior for HS background traffic;

however, even at an injection rate of 20%, foreground throughput for UR traffic

remains virtually unaffected by TR background traffic.

7.4.3 Application Performance

In order to validate the results of our experiments with synthetic traffic, we conduct

measurements on a simulated 64-node CMP as described in Section 7.4.1. Specifi-

cally, we consider a setup where network nodes are heterogeneous, comprising both

a general-purpose processor and an array of throughput-optimized stream process-

ing cores. Individual general-purpose cores represent self-throttling traffic sources as

per our earlier description and as such are primarily sensitive to network latency.

In contrast, each array of throughput cores in aggregate supports a large number of

outstanding memory transactions; as such, their combined traffic is largely limited by

available network bandwidth. The conflicting performance characteristics of the two

types of traffic can lead to undesired interference effects when both are transported

across the same NoC.

Figure 7.15 shows the normalized execution time for individual PARSEC bench-

marks running on the general-purpose cores in the presence of streaming background

traffic as described in Section 7.4.1, as well as the geometric mean across all bench-

marks. For each PARSEC application, we measure the time it takes to deliver the

first one million packets from the benchmark’s Region of Interest (ROI) across the

network. All results are normalized to the execution time measured for the base

configuration when no background traffic is injected into the network. Results are

shown for the CMesh and FBfly topologies; the behavior for the Mesh is qualitatively

similar to that for the CMesh, but average slowdown is reduced by about 10% across
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(a) CMesh.

bscholes canneal dedup ferret fanimate vips x264 [gmean]
0

0.5

1

1.5

2

2.5

workload

n
o
rm

a
liz

e
d
 r

u
n
 t
im

e

 

 

base abp abp−ma

(b) FBfly.

Figure 7.15: Application slowdown for general-purpose cores.



7.4. EVALUATION 149

configurations.

The white segment at the bottom of each bar in Figure 7.15 corresponds to the

execution time without background traffic for a particular combination of configura-

tion and benchmark. As in our earlier experiments with synthetic traffic, we see that

using ABP does not adversely affect the performance in the benign case.

Once streaming background traffic is injected, all three configurations experience

significant performance degradation. This slowdown is primarily a result of increased

packet latency: As the simple in-order cores modeled in our experiment support only

a single outstanding memory transaction, any additional network delay incurred by

memory traffic directly results in stall cycles.

The reasons for the latency increase are two-fold: On the one hand, additional

contention delay is incurred as a result of failed allocation attempts as both types

of traffic compete for channel bandwidth. On the other hand, dynamically managed

input buffers can allow the streaming background load to monopolize buffer space as

described in Section 7.2, effectively limiting the application traffic’s credit supply. In

contrast to contention-induced delay, the effects of this indirect throttling cannot be

mitigated by prioritizing latency-sensitive traffic during allocation.

In limiting buffer occupancy for adversarial traffic, ABP reduces packet latency

and improves throughput for the PARSEC traffic generated by the general-purpose

cores, resulting in a 34 %, 38% and 45 % reduction in execution time for the Mesh,

CMesh and FBfly, respectively, compared to the baseline configuration. Across

topologies, the benefit of employing ABP is least pronounced (15–17 %) for the vips

benchmark; this is because vips uses coarse-grain parallelism with comparatively little

sharing and data exchange between different nodes, making this benchmark less sen-

sitive to network performance. In contrast, the canneal benchmark generates signifi-

cantly higher network load and is thus much more sensitive to network performance,

resulting in improvements of 39–53 %.
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7.5 Related Work

The ViChaR scheme introduced by Nicopoulos et al. [66] regulates the number of

active VCs at each router input based on network load; however, it does not impose

limits on the amount of credits that individual VCs can hold. While the use of

atomic VC allocation and a fixed, short packet length prevent individual VCs from

monopolizing buffer space in this scheme, groups of VCs with similar performance

characteristics—e.g. those assigned to a particular traffic class—can in aggregate still

cause significant performance degradation for other VCs.

Banerjee and Moore [5] show that resource utilization in NoCs can be improved

by grouping packets into flows—e.g. based on their destination—and allocating VCs

to flows instead of individual packets. Shim et al. [85] propose a similar approach

that statically maps flows to specific VCs at design time. Both approaches prevent

blocked flows from acquiring more than a single VC at each input buffer, but neither

limits the amount of buffer space occupied by that VC. As such, when using dynamic

buffer management, they are complementary to our proposed mechanism.

Lai et al. [49] propose a scheme in which each router predicts congestion levels

at each neighboring routers’ output ports and prioritizes those packets during switch

allocation that will be forwarded to uncongested outputs. Similarly to ABP, this

causes fewer flits to be sent to downstream VCs which are subject to congestion;

however, because congestion levels are estimated at port granularity, this approach

cannot prevent interference between multiple flows of packets destined for the same

output.

Network-level congestion control schemes based on source throttling [6,92] inher-

ently mitigate buffer monopolization effects by reducing the incidence of congestion

in the network. However, because such schemes only perform coarse-grained traffic

regulation at the network boundary, they tend to be pessimistic and slow to react

to localized changes in network behavior. Furthermore, they typically only consider

the aggregate behavior across all VCs and thus do not address interference between

concurrent workloads.

Finally, prior research has explored various schemes for providing QoS guarantees
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and isolation between workloads in NoCs [31, 32, 50, 70] These mechanisms gener-

ally assume that buffer space is statically partitioned and include no provisions to

avoid interference effects caused by buffer sharing; consequently, such approaches are

complementary to the ABP scheme developed in this chapter.

7.6 Summary

In this chapter, we have developed ABP, a novel scheme for regulating occupancy

in dynamically managed router input buffers. By heuristically limiting each VC’s

credit supply based on its observed performance characteristics, the proposed scheme

aims to minimize unproductive buffer occupancy and to prevent VCs that experience

downstream congestion from monopolizing shared buffer space at the expense of other

VCs’ performance. ABP maintains the utilization and performance benefits that

dynamic buffer management provides under benign load conditions, and it is readily

implemented as a simple, low-overhead extension to the existing flow control logic.

Simulation results for three exemplary 64-node NoCs show that ABP effectively

improves performance isolation, reducing zero-load latency in the presence of back-

ground traffic by up to 36% compared to a state-of-the-art implementation with

unrestricted sharing. ABP also improves network stability, increasing throughput

under heavy load by an average of 52 % and 259% across a set of six synthetic traffic

patterns for the Mesh and CMesh, respectively. Finally, we present simulation results

for PARSEC benchmarks running on a heterogeneous CMP and show that ABP can

reduce execution time in the presence of streaming background traffic by an average

of 34%, 38% and 45% across benchmarks for the Mesh, CMesh and FBfly networks,

respectively.

Overall, ABP enables networks to satisfy more stringent QoS requirements while

capitalizing on the performance and cost benefits of dynamic buffer management.



Chapter 8

Conclusion

8.1 Summary

With the end of Dennard scaling, diminishing returns from traditional approaches to

increasing single-threaded performance, and the rise of energy efficiency as a primary

design concern, continuing increases in processing power will rely on the development

of efficient large-scale Chip Multi-Processors (CMPs). Networks-on-Chip (NoCs) have

emerged as a promising approach for satisfying the communication requirements of

such designs. The latency and throughput characteristics of the network have a direct

impact on the CMP’s performance; likewise, the cost of communication directly affects

its energy efficiency.

While high-level design parameter—topology, routing and flow control—set the

framework for the network’s overall performance and cost, an efficient network must

be composed of efficient channel and router implementations. In the present disser-

tation, we have investigated implementation aspects and microarchitectural design

trade-offs for efficient high-performance NoC routers.

In Chapter 2 and Chapter 3, we have first discussed practical implementation

aspects for elementary arbiters and allocators, respectively, and conducted a detailed

evaluation of standard-cell designs in a commercial 45nm process. To this end, we

have investigated several approaches for building wavefront allocators that are free

from combinational loops. Comparing delay, area and energy efficiency, we have

152
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found that matrix arbiters, which have frequently been cited as the preferable design

choice in the context of interconnection networks, are simultaneously less efficient

and slower than round-robin arbiters at typical sizes encountered in NoC routers.

Furthermore, we have shown that our synthesis-friendly wavefront allocator designs

yield lower delay and cost than a previously proposed loop-free implementation.

Based on the elementary allocator designs, we have investigated practical Virtual

Channel (VC) allocator implementations in Chapter 4. Because the effective load

on the VC allocator is low in practice, we have found that differences in matching

quality between different implementation variants do not translate into significant

differences in network-level performance; as such, the optimal choice of VC allocator

is primarily determined by delay and cost considerations. In practice, this favors

separable input-first implementations.

We have furthermore introduced sparse VC allocation, a scheme that reduces VC

allocator complexity by exploiting restrictions on the possible transitions between VCs

assigned to different packet classes. Synthesis results show that sparse VC allocation

yields substantial improvements in delay, area and energy efficiency and thus increases

the allocator’s scalability.

In Chapter 5, we have similarly investigated switch allocator implementations. We

have found that a wavefront allocator’s superior matching quality only translates to

network-level performance improvements in cases where request matrices tend to be

densely populated. In particular, waterfront allocation can substantially improve sat-

uration rate for Flattened Butterfly (FBfly) networks with many VCs, but generally

yields little benefit for Mesh networks with Dimension-Order Routing (DOR). Even

in cases where performance is improved, wavefront allocation is primarily attractive

if its comparatively high delay can be masked by external timing constraints.

While speculative switch allocation yields a substantial reduction in latency at low

to medium network load, we have found that it provides only marginal gains in satu-

ration throughput. Based on this realization, we have developed two modified specu-

lation mechanisms—pessimistic speculation and priority-based speculation—that im-

prove delay, area and energy efficiency compared to the canonical implementation at

the cost of further reducing the performance gains under heavy load.
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By obviating the need for a dedicated VC allocator, combined VC and switch al-

location achieves significant cost reductions while providing the same latency benefits

as speculative switch allocation under low to medium load. However, we have found

that this is achieved at the cost of a slight degradation in saturation throughput.

Despite this, its low cost and delay make combined allocation an attractive design

choice for many network configurations.

We have investigated buffer organization trade-offs and evaluated buffer manage-

ment schemes in Chapter 6. Simulation results show that dynamic buffer management

improves saturation throughput for a given buffer size or, conversely, allows a desired

saturation throughput to be achieved with a smaller buffer. We have found that

buffer sharing is particularly attractive for FBfly networks with Universal Globally

Adaptive Load-Balanced (UGAL) routing, as it reduces tree saturation by allowing

buffer space to be distributed among resource classes based on demand. Furthermore,

we have found that the associated overhead generally makes increasing the number

of VCs for a fixed buffer size beyond the minimum necessary to support the desired

set of traffic classes unattractive, and that atomic VC allocation yields only modest

performance improvements even with large numbers of VCs.

While allowing buffer space to be shared among VCs improves performance for

well-behaved traffic, we have demonstrated in Chapter 7 that unrestricted sharing can

lead to pathological performance and undesired interference between traffic classes in

the presence of downstream congestion. In order to avoid such adverse effects with-

out degrading performance in the benign case, we have developed Adaptive Back-

pressure (ABP), a low-overhead scheme that continuously regulates each VC’s credit

supply based on its observed performance characteristics. This effectively counteracts

unproductive buffer occupancy and thus prevents VCs that are subject to downstream

congestion from monopolizing buffer space and degrading the performance of other

VCs. As such, ABP allows network designers to take advantage of the cost and per-

formance benefits of unrestricted buffer sharing under benign load without incurring

the associated loss of isolation between traffic classes.
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8.2 Future Work

The work described in this dissertation presents numerous opportunities for additional

research:

In Chapter 5, we found that the effect of matching quality on network-level per-

formance is limited by sparsely populated request matrices. In particular, differences

between allocator implementations only manifest in the presence of substantial con-

gestion. As such, it may prove beneficial to utilize different allocator implementations

at low network load, where latency is most critical, than at high load, where through-

put is more important. In particular, we can imagine using a latency-optimized

allocator—perhaps simple collision detection—for newly arriving flits, and a more

complex allocator—possibly requiring multiple cycles to generate a matching—for

buffered flits.

We furthermore found that the use of DOR in Mesh networks leads to an uneven

distribution of requests across output ports—effectively further reducing the density

of the request matrix—because packets only turn once per dimension; it would be in-

teresting to investigate how our results change when using fully adaptive routing [24].

While Chapter 6 showed that dynamic buffer management schemes lead to better

cost-performance trade-offs than static schemes, the performance benefits are partially

offset by the associated pointer overhead. We can reduce such overhead by sharing

buffer space at a coarser granularity; e.g., in a linked-list based implementation, we

can reduce the number of storage elements required for holding buffer pointers and

free pointers—and thus a substantial fraction of the overall overhead—by more than

50% by distributing buffer slots among VCs in pairs1. To determine whether this is

a good trade-off, additional experiments will have to quantify the associated loss in

performance.

As we saw in Chapter 7, the efficacy of ABP can be improved by updating quota

values based on a moving average of credit round-trip times. Other filter functions

and alternative quota heuristics—perhaps based on expected traffic characteristics

supplied by the application, runtime or operating system—would be worth exploring.

1 Note that this increase in granularity only affects the amount of buffer space that is assigned
to a VC; in particular, flow control is still performed at the granularity of individual buffer entries.
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ABP was shown to substantially reduce the throughput degradation experienced

with adversarial traffic patterns when a Mesh network is operated beyond the sat-

uration point; to completely eliminate such effects, efficient mechanisms for enforc-

ing global fairness—ideally without incurring the overhead associated with age-based

allocation—will have to be developed.

In general, much of our evaluation of ABP focused on steady-state performance

metrics. Further research will be necessary to evaluate the dynamic behavior of ABP

and its performance in the presence of rapidly changing traffic conditions in more

detail. In particular, it would be interesting to explore whether an adversarial work-

load can render ABP ineffective by injecting traffic with specifically tuned temporal

characteristics.

Due to limitations of our simulation infrastructure, the streaming background

load in our application traffic experiments was synthetically generated; it would be

insightful to repeat these simulations and replace the synthetic background workload

with actual stream processing workloads, e.g. in the form of CUDA kernels.

The router RTL developed in support of this dissertation provides an extensive

set of parameters; while this allows many aspects of the router to be freely configured,

the fact that each added parameter leads to an exponential increase in the number

of possible configurations renders finding the optimal parameters for a given set of

constraints through exhaustive design space exploration infeasible. As a result, it

would be of considerable benefit it the router could be integrated into an optimization

framework like the one described in [3].

Finally, it stands to reason that the router’s code base would benefit from the

use of a higher-level elaboration framework like Genesis2 [84] in place of the built-in

parameter and generate constructs available in Verilog-2001. As a considerable part

of the router code’s complexity stems from the extensive use of these language features

that was necessary to achieve the desired levels of configurability and generality, this

should make the code both easier to understand and to modify, and thus encourage

more researchers to validate new microarchitectural ideas down to the level of RTL.



Appendix A

Router RTL Overview

In the course of the work described in this dissertation, we developed a parameterized

RTL implementation of a state-of-the-art Virtual Channel (VC) router. In doing so,

we followed three primary design goals:

• To provide a generic, flexible router implementation that, through extensive use

of parameterization, is able to support a wide variety of configurations in terms

of router radix, number of VCs, allocators and other key design parameters,

enabling rapid design space exploration.

• To allow for individual configurations to be synthesized into reasonably effi-

cient hardware implementations using industry-standard design flows, enabling

detailed cost and performance evaluations.

• To provide a modular design that facilitates extensibility by interested third

parties, enabling them to leverage the existing code base for microarchitec-

tural research. The router model is implemented in the industry-standard Ver-

ilog hardware description language, and includes programmable pseudo-random

traffic generators and signature analysis modules, which facilitate the setup of

simple test networks.

The router RTL was used as the basis for conducting evaluations of delay, area

and energy efficiency in Chapters 2, 3, 4 and 5; it has since found use in a number of

other research efforts at Stanford and beyond [10,11,44,53,55,56,59,63,64,72,73].
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Table A.1: Source tree for router RTL.

Directory Description

src/ This directory contains the implementation of the individual
router components, as well as the top-level wrappers that tie
them together into a complete router instance.

src/clib/ This directory contains a library of generic components that are
used in many places throughout the router.

verif/ This directory contains verification testbenches, traffic gener-
ators, as well as modules that monitor the traffic that flows
through each router instance and check for incorrect behavior.

verif/router A testbench with a single router instance. This testbench is
particularly useful for quickly evaluating different router designs
for arbitrary topologies.

verif/mesh 3x3 A testbench with a 3×3 Mesh of routers. This testbench allows
the routers to be tested with more realistic traffic; however, it
is inherently limited to a simple 3×3-node Mesh topology with
a single node attached to each router.
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Table A.1 shows an overview of the router source tree. The typical mode of using

the router implementation is by instantiating the router wrap wrapper module that

is provided in the src/ directory. Router instances can be customized individually by

explicitly passing parameter assignments upon instantiation, or in bulk by editing the

parameters.v file, which is included by router wrap. The testbenches included in the

source tree can assist in debugging microarchitectural modifications and in verifying

the correct operation of the router; they can also be used to quickly gather simple

performance metrics.

Table A.2 provides a brief overview of the parameters of the router wrap module.

Additional documentation is available in the form of comments throughout the source

code of the router.

Table A.2: Design parameters for router RTL.

Parameter Description

topology Selects a network topology. This determines the config-

uration of the routing logic and the number of ports that

connect to neighboring routers.

buffer size Selects the total input buffer size per port in flits.

num message classes Selects the number of message classes (cf. Section 4.3).

num resource classes Selects the number of resource classes (cf. Section 4.3).

num vcs per class Determines the number of VCs that are assigned to each

packet class (cf. Section 4.3).

num nodes Configures the total number of nodes in the network.

Continued on next page
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Table A.2 – Continued from previous page

Parameter Description

num dimensions Selects the number of dimensions for the network topol-

ogy; this directly corresponds to the n parameter in [20],

and it determines the k parameter in combination with

num nodes and num nodes per router.

num nodes per router Selects the concentration factor; i.e., the number of net-

work nodes attached to each router.

packet format Selects a packet encoding.

flow ctrl type Selects a flow control scheme; only credit-based flow con-

trol is supported.

flow ctrl bypass Determines whether incoming credits are accounted for

immediately as they arrive or whether they merely up-

date the credit count for the next cycle. Enabling this

can affect critical path delay.

max payload length Selects the maximum number of payload flits per packet.

Ignored when using explicit head and tail bits.

min payload length Selects the minimum number of payload flits per packet.

Ignored when using explicit head and tail bits.

router type Selects a router implementation variant. In particular,

this parameter selects whether to use separate VC and

switch allocators or combined VC and switch allocation

(cf. Section 5.4).

Continued on next page
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Table A.2 – Continued from previous page

Parameter Description

enable link pm If enabled, each network channel includes an additional

activity indicator signal that allows the receiving logic

at the downstream router to be clock-gated.

flit data width Determines the width of each network channel, excluding

control wires.

error capture mode Enables and configures error checking logic inside the

router.

restrict turns Enables synthesis optimizations based on routing restric-

tions.

routing type Selects the type of routing logic to generate; the only

supported implementation uses one or more phases of

Dimension-Order Routing (DOR).

dim order Selects the order in which dimensions are traversed.

input stage can hold For wormhole routers only, allows the input pipeline

stage to be used as part of the input buffer.

fb regfile type Selects an implementation variant for the register file

used to implement input buffers.

fb mgmt type Selects a buffer management scheme for the input buffer

(cf. Section 6.3 and 6.4).

Continued on next page
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Table A.2 – Continued from previous page

Parameter Description

fb fast peek If enabled, attempt to improve the timing for reading the

next packet’s header information from the input buffer.

This leads to increased cost.

disable static reservations Reserved.

explicit pipeline register If disabled, modify the timing of control signals to the

input buffer’s read port such that its output can connect

to the crossbar directly, rather than through an explicit

pipeline stage. This saves area and energy, but can lead

to increased critical path delay.

gate buffer write If enabled, attempt to clock-gate the input buffer if by-

passing succeeds. This can increase the critical path.

dual path alloc If enabled, use separate allocators for buffered and newly

arriving flits. Only supported when using combined al-

location.

dual path allow conflicts If enabled, resolve output conflicts when using dual-path

allocation via arbitration; otherwise, simply perform col-

lision detection.

dual path mask on ready When using dual-path allocation, only mask requests

from newly arriving flits if a conflicting VC has flits ready

to go. This can lead to increased delay.

Continued on next page
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Table A.2 – Continued from previous page

Parameter Description

precomp ivc sel If enabled, attempt to pre-compute input arbitration de-

cisions; i.e., pre-select a winning input VC for each input

port one cycle ahead. Only supported when using com-

bined allocation.

precomp ip sel If enabled, attempt to pre-compute output arbitration

decisions; i.e., pre-select a winning input port for each

output port one cycle ahead. Only supported when using

combined allocation.

elig mask Determines when VCs become available for re-allocation.

In particular, this parameter can be used to enable

atomic VC allocation (cf. Section 6.2.3).

vc alloc type Selects the VC allocator implementation variant (cf.

Section 4.2). Not supported when using combined al-

location.

vc alloc arbiter type Selects which type of arbiter to use for implementing VC

allocation.

vc alloc prefer empty Determines whether VC allocation should prioritize VCs

that are currently empty. This can increase the critical

path delay.

sw alloc type Selects a switch allocator implementation variant. Not

supported when using combined allocation.

Continued on next page
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Table A.2 – Continued from previous page

Parameter Description

sw alloc arbiter type Selects which type of arbiter to use in implementing

switch allocation (cf. Section 5.2).

sw alloc spec type Enables and configures speculative switch allocation (cf.

Section 5.3). Not supported when using combined allo-

cation.

crossbar type Selects an implementation variant for the crossbar.

reset type Determines whether to use synchronous or asynchronous

reset.
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